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Characterizing the Curricular Complexity Faced by Transfer Students: 2+2, Vertical 

Transfers, and Curricular Change 

 

Abstract 

This paper reviews a method for quantifying the accessibility of a curriculum for transfer 

students. When first conceptualized, the Curricular Analytics framework implicitly described the 

trajectory of a first-time-in-college student. Accordingly, using the metrics within the framework 

for transfer student pathways does not appear to have the same predictive power for estimating 

completion rates as they do for first-time-in-college pathways. Thus, we adapted metrics inspired 

by the literature and previous work in quantifying the complexity of curricula to better capture 

issues more commonly faced by transfer students from a structural perspective. To highlight how 

the metrics operate, we purposefully selected three engineering programs and then formed plans 

of study by selecting a feeder school for each and concatenating the curricula – using 

information from course catalogs to confirm the timing of offerings and prerequisites. Our three 

examples are a 2+2 program, a program within a statewide community college system, and a 

program that underwent a large curricular change. Through these examples, we highlight how 

practitioners and researchers can do substantial curricular analyses, both retrospective and 

forward-looking, with only available data.  

Introduction 

The complexity of engineering programs has emerged as a substantive area of study. Some 

efforts have involved developing visualization techniques for understanding dependencies in 

curricula [e.g., 1]. Authors have also begun defining metrics for what we mean by “complex” 

when describing curricula [e.g., 2,3], predicting graduation rates using these metrics [e.g., 4,5], 

and correlating the metrics with other outcomes like program quality [e.g., 6]. These effects have 

culminated in the curricular complexity metric or curricular complexity framework (i.e., 

referring to the variables composing the overall metric), including a webtool called Curricular 

Analytics [7]. This webtool allows users to import a plan of study as a spreadsheet, visualize the 

prerequisite networks inherent in the course organization, and calculate the structural properties 

of the network that impact student persistence. As shown through experimentation [e.g., 2,8] and 

empirical work [e.g., 5], there is a negative correlation between curricular complexity and 

completion rates. 

Because of the new insights that quantifying a curricular structure could bring, authors have 

begun using the curricular complexity framework to assign values to the accessibility of 

curricula [e.g., 9,10,11]. There are two components of the framework, instructional complexity 

and structural complexity [2]. Instructional complexity refers to the latent characteristics of the 

curriculum, such as the quality of instruction. Currently, the instructional complexity is proxied 

by pass/fail rates; little work has been done to expand this metric, with some exceptions like 

Hilliger et al.’s [12] mixed methods grounded theory study on what makes engineering courses 

demanding. Still, pass/fail rates appear sufficient for simulation studies [2,8]. 



Next, structural complexity involves representing a plan of study as a network, where each 

vertex is a course and the edges connecting them are the pre- and corequisites. Each course is 

assigned a delay factor, the longest prerequisite chain it belongs to, and the blocking factor, the 

number of courses inaccessible to a student if the course in question is failed. Summing the 

blocking factor and delay factor together yields the course cruciality [8]. The crucialities provide 

vertex level information about how central a course is to a plan of study by assigning a number 

to how entangled the course is within the broader prerequisite structure. Summing all of the 

crucialities together yields the structural complexity of the curriculum.  

An example of calculating a course cruciality is shown in Figure 1.  

 

Figure 1. Example calculation of a course cruciality using the delay and blocking factors 

As noted by Heilemen et al. [2], the blocking and delay factors perform well as measures of the 

interconnectedness of a curriculum’s prerequisite structures, with other proposed metrics like a 

course’s reachability (i.e., the number of courses that must be completed to take a course) and a 

curriculum degrees of freedom (i.e., number of ways to rearrange courses in a curriculum while 

respecting prerequisties) being linearly dependent on the blocking and delay factors.  

