
Code for Thought: Teaching Computer
Programming Courses in a Post-COVID World

Wei Wei
Computer Science & Engineering Department

University of Connecticut
Storrs CT, USA

wei.wei@uconn.edu

Abstract—Many students chose remote learning during
COVID. While most students have returned to campus in person
in Fall 2021, dynamic pandemic conditions call for educational
methodology that is highly effective in engaging students in
learning. In this paper, we report our experience of “Code for
Thought”, a practice that we developed for programming-heavy
courses in Computer Science and Engineering at the University
of Connecticut. The main idea behind “Code for Thought” is
to break down the learning into small steps, gradually easing
students into solving more difficult problems by reinforcing the
concepts, and building up their skills as well as confidence.
Specifically, it includes small programming assignments given
to students immediately after a class (e.g., we gave 31 “Code
for Thought” assignments in a Data Structure course in two
semesters). Each assignment is tied with the content just covered
in class, with only one or two lines of code for students to fill in to
complete the task, and is designed to be interesting (e.g., based on
intriguing games, puzzles or math problems) to engage students.
These small “bite-size” exercises provide students opportunities
to immediately practice what they learned in a class and build on
coding examples written by the instructors. We use data collected
from several offerings enhanced with this practice to demonstrate
its effectiveness in stimulating students’ learning and helping
them to gain confidence. We believe it can be particularly effective
in teaching programming courses in post-COVID engineering
education.

I. INTRODUCTION

Computer programming is a critical component of the Com-
puter Science discipline. It is considered a problem solving
process, including formulating, planning and designing the
solution, translating, testing, and delivery [1]. For students to
be proficient in computer programming, they need to learn the
syntax of a programming language, writing new programs,
debugging, understanding, reusing and integrating existing
programs, which require intensive cognitive activities and
extended practice [1], [2]. As a result, teaching and learning
of computer programming are rated as one of the greatest
challenges in the area of Computer Science Education [3],
[4].

It has been reported that traditional lecturing-based teaching
is not sufficiently engaging in teaching computer program-
ming [5]. This is particularly true in remote teaching during
COVID, where lack of face-to-face interaction between the
instructors and students makes the teaching even less engaging.
Even after COVID, innovative teaching methodologies need
to be developed and adopted in teaching computer program-

ming [6], [7]. In this paper, we report a novel “Code for
Thought” (CFT) methodology that we designed for teaching
computer programming and our experience of using it in three
semesters in a computer programming course at the University
of Connecticut (UConn).

The main idea behind CFT is to break down the learning
into small steps, gradually easing students into solving more
difficult problems by reinforcing the concepts in a timely
manner, and building up their skills as well as confidence.
CFT includes a sequence of small programming assignments,
each given to students immediately after a class and is due
before the next class; each assignment is tied with the content
just covered in class, with a few lines of code for students
to fill in. These small “bite-size” exercises provide students
opportunities to practice what they learned soon after a class.
In the process, we set up good programming examples for
students, illustrate difficult concepts, point out to student
common mistakes, and encourage students to practice new
skills, find better solutions and learn to debug.

CFT is in contrast to the traditional programming assign-
ments (TPAs) that are spaced out in longer intervals (e.g., at
least one or two weeks apart) and require significantly more
time to complete. Our design of CFT is motivated by the
drawbacks of TPAs: (i) TPA are not due immediately, and
hence students are more likely to procrastinate [8], [9]. As an
example, if a programming assignment is due in two weeks,
many students will not start working on it until one week
before the due date. (ii) When completing a TPA, students
are using concepts, techniques, and skills that were covered
one or two weeks earlier. At the same time, students are
learning new materials but are not practicing them since they
are busy with finishing the current TPA. (iii) Because students
did not practice the new material in time, when they need to
finish the next programming assignment, the skills that are
needed for the assignment are not ready for the students to
use and they need to review the material learned previously
while the new material keeps coming. (iv) Because of the
nature of a large programming assignment and the tendency
of student procrastination, students may see a large number
of error messages and bugs right before deadlines. This leads
to significant pressure and frustration. Even if students finish
the programming assignment in time, they do not have much
time or energy to fully digest all the information.



