
Co-simulation of VHDL and SPICE –  

Teaching the Whole Picture in Digital Design Labs 

 
Shauna L. Rae 

Electronics Workbench 

www.electronicsworkbench.com 

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

 

 

 

Abstract – The use of hardware description languages is now an essential part of digital design.  

As a result, professors require new and innovative ways to deliver course content that teaches 

both hardware description languages and digital design.  Co-simulation of VHDL with other 

electronic devices allows students to place their VHDL-based components into a circuit with 

other types of devices such as switches, LEDs, seven-segment displays and other drivers.  It 

provides students with the electronics context that waveform-based simulations fail to provide.  

We will examine how to incorporate co-simulation of VHDL and SPICE-modeled components 

into existing digital design curriculum. 

 

Introduction  

 

The methods used to implement and design digital logic into practical circuits have changed 

dramatically over the last ten years.  FPGAs and CPLDs have replaced much of the glue logic 

used in the past and have allowed more and more complicated designs to be placed on a single 

chip.  These increasingly complicated designs have made gate-based design impractical, causing 

Hardware Description Languages (HDLs) such as VHDL to replace traditional design 

methodologies.  Over the past decade, instructors have converted introductory and advanced 

digital design curriculum to include teaching design in conjunction with hardware description 

languages such as VHDL
1, 4, 7, 8, 10, 13

.  Many digital design textbooks have also evolved to 

include hardware description language examples 
2, 6, 9, 12

. 

 

The problem arises that VHDL can seem removed from electronics.  When students are working 

in a programming and waveform-only simulation environment, they may lose sight of the 

context in which the VHDL code is ultimately used.  They may also have limited access to labs 

that would enable them to program their code onto target devices and verify the operation in a 

real circuit. 

 

Co-simulation of VHDL and SPICE enables instructors to provide students with a simulation 

environment that resembles a real circuit and helps them to reinforce concepts that go unnoticed 

in the traditional waveform simulations that usually accompany HDL designs.  Students can 

connect input switches, LEDs and seven-segment displays to their VHDL-based components.  

This helps them gain context and learn about design elements such as when to use pull-up 

resistors and the importance of converting hexadecimal numbers to the more readable decimal 

system.  As students progress, they can connect VHDL-based components to more complicated 

circuitry such as relays, MOSFET drivers, and analog to digital converters.  Since these 

components have SPICE models, the advanced student can simulate an entire design or project. 

 

P
age 10.312.1



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

This paper demonstrates how to integrate co-simulation of VHDL and SPICE into existing 

courseware.  It also highlights the benefits of using co-simulation in conjunction with traditional 

waveform-based simulations across all levels of digital design. 

 

Introductory Digital Logic Courses 

 

Educators have found that students who are used to working with circuits and components can 

have difficulties adapting to a hardware description language
7, 13
.  With co-simulation, students 

and instructors can create a component and have it use the VHDL code that they wrote to drive 

the simulation in a schematic-based environment.  This means that they can check the operation 

of the components in a more familiar CAD type of environment instead of just a code type 

environment.  Co-simulation also means that they can still use all of the existing SPICE/XSPICE 

modeled components found in the library. 

 

Multisim®, a circuit simulation program produced by Electronics Workbench®
5
, allows users to 

simulate circuit components with both traditional SPICE/XSPICE models and VHDL models 

simultaneously.  A program called MultiVHDL is used for VHDL design entry and waveform 

testing.  After verifying the VHDL code in MultiVHDL, instructors and/or students can create 

new components in Multisim.  To use the VHDL model for the component, the user points to the 

location where the linked VHDL code resides.  Any change to the linked VHDL code is reflected 

in the behaviour of the component in the Multisim simulation. 

 

By co-simulating a typically used logic gate, for example a TTL AND gate, along side a VHDL 

modeled AND component, students can gain an understanding of how VHDL relates to 

traditional gates.  Figure 1 illustrates the code a student could write to describe and implement 

the functionality of an AND gate in VHDL.  Figure 2 shows a schematic with both a TTL AND 

gate and the VHDL modeled AND component.   