The Gap, Applying Curricular Complexity to Analyze Transfer Student Persistence  

Most of the work involving curricular complexity rests on the assumptions that students follow 

the curriculum as laid out by the faculty, which is often not true [13], and perhaps more tacitly, 

that the students matriculate directly into the program. Stated differently, the typical application 

of the curricular complexity framework assumes a student body that started at the institution in 

question. This assumption might lead one to wonder how the curricular complexity framework 

translates to address research questions about the success of transfer students in terms of 

persistence and graduation rates.   

From the limited literature on the intersection of curricular complexity and transfer students, 

there are several avenues for reconceptualizing what curricular complexity means for non-first-

time-in-college students. For example, previous work has examined how curricular complexity 

changes during a substantial curricular revision [14,15] on the scale of seven new courses and a 

new program structure. The course crucialities were examined to pinpoint potential bottlenecks 

in student progress as a forecasting tool despite not having graduation data. In this example, the 



authors identified that Digital Systems was a potential issue to student progress because of its 

position in the curricular structure.  

We can further highlight the issue of the Digital Systems (ECE 2544) course using DeRocchis et 

al.’s [10] “term-weighted cruciality” (TWC) – an extension of the “cruciality” idea in Figure 1. 

For a course with cruciality c offered in term t, its TWC is simply ct. In the original paper, it was 

found that the cruciality of Fundamentals of Digital Systems was 32, and its prerequisite, 

Introduction to ECE Concepts (ECE 1004), was 33 (Figure 2). When unweighted, Digital 

System’s prerequisite seems to be more of a barrier than Digital Systems itself; however, by 

incorporating term information as a weight, the potential impact of failing Digital Systems is 

starker, from 1 point less ECE 1004 than to 27 points more than ECE 1004. This example shows 

how curricular complexity can be used as a forecasting tool for both FTIC and transfer students. 

 

Figure 2. An example of weighted cruciality in analyzing bottlenecks in student progress 

Despite the advantages of the curricular complexity framework, there is some predictive 

weakness in estimating completion rates. The structural complexity metric works well in 

predicting four-, five-, and six-year completion rates for first-time-in-college students [2,8]; 

however, the relationship appears to be less evident for transfer students [5].  

Moreover, transfer-specific issues are not captured as directly as a transfer persistence researcher 

or practitioner might like. For example, unlike constructing a plan of study for first-time-in-

college students, which is often readily available as a document through an institution’s catalog 

or department’s website, a transfer plan of study carries more data requirements and features. To 

elaborate, a transfer plan of study is two concatenated plans of study, one from the community 

Unweighted cruciality = 32 

Weighted cruciality = 𝟏𝟗𝟐 

 

Unweighted cruciality = 33 

Weighted cruciality = 𝟏𝟔𝟓 

 



college or previous institution and one from the four-year institution, which involves checking 

for course equivalencies to simplify the prerequisite structures.  

Because the transfer pathway is the concatenation of two plans of study, one example of a 

shortcoming in the original framework concerns credit loss. Courses may not be applied to the 

requirements at the four-year institution; Simone [16] outlines the wide range of factors that 

contribute to credit loss, such as GPA and open admissions versus selective admissions, with an 

average of 13 credits lost on average. However, this complication of the transfer student 

experience is not incorporated into the curricular complexity framework through any discernable 

metric.  

Accordingly, we developed a revised framework, called Transfer Student Structural Complexity 

(TSSC), with metrics that directly incorporate the difficulties transfer students face: timing of 

course offerings (inflexibility factor), sequencing causing courses to extend beyond the intended 

time to degree (transfer delay factor), and credits that are not applied to course requirements (lost 

credits) [17]. Moreover, these metrics are readily calculated using an R package that we have 

developed and tested with previous work to validate its functionality.  

Research Aim 

This paper aims to demonstrate our method for quantitatively describing the complexity of a plan 

of study for engineering transfer students. We highlight course-level and curriculum level 

metrics that incorporate transfer-specific issues like timing of course offerings and unfavorable 

sequencing of courses. This paper leans toward a descriptive aim; therefore, the inferences are 

not meant to be broadly generalizable for all program types described here.   

