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Introduction 

This paper meets our two goals of (1) identifying homogeneous groups of second-year 
engineering student FTPs and (2) introducing commonly used cluster analysis techniques and 
providing an example of how to implement said techniques within an engineering education 
context. One specific aspect of motivation, Future Time Perspective (FTP) [1], has been shown 
to have a connection to student strategies and how they approach learning in the present [2]–[4]. 
One way of evaluating FTP is quantitatively through a survey instrument like the Motivation and 
Attitudes in Engineering survey [5]–[8]; however, it is often difficult to select appropriate 
analysis methods for such quantitative data, and there is a lack of literature for engineering 
educators comparing types of quantitative analytic methods. Thus, the second purpose of this 
paper is to fill this gap by discussing how to implement different types of cluster analysis (CA) 
techniques to create homogenous groups and how to select the best clustering method and 
solution based on reported results. This paper builds on the cluster analysis considerations of 
Ehlert, et al [9] with the following research questions for this paper: 1. What cluster analysis 
technique is the best fit to determine the motivational (FTP) characterizations of undergraduate 
engineering majors within the context of a major-required course? 2. What are the motivational 
(FTP) characterizations of undergraduate engineering majors within the context of a major-
required course? 

Background 

FTP is often defined as the “present anticipation of future goals” [10] (p. 122), and FTP can be 
contextualized for undergraduates as students’ goals, views of the future, and the impact these 
goals and views have on actions in the present. FTP as a theory is important because a well-
developed FTP has been quantitatively and qualitatively linked to goal-setting, self-regulation, 
and success in engineering programs [2], [6], [10]–[13]. In this paper, domain-general 
(Connectedness, Value), domain-specific (Perceptions of the Future, Present on Future, Future 
on Present), and context-specific constructs (Perceived Instrumentality) were considered. In 
general, Value, often termed valence, is the “anticipated subjective value”[14] (p. 567) of future 
goals for a person; thus students may place a higher value or hold one goal in higher regard than 
another goal. The second domain-general FTP construct, Connectedness, is “general feeling of 
connectedness to and planfulness about the future” [15] (p. 116). Perceived Instrumentality (PI) 
[15]–[17] is a context-specific variation of connectedness and is described as the importance a 
person places on a current task (e.g. engineering course) towards future goals. This importance, 
or perception of instrumentality, may be considered endogenous, directly related to a person’s 
future goals, or exogenous, tangentially related but being seen as something to overcome towards 
a future goal [18]. 



Within the domain of engineering [19], Perceptions of the Future (PoF) is described using three 
terms: Relative distance of a students’ goals into the future (extension); their positive to negative 
attitude regarding the future (time attitude), and “habitual time space” [15] (p. 115) (time 
orientation). The impact of current or previous tasks on goal creation is considered PoF. 
Similarly, a long extension supports the view of future goals impacting the present [15], which is 
described as the construct Future on Present (FoP). Overall, these domain-general, domain-
specific, and context-specific FTP constructs can be utilized to qualitatively describe and 
quantitatively determine the future views and motivations of undergraduate students within 
engineering.  

Cluster analysis 

CA is the “art of finding groups in data” [20] (p. 1) and is the best method for this research due 
to its “person-centered” approach, as it allows a “one-to-many” look at dimensions [21] (p. 901). 
To select a CA method for a study, three questions should be considered [22]: Which 
similarity/dissimilarity measure (measurement of distance between data points) is appropriate? 
How should the data be normalized? How should domain knowledge (theory and input 
parameters) be utilized when clustering data? Additionally, external (fit of clustering solution 
compared to theory), internal (fit of the clustering solution compared to the data), and relative (fit 
of multiple clustering solutions) quality should be considered [23]. 

Figure 0: depicts an overview of CA methods available for selection and breaks CA into two 
categories: hierarchical and partitioning [22]. Hierarchical methods are used when little theory is 
available to frame the research [24], [25], allowing the data to drive the results. Partitioning 
methods, on the other hand, are more methodologically sound when there is strong theory to 
support the required a priori inputs [23], [26], [27]. For more detailed discussion of the different 
algorithms one can use in CA, see [9], [22], [23], [28]. In this paper, we use Ward’s and k-means 
as these are very common and robust algorithms [9], [22].  

