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Abstract— Using remote sensing technique to detect tsunamis has 
aroused a great deal of researchers’ interests. It resolves the fatal 
disadvantage that current DART system has and improves the 
precise rate of tsunami detection greatly. However, since the 
system is based on the analysis of infrared satellite images, the 
detection would fail if the spot is covered with clouds or cloud 
shadows due to the fact that clouds and cloud shadows would 
distort the real signal received by satellite sensor. Hence 
removing clouds and cloud shadows from these infrared satellite 
images has become critical. Using the technique proposed by 
Meng et al.[1], this paper designs an algorithm to remove clouds 
and cloud shadows from satellite images for our remote sensing 
tsunami detection system. Future work is discussed.  
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I. INTRODUCTION  
      This research is motivated by tsunami early warning 
system (TEWS). A brief background about our motivation is 
introduced first. 
 
1.1  Tsunami early warning systems (TEWS) 

A tsunami is a series of ocean waves generated by sudden 
displacements in the sea floor, landslides, or volcanic activity 
[11]. It kills thousands of thousands lives, destroys buildings 
and fields. In 2004 Indian Ocean tsunami over 230, 000 
people died [10]. In 2011 Tohoku tsunami, over 15,000 people 
lost their lives [12], and the losses was up to $34.6 billion 
[13]. Building up an efficient tsunami early warning system is 
very important.  

     The present main TEWS is the Deep-Ocean Assessment 
and Reporting of Tsunamis (DART) developed by NOAA. 
The system puts pressure sensors at the sea floor. When an 
earthquake happens under the floor, the sensor detects and 
records the change of aquatic pressure and sends an acoustic 
signal to a buoy on the ocean surface. The buoy transmits the 

received message into radio signal and sends it to a satellite. 
Finally the satellite sends the information back to a ground 
station for researchers. DART can pinpoint the earthquakes 
location, estimate the timing of the tsunami, and predicted 
tsunami measurement [15]. However, the change in aquatic 
pressure won’t guarantee an occurrence of a tsunami; the 
high-maintained system does not work properly all the time, 
and tsunami waves sometimes sneak past the recorders, etc. 
Consequently, its false warning rate is up about to 75% by 
[14] and others. In addition, the whole system is very 
expensive as well as its frequent maintenance.   

1.2  Landsat TM Images 
 

Satellite images are ones of the most interesting images in 
geographic information system (GIS). With Satellites, we can 
access to remotely sensed images in digital format, analyze 
them, and rapidly integrate the results into a GIS [19][20].  

 
Using the aerial sensor technology, a satellite can detect 

and classify objects on the earth with the help of propagated 
signals, or electromagnetic radiation. In 1980’s, Thematic 
Mapper (TM) became the prime instrument in infrared 
geostationary Satellites Landsats 4, 5 and 6. It is a scanner (or 
sensor) with seven spectral bands. The satellites’ resolutions 
30 meters, and Landsat 7 carries a single sensor, ETM+, 
whose resolution is up to 15 meters with a panchromatic band.  

 
Among the seven bands, there are a blue band for quasi-

natural color images, two bands for mid-IR, and a thermal 
band.  
 
1.3  Remote Sensing Technique 
 

Lin, et al. proposed a brand new idea in 2010 to detect 
tsunamis using remote sensing [16]. When a tsunami 
generates by a sudden displacement in the ocean floor, an 
infrared geostationary satellite can “see” it at its epicenter. It 
records what it sees on its infrared image. By analyzing the 
satellite image using wavelet technique, Lin et al. find the 



evident signal from the tsunami. They follow their research by 
investigating tsunamis in Indian Ocean 2004 [16], 2011 
Tohoku tsunami [17] and N. Sumatra tsunami of 2012 [18] 
and in all cases tsunamis are detected successfully from their 
infrared satellite images.    
 
1.4  Image De-Cloud Approaches 
 

However, what would it be if an infrared satellite image is 
covered by clouds or cloud shadows (CCS)? Can the proposal 
in the previous section still work and successfully detect a 
tsunami?   