Transfer Student Structural Complexity 

In our previous work, we illustrated three metrics that account for curricular factors that are more 

relevant for transfer students: the inflexibility factor, the transfer delay factor, and credit loss [17] 

– in which the theoretical basis for their formulations was discussed. We will review them here 

and discuss how the metrics have evolved.  

Inflexibility Factor 

The premise of the inflexibility factor is to incorporate timing information into courses. In the 

original conceptualization of structural complexity, it is implicitly assumed that a student can 

take a course at any time. However, this is often not the case, especially for upper-level courses. 

Our previous paper leaned heavily on the idea of a curriculum’s degrees-of-freedom, the number 

of ways the courses can be rearranged while respecting prerequisite structures [2]. The measure 

considered the sum of how many terms were ineligible for each course to move divided by the 

number of possible terms courses could move without restrictions. There were also penalties for 

crucial foundational courses not available at the community college and courses that extended 

the student’s time to degree. As we experimented with a wider range of test cases than shown in 

[17], it was recognized that the measure was measuring several dimensions of inflexibility that 

did not capture the spirit of the rationale for its creation.  



Accordingly, we opted for a simpler metric that more directly captures the idea of course 

offering timing. Figure 3 demonstrates the inflexibility factor using the delay factor and penalties 

for courses that are not offered every term. For each course with a limited offering, such as Fall-

only, Spring-only, or Alternating-Spring, we shift the course to its next possible offering time 

and shift any following courses by the same amount. We then determine how many terms the 

prerequisite structure extends the student’s completion time. In the case of Figure 3, the grey 

course’s subsequent courses would extend the completion time by two terms after waiting two 

terms to take the course. These waiting times serve as the basis for penalties on the delay factor.  

In other words, given the course’s delay factor, we want to add a weight based on a penalty for 

delays in timing and graduation. Here we will take the penalty to be the sum of the original term 

number, the time needed to wait to take the course if missed, and the number of terms beyond the 

expected completion time when the subsequent courses are shifted by the wait time. In Figure 3, 

we have a starting delay factor of 4, taken in the second term, with two penalties of 2 each; this 

yields (2+2+2)*4 = 24.   

 

Figure 3. Inflexibility factor using the delay factor as a basis with penalties for limited offering 

courses 

When phrased as an equation, let 𝑑(𝑣𝑖𝑗) be the delay factor of the ith course in the jth term. 

Similarly, let 𝑜(𝑣𝑖𝑗) be the frequency of a course’s offering over T terms (e.g., two years of 

Fall/Spring/Fall/Spring). Heileman et al. [2] write, 𝑣𝑎 ⇝𝑠 𝑣𝑏 , to denote a sequence s of courses 

< 𝑣𝑎, … , 𝑣𝑏 > with the property that each pair of courses is a valid edge in the graph (i.e., they 

all belong to the same prerequisite chain), starting at 𝑣𝑎 and ending at 𝑣𝑏. Let 𝑡𝑤(𝑣𝑖𝑗) be the 

number of terms a student must wait to take a course if missed and 𝑡𝑒 be the expected time to 

degree. Finally, define the indicator functions: 

𝐼𝑠(𝑣𝑎, 𝑣𝑏) = {
1,      𝑣𝑎 ⇝ 𝑣𝑏 
0,               else

 

where 𝐼𝑠 is an indicator if a valid sequence of courses starting at 𝑣𝑎 and ending at 𝑣𝑏 exists. And, 



𝐼𝑜(𝑣𝑖𝑗) = {
1,    if 𝑜(𝑣𝑖𝑗) < 𝑇 

0,                   else
 

where 𝐼𝑜 is an indicator if a course is not offered every term. We’ll formulate the penalties based 

on the time a student must wait, 𝑡𝑤(𝑣𝑖𝑗), and the number of terms delaying the course would 

push course-taking beyond the expected time to degree, 𝑝(𝑣𝑖𝑗). The second penalty would be 

expressed as: 