 

Figure 0: A taxonomy of clustering approaches [22] 
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Cluster Analysis of Student Motivation 

Several studies of multiple populations have utilized CA to analyze and characterize student 
motivation and learning [21], [29], [30], and some specifically Future Time Perspective (FTP) 
[1], [2], of engineering undergraduate students. In particular, some studies have utilized the 
Motivation and Attitudes in Engineering (MAE) to cluster undergraduate engineers [31]–[33] 
and have discussed results where three characteristics future views of undergraduate engineers 
have been shown: sugar students with a clear future view; waffle students with conflicting ideal 
and realistic futures; and cake with open views of the future. Several quantitative studies cluster 
first and second year undergraduate engineering students based on their FTPs [6], [32], [33] 
typically seeing three groups:  

Group 1: high F, PI, and FoP scores (sugar) 

Group 2: lower F, PI, FoP scores than Group 1 and a low PI score overall (waffle) 

Group 3: lower future scores, high PI scores, and overall low FoP scores (cake) 

While k-means has primarily been used to identify homogeneous groups of engineering students 
in terms of their motivation and/or learning attributes, this paper seeks to select the most 
appropriate CA method and will compare both hierarchical and partitioning methods. The 
chapter specifically includes the solutions from the Ward’s and k-means clustering algorithm to 
select the most fitting cluster solution. The results will be used for participant selection in future 
chapters.  

Methods 

Motivation and Attitudes in Engineering Survey 

The MAE survey [7], [8] consists of 5 sections with 86 items related to goal orientation [34], 
FTP and Expectancy (E), task specific metacognition, problem-solving self-efficacy [35], and 
demographic information. This paper presents a CA of the domain- and context-specific Future 
Time Perspective (FTP) items utilizing the FTP and Expectancy section. The FTP items contain 
five theoretical factors: Perceived Instrumentality (PI), Perceptions of the Future (F), Future on 
Present (FoP), Value (V), and Connectedness (C). The Value and Connectedness items, adapted 
from Husman and Shell [1], [12], were added based on previous qualitative FTP work [7], [32], 
[33]. Other items were original and based on findings from prior qualitative studies [7], [32], 
[33], or adapted from the Motivated Strategies for Learning Questionnaire (MSLQ) [36], [37].  

Items in the FTP and E section were 7-point Likert-type items with anchors “0-Strongly 
Disagree” and “6-Strongly Agree” [38] as anchored scales make statistical testing more valid, 
and allows for an easier interpretation of numeric responses [39]. Normalization was not 
necessary as all items were on the same scale. E items for this population are typically high and 
generally rank the same on a Likert scale across clusters as students in engineering have high 
hopes in their coursework [33]. As such, E will not be included in the CA as it does not help to 
differentiate students. Additionally, this research focuses on domain-specific (F, FoP, PoF) and 
context-specific (PI) FTP constructs.  



Participants 

The MAE survey was distributed in class and submitted online by students enrolled in one 
section of a sophomore-level materials science and engineering (MSE) course required for 
industrial engineering (IE), BME, and ME undergraduates at a four-year, land grant institution in 
the southeast (n=97). Additionally, the survey was completed in one section of a required, 
sophomore-level IE course (n=205) during the same semester. Both sets of students received 
class credit for completing the survey during class time. Prior to merging of the two groups, they 
were compared using robust statistical analysis (Fisher’s Exact and Chi-squared tests) to ensure 
no differences in the two samples existed.  