 

The CAD representation of the components also helps students to understand what the entity and 

architecture portions of the VHDL code mean.  The entity declaration in VHDL relates directly 

to the component in the schematic with the inputs A and B shown on the left side of the 

components and the outputs Y on the right side.  The interactive simulator allows students to 

toggle the position of the switches during simulation and they can see how the inputs affect the 

outputs of the gates.  They quickly see how the architecture section of the code describes how the 

component behaves and how the two components behave the same (if the code is right). 

 
library ieee; 
use ieee.std_logic_1164.all; 
 

entity AND_GATE is 
  port ( 

   A: in std_logic; 
   B: in std_logic; 

   Y: out std_logic); 
end AND_GATE; 

 
architecture STRUCTURE of AND_GATE is 

begin 
  Y <= A and B; 

end STRUCTURE; 

Figure 1: VHDL Description of an AND Gate 

P
age 10.312.2



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

 

Figure 2: Comparing VHDL parts to TTL parts 

 

Once students are more comfortable with the concept of VHDL, and how it relates to electrical 

components, they can learn topics that are more complicated.  Introductory courses on digital 

design typically include lessons on encoders and decoders
6, 10
.  Figure 3 illustrates the waveform 

results of a testbench written to check the operation of a hexadecimal to seven-segment decoder.  

The VHDL implementation of the decoder is in Appendix A. 

 

 

Figure 3:  Waveform results of the Seven-Segment Decoder Testbench 

A 

B 
Y 

A 

B 
Y 

P
age 10.312.3



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

The waveform results produced by the testbench provide students with verification that their 

VHDL code is working properly but it fails to provide context.  It is not clear that the seven-

segment decoder is actually outputting the correct output to drive a seven-segment display.  It 

only shows that the inputs produce the outputs that the student thought to be correct.  If, for 

instance, they thought that input “4” should produce the outputs “4D” instead of “4C” their 

waveform testbench would appear correct. 

 

Co-simulating the decoder, allows them to verify that the given inputs are generating the desired 

outputs.  In other words, when they input 0011 they will see the number 3 displayed on the 

seven-segment display, see figure 4.  The context that co-simulation provides is especially 

important for students learning digital design at a distance where they may not have access to 

hardware labs to test their VHDL code.  They can use the switches to control the inputs to the 

driver and watch the output automatically update as it would in a hardware implementation with 

an FPGA or other programmable logic device. 

 

 

Figure 4: Testing the Seven-segment Display Driver using Co-simulation 

 

Advanced Digital Logic 

 

Once students move on to more advanced designs, co-simulation continues to provide benefits.  

Beyond simply providing context that would otherwise require programming a target device, co-

simulation helps students track down errors.  At Chippewa Valley Technical College, Tim 

Tewalt assigned his students the design of a digital alarm clock in HDL.  The results of the 

waveform testbench, see figure 5, showed that the alarm clock worked as expected.  Once the 

design was implemented in co-simulation it revealed a couple of oversights. 

 

P
age 10.312.4



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

 

Figure 5: Waveform Results of a Testbench to Check Operation of Digital Alarm Clock 

 

Observe in this testbench, when the alarm_set and hour_set inputs go high the alarm hour time 

changes to 5.  When the alarm_set and minute_set inputs are high the alarm minutes change to 

17.  The clock is set similarly.   

 

 

Figure 6: Co-simulation Implementation of Digital Alarm Clock Reveals Issue Hidden in Waveform Test 

 

P
age 10.312.5



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

What students observed once co-simulating the alarm clock in Multisim®, see figure 6, is that 

when setting the alarm, the alarm time was not sent to the output buffer.  The waveform test 

displays internal registers that a component cannot.  Another oversight that the students missed 

was that the time was displayed in hexadecimal numbers, making this clock un-usable for the 

general public. 

 

As students’ skills increase further, they can take advantage of co-simulation to simulate 

complete design projects.  The VHDL modeled parts will co-simulate with all of the components 

found in the Multisim® library. 