𝑝(𝑣𝑖𝑗) = max
𝑘>𝑗

{(𝑘 + 𝑡𝑤(𝑣𝑖𝑗)) 𝐼𝑠(𝑣𝑖𝑗 , 𝑣∗𝑘) − 𝑡𝑒 , 0} 

This means the inflexibility factor for a course is: 

𝐼𝑓(𝑣𝑖𝑗) = 𝑑(𝑣𝑖𝑗) (𝑗 + 𝑝(𝑣𝑖𝑗) + 𝑡𝑤(𝑣𝑖𝑗)) 

To summarize the timing sequencing issues, we’ll sum up the course inflexibility factors for the 

courses that have limited offerings (using the indicator function 𝐼𝑜) to get the total inflexibility 

factor 𝐼𝑓𝑇. 

𝐼𝑓𝑇 = ∑ 𝐼𝑜(𝑣𝑖𝑗)
(𝑖,𝑗)

𝐼𝑓(𝑣𝑖𝑗) 

Note that the delay factor itself is calculated as follows [2]: 

𝑑(𝑣𝑖𝑗) = max
𝑎,𝑏,𝑙,𝑚

{|𝑣∗𝑎 ⇝𝑙 𝑣𝑖𝑗 ⇝𝑚 𝑣∗𝑏|} 

where |.| denotes the length of the sequence. In essence, the formula 𝑑(𝑣𝑖𝑗) fetches the longest 

path including 𝑣𝑖𝑗 bridged by arbitrary sequences of courses l and m from 𝑣∗𝑎 to 𝑣∗𝑏 (which is 

the longest requisite chain flowing through the course under consideration).  

Transfer Delay Factor and Transfer Delay Subcomplexity 

The Transfer Delay Factor 𝑇𝑑 intends to capture the type of delay where transfer students’ 

expected time to degree is pushed through curricular factors alone; in other words, the 

sequencing of courses simply does not permit the student to finish within the constraints of an X-

year program. This metric was further motivated by a previous study with 56 transfer pathways 

into engineering at Virginia Tech, where only 11% were possible to complete in four years [5]. 

Moreover, egregious delays could occur if the receiving institution has courses that block the 

student from several later offerings, such as new requirements resulting from a substantial 

curriculum revision. The transfer delay factor is the sum of the delay factors for the courses 

beyond the expected time to degree, which is calculated using the following sum: 

𝑇𝑑 = ∑ 𝑑(𝑣𝑖𝑗)

(𝑖,𝑗):𝑗>𝑡𝑒

 

where 𝑣𝑖𝑗 represents the ith in course in term j. One could also divide 𝑇𝑑 by the number of courses 

beyond the expected-time-to-degree and find the average length of the prerequisite chains. 



Another quantity to examine is the Transfer Delay Subcomplexity, 𝑆𝑇𝑑. When considering the 

courses that extend a student’s completion time, we can visualize how dense the prerequisite chains 

leading up to them are and quantify them. Recall that the total term weighted cruciality (or term-

weighted structural complexity, TWSC) is: 

𝑇𝑊𝑆𝐶 = ∑ 𝑗𝑐(𝑣𝑖𝑗)

(𝑖,𝑗)

 

where 𝑐(𝑣𝑖𝑗) is the cruciality of the course 𝑣𝑖𝑗. The expression that captures the sequencing using 

the term-weighted crucialities from DeRocchis et al. [10] is: 

𝑆𝑇𝑑 = ∑ 𝑗𝑐(𝑣𝑖𝑗)𝐼𝑠(𝑣𝑖𝑗 , 𝑣∗𝑗>𝑡𝑒
)

(𝑖,𝑗)  

 

In essence, 𝐼𝑠(𝑣𝑖𝑗 , 𝑣∗𝑗>𝑡𝑒
) indicates if there is a requisite chain that the course flows into later in 

the program that extends the student’s time to degree.  