Exploratory Factor Analyses 

An exploratory factor analysis (EFA) was conducted to assess the latent correlation structure of 
the survey items. This analysis validated new items that were added to the MAE (C and V) and 
validated the survey for a new population. Prior to the EFA, incomplete entries were listwise 
deleted. A total of N=223 completed entries were used for the EFA and subsequent analysis. A 
scree plot test [40], [41], and the FTP literature were used to determine the appropriate number 
of factors. Eigenvalues of the correlation matrix using a promax rotation [42] were plotted in a 
scree plot (Figure 1). A promax rotation of factors allows factors to be correlated, provides the 
simplest solution, and permits items to load into one, and only one, factor[43], [44]. The data’s 
skew (absolute value not higher than 2) and kurtosis (value not higher than 7) were evaluated to 
assure assumptions of multivariate normality were met [45]. Items that had a factor loading 
below 0.4 during the EFA were removed [46]. In addition to an overall Chi-squared test (non-
significant at p<0.05), the root mean square error of approximation (RMSEA) was calculated to 
test model fit [47]. After the EFA was completed, Cronbach’s alpha [48] was used to confirm the 
internal consistency of the factors [49]. 

Cluster Analyses 

A CA of the FTP constructs was conducted in order to group homogenous participants into k 
subgroups, or k clusters [50]. The data for the CA consisted of composite FTP survey scores (F, 
PI, FoP) for each participant. Two types of CA were compared: Ward’s hierarchical and k-
means. The most common and generally accepted distance measurement, Euclidean distance 
[22], [51], was used and is standard for Likert-type data. All data was analyzed using R [52] 
unless otherwise specified. 

Results and Discussion 

Aggregation of Data Sets 

First, the MSE and IE data sets were cleaned by eliminating any participants who did not appear 
to complete the survey (list-wise deletion). Some students (N=8) were registered in both the 
MSE and IE courses and were removed from the IE sample so the MSE data may be used for 
future participant selection. Responses to each item of the eight students were compared to the 
remaining IE group using the statistical software JMP [53] as it runs comparisons of every item 
at once. Results of the comparisons indicated only one item, C40 (“It's not really important to 



have future goals for where one wants to be in five or ten years.”) was statistically different for 
the two groups. This item was deleted for all future analysis. Since all other items for the survey 
section did not appear to be different for both groups, the responses from IE course of the 
students who were enrolled in both the IE and MSE course were deleted. The students’ MSE 
responses were still included in the main data. 

To merge the remaining data, the two classes were compared. JMP was utilized to run Pearson’s 
Chi-squared test [54] to test for significant differences between items’ scores for both groups. 
The tests were not statistically significant, and the null hypothesis was not rejected for any of our 
comparisons, allowing our data to be aggregated. 

Exploratory Factor Analysis 

An EFA was conducted on the cleaned responses (N=223) to items in the FTP and E section of 
the MAE survey. For this EFA, items using negative language (FoP21, PI26, V30, C36, C39, 
C40, C41, C43, C46) were reverse scored [55] and a scree plot was created (Figure 1) to select 
the number of factors. 

 

Figure 1: Scree plot for entire section of MAE including FTP and E items. 

According to the scree plot, six factors is optimal, agreeing with the literature. Skewness ranged 
between -1.821 and -.252. The kurtosis ranged from 2.124 and 6.240. Both sets of scores 
indicated some non-normality but were within the level of acceptability for EFA or maximum 
likelihood factor analysis [44], [56]–[58]. Detailed standardized factor loadings for each item 
may be seen in Appendix A. Although the Chi-square statistic for this section of the survey was 
499.04 (p-value = 7.54x10-16, 270 degrees of freedom) was statistically significant (i.e. the six 
factors are not an ideal fit), the Root Mean Square Error of Approximation (RMSEA=0.0927) 
indicated an acceptable fit [46], [47]. Since the RMSEA was in the acceptable range, and 
previous studies support the six-factor model, six factors were selected. As the domain- and 
context-specific constructs (PI, FoP, F) have been shown to be valid for similar populations, the 



lack of goodness of fit was likely due to the new domain-general factors, which were not utilized 
in the cluster analyses.  

Items that did not meet the following criteria were removed from the analysis: Item reliability 
(R2) ≥ 0.50, Construct Reliability ≥ 0.70, and Average Variance Extracted ≥ 0.50 [44], [56]–
[58]. Additionally, Cronbach’s alpha was calculated for each construct and was determined to be 
between 0.8 and 0.91, indicating strong internal consistency for the remaining items in each 
construct [59], [60]. FTP construct name, survey item number, item wording, final standardized 
factor loadings, uniqueness, item reliability, and construct reliability can be found in Table A1 in 
the Appendix and a summary of final items and factors are included in Table 1.  