 

Conclusion 

 

Students can benefit from using co-simulation in their digital design labs.  In introductory 

courses, it can help them understand how VHDL code relates to other electronic components.  It 

will also provide them with additional context of how VHDL code is ultimately used in hardware 

and how it can interact with other devices.  Once they move on to more advanced designs, they 

can take advantage of co-simulation to reinforce their waveform testbenches.  They will be able 

to catch errors easily missed in a waveform test environment.  Co-simulation will also help in 

design projects since students can simulate and document
11
 entire projects including signal 

conditioning and output drivers. 

 

 

 

Bibliography 

 
1. Areibi, S.  “A First Course in Digital Design using VHDL and Programmable Logic.”  Proceedings of 

Frontiers in Education Conference, 2001. 

 

2. Brown, S. and Vranesic, Z., Fundamentals of Digital Logic with VHDL Design.  McGraw-Hill.  2000. 

 

3. Chang, M.  “Teaching top-down design using VHDL and CPLD.”  Proceedings of Frontiers in Education 

Conference.  1996. 

 

4. Chu, P.P.  “A Small, Effective VHDL Subset for the Digital Systems Course.”  Proceedings of ASEE 

Annual Conference and Exposition.  2004. 

 

5. Electronics Workbench.  www.electronicsworkbench.com.  

 

6. Floyd, T.L.  Digital Fundamentals with VHDL. Pearson Education.  Upper Saddle River, New Jersey.  

2003. 

 

7. Fucik, O., Wilamowski, B. M. and McKenna, M.  “Laboratory for the Introductory Digital Course,” 

Proceedings of ASEE Annual Conference and Exposition.  2000. 

 

8. Greco, J.  “Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I.”  Proceedings 

of ASEE Annual Conference and Exposition.  2004. 

 

9. Mano, M.M.  Digital Design, Prentice-Hall, NJ. 3
rd
 Edition, 2001. 

 

10. Parten, M.E.  “Teaching Digital Design with HDL,” Proceedings of ASEE Annual Conference and 

Exposition, 1997. 

P
age 10.312.6



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

 

11. Tapper, J. “Are our engineering students learning the communications skills they will need as professionals 

in industry?”  Proceedings of ASEE Annual Conference and Exposition, 2004. 

 

12. Wakerly, J. Digital Design: Principles & Practices.  Prentice Hall.  2000. 

 

13. Zemva, A. and Trost, A. and Zajc, B “A Rapid Prototyping Environment for Teaching Digital Logic 

Design.” IEEE Transactions on Education.  Nov. 1998. 

 

 

 

 

Biography 

 
Shauna L. Rae received a B. Sc. (Co-op) in Electrical Engineering from the University of Alberta in 1998.  After 

working at Telus Communications and as a hardware design engineer for a consulting company, she returned to the 

U of A to study.  She received her M. Sc. from the Department of Electrical and Computer Engineering in 2003.  

Shauna now works at Electronics Workbench as an Applications Engineer where she is responsible for ensuring 

educators, students, and professionals can more effectively use their EDA tools to meet their needs. 

P
age 10.312.7



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education 

Appendix A 

 
library ieee; 
use ieee.std_logic_1164.all;    

 
entity seven_seg is 

  port ( 
   data: in std_logic_vector(3 downto 0); 

   driver_out: out std_logic_vector(6 downto 0)); 
end seven_seg; 

 
architecture BEHAVIOR of seven_seg is 

begin 
 

with data select 
  driver_out <= "0000001" when "0000", 

      "1001111" when "0001", 
      "0010010" when "0010", 

      "0000110" when "0011", 
      "1001100" when "0100", 

      "0100100" when "0101", 
      "0100000" when "0110", 

      "0001111" when "0111", 
      "0000000" when "1000", 

      "0000100" when "1001", 
      "0001000" when "1010", 

      "1100000" when "1011", 

      "0110001" when "1100", 
      "1000010" when "1101", 

      "0110000" when "1110", 
      "0111000" when "1111", 

      "XXXXXXX" when others;  

end BEHAVIOR;   

Figure 7:  VHDL Description of a Seven-segment Decoder 

 

P
age 10.312.8