The formulas are almost identical, with the exception that all of the courses are included in TWSC 

instead of only the courses related to extending the student’s time to degree in 𝑆𝑇𝑑. To examine 

how much of the structural complexity is explained by sequencing issues extending time to degree, 

we can form the following ratio: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =
𝑆𝑇𝑑

𝑇𝑊𝑆𝐶
 

This idea has a convenient parallel with the notion of explained variance in statistical analyses and 

can be used to evaluate how interconnected the prerequisite chains are that cause delays. An 

example of the Transfer Delay Factor and Transfer Delay Subcomplexity is shown in Figure 4.   

 

 

 

 

 

 

 



 

 

Figure 4. Calculation of the Transfer Delay Factor and the Transfer Delay Subcomplexity  

Credit Loss 

The last metric, credit loss 𝐶𝑙, concerns courses that are included in the plan of study but do not 

count toward the degree program’s requirements. These courses could be relegated to elective 

credit or not counted at all. Credit loss tends to decrease the likelihood of graduation [18], so we 

consider the inclusion of lost credits as a valuable factor in the Transfer Student Structural 

Complexity model. We sum the number of credits from the community college that do not apply 

to the student’s degree program requirements for this metric. For this paper, we will be focusing 

on the structural differences between curricula. 

Application of Transfer Student Structural Complexity 

Now that we have reviewed the components of the Transfer Student Structural Complexity 

framework, let’s apply it to a selection of real curricula. 

Consider courses 

beyond the 

expected time to 

degree (8 terms here) 

The subcomplexity graph contains all of 

their prerequisties 

The sum of all term-weighted crucialities 

is the Transfer Delay Subcomplexity   

 

The Transfer Delay 

Factor is the sum of 

these delay factors 



Context of Our Examples 

To demonstrate our method for the broader two-year college community, we purposefully 

selected an intentionally streamlined program for transfer, i.e., a 2+2 engineering program, a 

program that does not have a specified transfer pathway, and a program that underwent a 

curriculum overhaul to highlight different features of our metrics. We collected the course data 

for a feeder community college for each of the three institutions and the four-year institution plan 

of study data, which included prerequisites, corequisites, and course equivalencies. Then, we 

constructed the plans of study based on the suggested pathways at the institutions. Course 

equivalencies available through the institutional websites were used to eliminate redundancies in 

prerequisites. 

A Deliberately Sequenced Mechanical Engineering 2+2 Program 

 

Figure 5. Plan of study for a sequenced 2+2 program, horizontal transfer; stars denote limited 

offering courses. 

The plan of study in Figure 5 derives from a partnership between two four-year institutions that 

offer a joint program in engineering, which makes these students horizontal transfers. The 

overall structural complexity of this curriculum is 343, with a term-weighted structural 

complexity of 1351.  

What can be seen in Figure 5 is a set of limited offering courses scattered throughout the plan of 

study. What we can capture using the inflexibility factor is a measure of how severe sequencing 

delays could be if a student misses or fails a limited offering course – or fails a course in the 



sequence of a limited offering course. By summing up the delay factors and associated penalties 

of the limited offering courses (denoted by stars). The resulting value is 268.  

If we compare the results of the course-level inflexibilities with the weighted crucialities, we can 

see how courses in longer prerequisite chains can suddenly become much more crucial than 

others that are a more fundamental linchpin of a denser set of requirements. Consider MA341 

and MA214 in the fourth term. The term weighted cruciality of MA341 is the highest of all five 

courses (Table 1), with MA214’s term weighted cruciality being 31% less than MA341. If we 

examine the delay factor’s contribution to the cruciality, we see that they are equivalent – the 

difference is in the number of courses each one blocks. Next, if we apply the inflexibility factor 

calculation, MAE208’s delay score that incorporates timing now exceeds MA341’s delay score. 