Table 1: The final MAE survey factors used for analysis 

Factor 
Number Factor Name Number 

of items 
High Score 
Definition Factor Items Alpha 

(α) 

1 Connectedness 
(C) 7 

The person plans and 
thinks about what 
they want to do in the 
future. 

C36, C37, C38, 
C39, C41, C43, 

C45 
0.86 

2 Expectancy (E) 5 
The person has 
expectations of 
success. 

E24, E25, E27, 
E28, E29 0.91 

3 Value (V) 5 

The person believes 
that goals attainable 
in the future are 
important.  

V31, V32, V33, 
V34, V35 0.82 

4 
Perceived 

Instrumentality 
(PI) 

5 

The student views 
what they are doing 
in the present as 
useful. 

PI14, PI19, PI20, 
PI26, FoP21 0.82 

5 Perceptions of 
the future (F) 4 

The student has a 
positive and clear 
outlook about the 
future. 

F15, F16, F17, 
F18 0.84 

6 Effect of future 
on present (FoP) 2 

The student believes 
the future has a high 
impact on what the 
student does in the 
present. 

FoP22, FoP23 0.80 

 



Cluster Analysis 

Hierarchical Cluster Analysis 

Participants were removed (N=4) who had missing responses in the domain-specific FTP factors 
(PI, FoP, F). Composite scores of the factors were created so that each participant had a single 
score for each factor, and Euclidean distances were used to determine the distance between 
participants. Multiple hierarchical clustering algorithms were run and dendrograms created. 
Ward’s appeared to be a strong candidate for this data and was selected for additional analysis.  

Ward Clustering Algorithm 

A clustering dendrogram for Ward’s (Figure 2) along with two additional plots, graphs plotting 
between sum of squares error (bss, an estimate of the distance between clusters, should be high) 
and within sum of squares error (wss, an estimate of the distance between points within a cluster, 
should be low) (Figure 3), were created to determine the appropriate number of clusters. The 
significant height difference between the “trees” in the clustering dendrogram (illustrated by the 
dashed line) in Figure 2 supports k=3. The two “elbows” of the bss and wss in Figure 3 
(illustrated by the circles) show k=3 as an ideal clustering solution. Agreement between the 
dendrogram, the wss plot, the bss plot, and previous literature [31]–[33] show that a three cluster 
solution is likely. When selecting k=3, the total sum of squares is 991.00; total within sum of 
squares is 527.11; and between sum of squares is 463.89. The average scores and standard 
deviations for each factor (F, PI, and FoP) are detailed in Table 2, as well as the size of each 
cluster. A visual representation of the Ward’s cluster analysis for k=3 can be seen in Figure 4.  

 

Figure 2: Ward’s CA (ward.D2 in R) Dendrogram depicting three distinct clusters for the domain- and 
context-specific FTP items of the MAE survey for the IE and MSE responses 



 

Figure 3: Ward’s CA (ward.D2 in R) plots of “Between group sum of squares”, and “Within group sum of 
squares”, both depicting a three cluster solution for the domain- and context-specific FTP items of the MAE 

survey for the IE and MSE responses 

Table 2: Clusters and average cluster variable scores for three variable Ward’s CA in R with k=3 

Cluster N Perceptions of the 
Future 

Perceived 
Instrumentality 

Future on 
Present 

Cluster 
Type 

1 86 5.01 ± 1.10 4.56 ± 0.82 4.08 ± 1.21 Waffle 

2 100 6.12 ± 0.76 6.18 ± 0.62 5.07 ± 0.93 Sugar 

3 37 6.14 ± 0.82 6.32 ± 0.63 2.03 ± 0.79 Cake 



 

Figure 4: A Ward’s three cluster solution two-dimensional visual representation using CLUSPLOT in R 
explaining 76.69% of the point variability 