 
Over 60% of the our earth is cloud covered [21][22]. 

Couds and cloud shadows corrupt satellite images such as 
Landsat images [3]. Hence the study in removing clouds and 
cloud shadows is critical in our remote sensing system. 
However, such a research is rare [1]. Mitchell et al. first 
developed a model in cloud distortion and proposed a filter to 
remove it in satellite images in 1977 [4], followed by the 
improvements [5][6]. It is suitable for thin-clouds case which 
is not general. Another proposal is made by Cihlar and 
Howawrth [7] and Simpson and Stitt [8], but it is for AVHRR 
images other than Landsat images. We are interested in the 
filter developed first by Caselles [9], a multi-date effect 
brightness correction filter. The filter is improved by [10][1], 
among which, we are particularly the technique proposed by 
Meng et al. [1]. The method is called closest spectral fit, or 
CSF.  
 

II. OUR PROJECT 

A. Closest Spectral Fit  
At the same spot yet different times, the approach needs 

two images: the base image for application and an auxiliary 
image. Both images should have no overlapping cloud or 
cloud-shadow areas. The auxiliary image helps the base image 
to map its pixels contaminated by clouds or cloud shadows 
(CCS) to their most spectrally similar pixels, with the 
location-based one-to-one correspondence.  By replacing these 
pixels in CCS area with their most spectrally similar pixels, 
clouds and cloud shadows are “removed”.  

. 

B. Our Algorithms 
The technique is suitable for our purpose:  

1. The multi-images at the same area in different times 
are available by Landsat images. 

2. The examination of non-overlap of cloud pixels or 
cloud-shadow pixels in both images is practical. 

3. It meets our goal ---- our algorithm would be easy to 
be implemented and coded. 

4. The last but the most important, it applies to all cases 
in any cloud densities. 
 

We adopt the technique and improve it for our needs to the 
following steps: 
 
Step 1 Prepare both base and auxiliary images 
 

For the image we need to analyze (as the base image), 
choose an appropriate image in the history records at the same 
spot as its auxiliary one. The areas with CCS in the base 
image should be cloud-free and shadow-free in the auxiliary 
one. Such an examination can be implemented visually, but in 
the future, software can fulfill the function and choose a best 
one during a particular period of time (See our Algorithm 1 
below). 
 
Step 2 Identify cloud pixels or cloud shadow pixels in base 
image 
 

It is known that visible and near-infrared bands are 
sensitive to CCS. Such a property can be utilized to detect 
CCS. A Landsat TM image has eight spectral brands. Among 
them, band 1, 3, and 4 are bands most sensitive to CCS [1]. As 
long as their digital values of spectral bands are out of certain 
thresholds, clouds or cloud shadows are present. For example, 
in a cloud area, a pixel’s digital value of TM band 1 is greater 
than 95, and in cloud-shadow area its value of TM band 4 
would be less than 55. Particularly, the ration of band 4 to 
band 3 can tell if it is in a water area with a cloud shadow. We 
devise an algorithm detecting CCS as the following. 

Algorithm 1:  Detect clouds and cloud shadows               

                         (psudocode) 

Input:  base image  

Output: PixelSetWithCCS            // set of pixels in CCS area 

 load a pixel “p” from the base image    // Read the base image 

                                                                // pixel by pixel 

.1 digital number of its TM band 1

.3 digital number of its TM band 3

.4 digital number of its TM band 4

p
p
p

=

=

=

 

If .1 95p >  

           p is in CCS area 

           push p in PixelSetWithCCS     

Otherwise  if .4.4 55 and 1.3
.3
pp
p

< >   

           p is in CCS area 
           push p in PixelSetWithCCS 

 



end 
 

Step 3  Find the most similar pixels for CCS pixels 
            

In the base image, for each pixel in the CCS area, we will 
search for its most similar pixel. In another word, we need to 
look for a pixel with the most similar surface reflectance 
values in the spectral space. This is called closest spectral fit 
(CSF) [1]. Since the pixels in CCS area have been spectrally 
distorted, we are no longer able to use their spectral data for 
such a mapping. That is why we need an auxiliary image 
which is cloud-free and shadow-free in the same area where 
CCS are present in base image, because we can do the 
mapping in the auxiliary image based on the assumption that a 
pixel’s most spectrally similar pixel would not change with or 
without CCS.  
 