In fact, now MAE214’s delay is only 3 points away from MA341’s weighted cruciality, 

underscoring how a limited offering course can impact a student’s progress if the prerequisite 

chain is not followed as scheduled. 

Table 1. How individual course inflexibilities can be compared to weighted crucialities, course-

level measures of fourth term courses in the 2+2 program 

Course Weighted Cruciality Weighted Delay Factor Inflexibility Factor 

MA341 52 28  

MAE208 20 20 30 

MAE214 36 28 49 

STAT225 8 8  

ARTH201 4 4  
Note: Shaded rows are limited term offerings. 

At this point, we should note that because the 2+2 program is specifically designed to be done in 

four years, there are no courses that actually extend the student’s time to degree on paper. 

Therefore, the transfer delay factor is zero. Despite the transfer delay factor being zero, the 

inflexibility factor captures the potential for delays. Examining the weighted delay factors and 

inflexibility factors of individual courses can help identify timing issues in sequences for 

students. Although the aggregate measure of the inflexibility factor provides a summary of the 

sequencing issues, disaggregating by analyzing individual crucialities, delays, and inflexibilities 

is recommended.  

A Mechanical Engineering Program in a Statewide Community College System 

The plan of study in Figure 6 is a general vertical transfer program supported by a statewide 

community college system that is designed to streamline transfer. The overall structural 

complexity of the curriculum is 367, and the term-weighted structural complexity is 1500. In this 

case, the recommended courses result in an additional year to the student’s plan of study. Note 

that the structural complexity is 24 points (+7%) more than the last curriculum, whereas the 

weighted structural complexity is 149 (+11%) to account for the additional terms. The weighted 

crucialities allow us to punish these additional terms directly using the standard metrics at the 

aggregate level.  



We can single out those courses extending the student’s time to degree using the transfer delay 

factor. Figure 7 shows the courses that are related to the ones extending the student’s time to 

degree.  

 

Figure 6. Plan of study for a general vertical transfer program; stars denote limited offering 

courses. 

 

Figure 7. Courses that are extending the student’s time to degree in the program 

The structural complexity of the subgraph in Figure 7 is 283, and its term weighted structural 

complexity is 1156. Therefore, we can calculate that the complexity contributing to the student’s 

extended time to degree is 77% of the overall weighted and unweighted complexity. Looking at 

the total delay factors of the courses in the 9th and 10th terms, we can deduce the transfer delay 

factor is 45. On average, the sequencing pushing these courses beyond the eighth term is five 

courses long (45/9 courses = 5). These three figures – explained complexity, transfer delay 



factor, and average sequencing – allow us to quantify the messy web of prerequisites the students 

must navigate through that are impeding timely degree completion. 

In terms of timing, only two courses are limited offerings in mostly unsurprising locations – near 

the end of the curriculum. Because they are in the 9th and 10th terms, they are subject to both 

penalties as described in the prior section on calculating the inflexibility factor. After performing 

the calculation, we find that MAE441 has a delay factor of 4 and could extend completion until 

term 11 (a penalty of 3), whereas MAE414 has a delay factor of 5 and could extend completion 

until term 12 (a penalty of 4). In total, we have 𝐼𝑓 = 4(2 + 3 + 9) + 5(2 + 4 + 10) = 136. 

Compared to the other curriculum, which had an inflexibility factor of 275 – a little more than 

double the inflexibility factor here – we can highlight how the placement of limited-term 

offerings makes a tremendous difference in the resulting value. The first curriculum has 11 

limited offering courses scattered throughout the curriculum, but the prerequisite structures were 

a little more forgiving in the previous curriculum. Here, the courses that could extend time to 

degree further are already beyond the eighth semester. Therefore, missing these courses can have 

a tremendous effect, hence the value of the inflexibility factor. This simple comparison 

highlights the value of the inflexibility factor in unearthing timing issues that are currently not 

captured in the current framework.  