Cluster scores were first compared using a MANOVA and then ANOVA analysis on each 
construct to ensure there were differences between groups prior to pairwise comparisons. By 
running a MANOVA and ANOVA prior to pairwise comparisons, we create a “protected 
inference” situation, preventing the inflated Type I error that can occur if only multiple t-tests are 
used [40]. MANOVA and ANOVA results indicated statistical significance with the largest p-
value being p = 2.72x10-15. Pairwise t-tests were run to look for significant differences between 
factor scores for each cluster. Clusters 1 and 2 differ significantly in terms of F, PI, and FoP (p = 
1.4x10-14, p < 2.0x10-16, p = 5.0x10-10, respectively). Additionally, Clusters 1 and 3 differ in the F, 
PI, and FoP constructs (p = 1.9x10-9, p < 2.0x10-16, p < 2.0x10-16, respectively). However, Clusters 
2 and 3 only differ on the FoP construct (p < 2.0x10-16).  

K-means Clustering Algorithm 

A scree plot of wss was created and the elbow (k=3) used to select the number of clusters (Figure 
5). The tss, wss, and bss are 991.00, 482.81, and 508.19, respectively. The k=2, 3, and 4 
clustering solutions were run for testing purposes and k=3 appeared to be the best fit, with the 
least overlap in clusters and tightest cluster solution. Table 3 shows the k-means three cluster 
solution, and Figure 6 displays a two-dimensional visual representation explaining 76.4% of the 
point variability. Three dense clusters, with few outliers and little to no overlap are shown. 
Cluster scores were compared using a MANOVA and then ANOVA analysis to ensure there 
were differences between groups prior to pairwise comparisons. MANOVA and ANOVA results 
indicated statistical significance with all tests reporting p < 2.0x10-16. Pairwise t-tests showed 
significant differences between all three FTP factors, F, PI, and FoP, for Clusters 1 and 2 (p < 
2.0x10-16, p = 1.2x10-11, p < 2.0x10-16, respectively) and between Clusters 1 and 3 (p < 2.0x10-16, p < 
2.0x10-16, p = 5.3x10-10, respectively). However, Clusters 2 and 3 only differed significantly in 
student views of the impact of the future on the present (FoP, p < 2.0x10-16).  



 

Figure 5: K-means CA wss plot, depicting a three-cluster solution for the domain- and context-specific FTP 
items of the MAE survey for the IE and MSE responses 

Table 3: Clusters and average cluster variable scores for three variable k-means CA in R with k=3 

Cluster N Perceptions of the 
Future 

Perceived 
Instrumentality 

Future on 
Present 

Cluster 
Type 

1 56 4.48 ± 0.98 4.60 ± 0.96 4.26 ± 0.83 Waffle 

2 58 5.99 ± 0.83 5.83 ± 1.03  2.25 ± 0.83 Cake 

3 109 6.17 ± 0.66 5.95 ± 0.82 5.17 ± 0.88 Sugar 

 

Figure 6: A k-means three cluster solution two-dimensional visual representation using CLUSPLOT in R 
explaining 76.4% of the point variability 



Selection of Clustering Algorithm 

The k-means solution appears extremely similar to the Ward’s clustering solution in mean 
scores. Ward’s Cluster 1 and k-means Cluster 1 have medium scores; Ward’s Cluster 2 and k-
means Cluster 3 have high average scores; and Ward’s Cluster 2 and k-means Cluster 3 have 
high perceptions of the future and PI scores but low FoP scores. Additionally, the t-tests showed 
the same dissimilarities between the clustering solutions in regards to average scores across 
clusters. However, the size (number of participants) of these “matching” clusters appear different 
for the two methods. The difference in the number of participants in each cluster is likely due to 
the fact that the k-means algorithm will reconsider participants during the iterations, while 
Ward’s CA algorithm does not allow for a change in cluster once a data point has been placed 
into a cluster.  

The goodness of fit scores showed that k-means was the best fit for this set of data as the wss 
was smaller, showing more compact clusters, and the bss was larger, showing a more distinct 
clustering solution. Additionally, prior results and theory support a three-cluster solution is for 
MAE survey data. Due to the lower wss and higher bss value, the match between results and 
theory, the fitting visual representation, and the robustness of the method, the k-means clustering 
solution was selected.  