Meng et al. propose using Euclidian Distance to find the 
“similarity”[1]. We adopt the measure criterion. Given two 
pixels i  and j , the Euclidian Distance ijD  is given by 

7
2

1
( )ij k k

k
D i j

=

= −∑                                  (1) 

where k  is the index of a brand in Landsat TM. Since there 
are total seven brands in a TM imagery, k  is hence from 1 to 
7.  

 
We give an algorithm of finding the closest spectral fit as 

the following.   
 
Algorithm 2:  Find the closest spectral fit (CSF)      
 
                         (psudocode) 
 
Input:    PixelSetWithCCS         // set of pixels in CCS area 

auxiliary image             
   

Output: PixelSetOfCSF        // set of pixels with closest     
                                               // spectral fit for pixels in CCS  
                                               // area 
 

size(PixelSetWithCCS)n =  

size(auxiliary image)m =  
 
for 1 to i n=  

PixelSetWithCCS.ip =     // retrieve thi pixel in the  
                                   // pixel set of PixelSetWithCCS 

0ED =                // Square of Euclidian Distance 
for 1 to j m=  

                        uxiliaryImage.q A j=       // retrieve a pixel in  
                                    // auxiliary image                 

                         for 1 to 7k =  
     .p k=digital value of band k  of pixel p  

                                  .q k =digital value of band k  of pixel q  

              2( . . )ED p k q k+ = −  
            if  0ED ≠             // Makes sure p   and q     
                                                       //  are not identical  
         if 1j ==   

;S ED=       // S is the smallest ED  
                                           CSF q= ;    // q  is the closest  
                                                               // spectral fit pixel                                               

        else if ED S<  
    ;S ED=  
    CSF q= ;        
             PixelSetOfCSF.i CSF=        
end      
 
Step 4  Remove CCS from base image 
 

In Step 3, in the auxiliary image we attain a set of pixels. 
They are the most similar to pixels which have the same 
locations as those in the CCS area of the base image. Mapping 
such a closest-spectral-fit relationship to the base image with 
location-based one-to-one method, the corresponding pixels 
with the closest spectral fit for those in CCS area are therefore 
retrieved. Replacing the pixels in CCS area with their closest 
spectral fit ones respectively, clouds and cloud shadows are 
thus removed by overwriting their spectral data. 
 
Algorithm 3:  Replace Pixels in CCS by Their CSF Pixles 
 
Input: PixelSetWithCCS      
            PixelSetOfCSF, 
            base image        // original base image 
 
Output: base image    // base image after clouds and cloud  
                                     // shadows are removed 
 

(PixelSetWithCCS)m size=  

 1 to for i m=  
        PixelSetWithCCS.ip =       // For each pixel in CCS area  
        PixelSetWithCSF.iq =        // Retrieve its corresponding  
                                                      // CSF pixel  
        p q=                                 // Overwrite spectral data of  
                                                      // pixel pwith that of pixel q  
end 
 
 
 
 



III.  FUTURE WORK 
 

We need to search for a tsunami event in the history whose 
Landsat TM image on the spot is covered by clouds or cloud 
shadows. Due to the fact that infrared satellite system has a 
short history of less than three decades, and the most recent 
notable tsunamis are relatively cloud-free at the occurring 
spots, such an access is not as easy as we hoped, but 
internationally the access should be available, yet takes time. 

  
Software of the filter is necessary. The software with GUI 

will automatically read the most recent Landsat TM images, 
detect if a CCS area is present, search for an ideal auxiliary 
image in the image database,  remove the clouds and cloud 
shadows, and then analyze the overwritten base image to 
detect tsunami signal(s). Proving both excellent programming 
environment and numerical analysis tools such as image 
processing and wavelet toolboxes, Matlab is an ideal means 
for us to make such software.  
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