A Significantly Revised Electrical Engineering Program 

 

Figure 8: An example of a significantly revised program in Electrical and Computer 

Engineering for vertical transfers 

In contrast with the previous program, consider a pathway into the Electrical and Computer 

Engineering program significantly changed as part of a curricular renewal mentioned in the 



background to this paper. The structural complexity is 698, and the term-weighted structural 

complexity of 3265 – more than double the previous curriculum.   

Its transfer delay factor is 67, compared to 45 in the last case (49% larger). Thus, on average, the 

sequencing is 67/7 = 9.6 courses – making the sequencing much less forgiving than the previous 

5-course average sequencing. Unlike the previous curriculum, all seven courses are connected to 

a prerequisite structure earlier in the network. In contrast, nine courses in the other curriculum 

extended beyond the expected time to degree but not all depended upon other coursework.   

The comparative power of the Transfer Delay Subcomplexity comes into play when we calculate 

the corresponding value of the graph in Figure 9. Its Transfer Delay Subcomplexity totals 2972, 

implying that 91% of the explained complexity for delays arises from the courses extending the 

student’s completion time.  

Taken together, we see how the suite of measurements can vary considerably across programs 

and can identify potential pain points for transfer students.  

 

Figure 9: Transfer Delay Subcomplexity graph for the significantly revised program 

Conclusions and Future Work 

In this paper, we highlighted the descriptive power of the curricular complexity framework when 

modified to consider issues related to transfer students. As a whole, the term-weighted structural 

complexity, term-weighted crucialities, inflexibility factor, transfer delay factor, average 

sequencing, and transfer delay subcomplexity have the potential to provide a comprehensive 

view of sequencing and timing issues for vertical and horizontal transfer students. Each 

component offers different levels of information that can signal issues for hypothetical or actual 

transfer pathways.  

We expect our method to be useful for researchers and practitioners alike. For researchers, 

studying persistence in transfer student pathways can be complemented by one or more of these 

metrics intended to capture the predicted completion rate for those individuals. Moreover, 



studying curricular policy for transfer students can be accomplished using proposed plans of 

study, allowing the implications of decisions to be quantified and forecasted using all available 

data. These analyses can also be combined with a method proposed by Slim et al. [19] that uses 

Bayesian Networks to evaluate the impact of changes to curricula on graduation rates. Finally, 

our method empowers practitioners like advisors to visualize hypothetical pathways for students 

and consult with them about decisions they must make to have a successful transfer.  

Because curricula are dynamic, we can think of the metrics here as implied or forecasted. 

Students often do not follow the curriculum as described [13], such as retaking courses multiple 

times [20] or switching majors [21]. These behaviors are captured to an extent by the 

instructional complexity metric. However, there is still work to be done to cover the broader 

scope of student decision-making and institutional factors that impact curricula. Headway in 

incorporating student behaviors into the curricular complexity framework is seen in Slim et al. 

[22,23], who introduced a Markov model to provide closed-form solutions describing how 

students flow through a curriculum. Their example was with a subset of courses in a plan of 

study, but the authors plan to expand the Markov models to complete curricula.   

To continue refining our Transfer Student Structural Complexity model, we are currently in the 

midst of a project to collect more face and construct validity for our measures by soliciting 

feedback from transfer stakeholders, including faculty, advisors, administrators, and students 

themselves. We aim to contextualize a broader theory of Transfer Student Curricular Complexity 

to complement the instructional complexity in Heileman’s [2] framework. Moreover, we plan to 

collect more plans of study to explore the variation in the measures provided here.  

Finally, we have an alpha version R package that we are using to conduct the analyses that we 

plan to make available to the community. As a result, we aim to make this work accessible as a 

tool for researchers and practitioners.    
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