Considering the final clusters in Table 5, the results aligned with previous research looking at 
homogeneous groupings of mid-year engineering majors at similar institutions [6], [32], [33]. 
Cluster 3 mimicked the all high scores (high F, PI, FoP) of previously documented sugar 
students, reflecting clearly developed future goals, high sense of instrumentality of current 
coursework, and a feedback loop between future goals and present actions. Cluster 1 (waffle 
students), featured lower average F, PI, and FoP scores than Cluster 3 (sugar students). The 
waffle students’ scores appear lower on average due to their (often two) conflicting views of the 
future and thus less concrete sense of instrumentality (lower PI) and impact of the future on their 
present actions (lower FoP). Finally, Cluster 2 encompassed cake students, who have extremely 
open, but positive, views for the future, thus decreasing their perception of the impact of the 
future on their present actions (low FoP score). However, these students often realize, which is 
clear in the clustering solution, that their current engineering coursework will be important 
toward their future (high PI). Similarly, Cluster 3 (sugar) held the highest number of students, 
which also occurs in previous studies.   

Conclusions, Future Work, and Limitations 

This paper meets our two goals of (1) identifying homogeneous groups of second-year 
engineering student FTPs and (2) introducing commonly used cluster analysis techniques and 
providing an example of how to implement said techniques within an engineering education 
context. The best cluster analysis method is heavily dependent on the data set, so ensuring 
documentation of the rationale during analysis is necessary. In our analysis, each step allowed 
the data to drive our choices with support from theory. While Ward’s and k-means provided 
similar solutions with strong results, k-means provided a more robust measure, possibly because 
it allowed for movement of data between iterations. The goodness of fit scores showed that k-
means was the best fit for this set of data. Visually, both methods appeared to have achieved 
distinct clusters with strong clustering solutions. While the results from each CA were not 



identical, similar solutions did occur with enough evidence to select three clusters and to group 
similar students together. Similar average scores for each cluster were achieved. 

The theory of three FTPs (domain- and context-specific) of undergraduate engineers appears to 
fit this population, and the clustering solution was similar to previous research. The clustering 
solution from this work will be utilized as a piece of participant selection for future qualitative 
studies. The MAE survey currently considers endogenous, and not exogenous, PI, but waffle 
students appear to have a high exogenous PI. For this survey, waffle students have all medium 
scores, all high for sugar, and high for F & PI but low FoP for cake. However, a future version of 
the MAE should include exogenous PI items to provide a better measure of the PI of engineering 
students. Moreover, PI is a domain-specific way to look at connectedness; the MAE survey 
would provide a stronger look at domain-specific FTP by including domain-specific 
value/valence items to complete this picture. Furthermore, while this work analyzed three 
domain- and context-specific FTP constructs (F, FoP, and PI), future work should look at a more 
domain-general approach to FTP and the distinctions between undergraduate engineers. 
Additional work could include looking at different majors, transfer versus non-transfer students, 
genders, and other classifications. 

In future work, the MAE survey should be further studied for this population. The C and V 
constructs should be evaluated and refined utilizing student focus groups and other means. 
Additionally, item FoP21, originally intended to be included in the FoP construct, loaded into PI 
in this analysis. The negative language “I do not connect my future career with what I am 
learning in this course” lends itself to the PI construct and may have confused students. The item 
should be altered or reconsidered for future analysis.  

This work is particularly valuable as FTP has been shown, quantitatively and qualitatively, to 
have an impact on goal-setting and metacognitive strategies in the present [2], [6], [10]–[13], as 
stated in the Background section. By clustering students into homogeneous groups, practitioners 
can better understand students’ goals, perceptions of their future, and the perceived utility of 
class content. By understanding these aspects of FTP, practitioners can better motivate students 
within their class by customizing course instruction and materials reflective of their students’ 
future goals. With this additional motivation, students are more likely to use self-regulatory 
study strategies and behaviors, which has been shown to be a positive predictor of classroom 
success [61]–[64]. 
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Appendix A 

Table A1: Exploratory Factor Analysis Results and Cronbach’s Alpha for FTP and E Items on the 
MAE Survey (N=223) 

Construct Item # Item 

Final 
Standardized 

Factor 
Loadings 

Uniqueness Item Reliability 
(R^2) 

Construct 
Reliability 

Connectedness 

C36 I don't think much 
about the future. 0.79 0.44 0.84 

0.86 

C37 

I have been thinking a 
lot about what I am 
going to do in the 

future. 

0.67 0.45 0.85 

C38 

What will happen in 
the future is an 

important 
consideration in 

deciding what action to 
take now. 

0.63 0.47 0.85 

C39 I don't like to plan for 
the future. 0.88 0.41 0.84 

C41 One shouldn't think too 
much about the future. 0.75 0.46 0.84 

C42 

It is important to have 
goals for where one 

wants to be in five or 
ten years. 

0.61 0.62 0.85 

C43 Planning for the future 
is a waste of time. 0.66 0.52 0.84 

C45 
One should be taking 

steps today to help 
realize future goals. 

0.48 0.59 0.85 

C46 

What might happen in 
the long run should not 
be a big consideration 
in making decisions 

now. 

0.44 0.65 0.87 

C40 

Item removed from 
analysis due to 

negative Chi-squared 
test of comparisons 

NA NA NA 

Expectancy 

E24 
I expect to do well in 

this engineering 
course. 

0.78 0.38 0.84 

0.91 E25 

I am certain I can 
master the skills being 

taught in this 
engineering course. 

0.75 0.41 0.82 

E27 
I believe I will receive 
an excellent grade in 

this engineering course 
0.92 0.18 0.91 



Construct Item # Item 

Final 
Standardized 

Factor 
Loadings 

Uniqueness Item Reliability 
(R^2) 

Construct 
Reliability 

E28 

I am confident I can do 
an excellent job on the 

assignments in this 
engineering course. 

0.91 0.19 0.91 

E29 

Considering the 
difficulty of this 

engineering course, the 
teacher, and my skills, 
I think I will do well in 

this engineering 
course. 

0.76 0.39 0.82 

Perceptions of the 
Future 

F15 I am confident about 
my choice of major. 0.51 0.65 0.69 

0.84 

F16 

Engineering is the most 
rewarding future career 

I can imagine for 
myself. 

0.86 0.26 0.88 

F17 

My interest in an 
engineering major 

outweighs any 
disadvantages I can 

think of. 

0.79 0.30 0.87 

F18 I want to be an 
engineer. 0.8 0.37 0.83 

Future on Present 

FoP22 

My future career 
determines what is 
important in this 

course. 

0.78 0.41 0.9 

0.80 

FoP23 
My future career 

influences what I learn 
in this course. 

0.89 0.26 0.92 

Perceived 
Instrumentality 

PI14 

I will use the 
information I learn in 
my engineering course 
in other classes I will 

take in the future 

0.81 0.43 0.71 

0.82 

PI19 

I will use the 
information I learn in 

this engineering course 
in the future. 

0.96 0.18 0.82 

PI20 

What I learn in my 
engineering course will 

be important for my 
future occupational 

success. 

0.79 0.31 0.78 

PI21 
(FoP21) 

I do not connect my 
future career with what 

I am learning in this 
course. 

0.45 0.58 0.78 

PI26 
I will not use what I 

learn in this 
engineering course. 

0.45 0.57 0.77 



Construct Item # Item 

Final 
Standardized 

Factor 
Loadings 

Uniqueness Item Reliability 
(R^2) 

Construct 
Reliability 

Value/Valence 

V30 

Immediate pleasure is 
more important than 

what might happen in 
the future. 

NA NA NA  

V31 

It is better to be 
considered a success at 

the end of one's life 
than to be considered a 

success today. 

0.61 .6 0.75 

0.82 

V32 
The most important 

thing in life is how one 
feels in the long run. 

0.65 .49 0.79 

V33 

It is more important to 
save for the future than 
to buy what one wants 

today. 

0.59 .62 0.67 

V34 
Long range goals are 
more important than 

short range goals. 
0.82 .41 0.79 

V35 

What happens in the 
long run is more 

important than how 
one feels right now. 

0.83 .34 0.84 

 
 