To address the above drawbacks of TPA, CFT has the
following features: (i) Practice immediately after class. CFT
problems are designed to let students practice what they
learned in a lecture immediately after the lecture is over. The
problem is available right after a lecture and is due before the
beginning of the next lecture. (ii) No burden to students. CFT
problems are very small programming assignments. Usually,
students only need to fill in one or two lines of code to
complete the assignment, and hence is not burdensome to
students. (iii) Instantaneous feedback. CFT problems are au-
tomatically graded to provide students instantaneous feedback
(see Section II). In addition, the automatic grading does not
increase grading load for TAs or professors. (iv) Learning
new skills from good examples. In CFT assignment, we set up
the template code to ensure students will solve the problem
using the concepts, skills and techniques that they have just
learned. Students have a tendency to use knowledge that they
are already familiar with to solve problems. By setting up
template code, we can enforce the learning and practicing of
new skills. In addition, we also pass on good programming
practice to the students through the template code.

Our experience of using CFT in three semesters in a data
structure course at UConn demonstrates its significant benefits
to both students and instructors:

• Improved understanding. Our analysis on students’
homework grade demonstrates that CFT improves stu-
dents’ understanding of the course materials. A compar-
ison between students who finish at least half of CFT
problems score significantly higher in regular homework
assignments (i.e., large programming assignments). In
addition, the former has significantly lower variance in
homework grade than the latter.

• Timely review of course materials. Our analysis also
demonstrates that CFT helps students to form a habit of
review course materials in time. In a semester with 31
CFT assignments, the students who finished the first 10
assignments (i.e., in the first 3-4 weeks), 73% of them
finish at least 90% of all the 31 assignments.

• Benefits to instructors. CFT problems also provide fast
feedback to instructors. Based on how well students did
on the previous CFT problem, instructors can explain
certain topics/concepts in more detail or in a different
way if needed in the next lecture. This is much better than
receiving feedback after two weeks when students finish a
large programming assignment. By that time, instructors
and students may have already moved on to a topic that
is not relevant to the one in the programming assignment.

The rest of the paper is organized as follows. In Section II,
we describe key factors that are important for successful design
and implementation of CFT. In Section III, we describe multi-
ple aspects of CFT design in helping students learn computer
programming. In Section IV, we present our experience of
using CFT in three semesters at UConn. Lastly, Section V
concludes the paper and presents future work.

TABLE I
EXAMPLE PROBLEMS AND THE CONCEPTS COVERED IN CFT.

Example Concept
Powerball lottery Python expressions, statements
Card game 24 binary expression tree
Stock trading priority queue
Card shuffling Algorithm complexity
Fibonacci number Algorithm complexity
Fibonacci & Geometric sequences Generator
Pascal Triangle Recursion and list comprehension
Handshakes and Catalan numbers Divide and Conquer

II. CODE FOR THOUGHT: KEY FACTORS

When designing and implementing coding for thought prob-
lems, we need to consider multiple key factors.

• Instantaneous feedback. To serve as a tool to quickly
review the materials covered in class, students need
to obtain instantaneous feedback on whether they have
completed the CFT problem correctly, or in other words,
whether they have understood the class materials cor-
rectly. To achieve this instantaneous feedback, we use
an automatic grading system. Specifically, once a student
completes a CFT problem (typically fill in one or two
lines of code), he/she can submit the code, and imme-
diately see whether the code works correctly or not; if
it is not correct, he/she can think about it, correct the
code and resubmit for an unlimited number of times. The
automatic grading system that we use achieves this goal.
It provides unit tests and I/O tests, which can be used to
grade the CFT problems. Specifically, we need to upload
the skeleton code and solution code, and provide unit test
and/or I/O tests to enable the automatic grading.

• Interesting and easy-to-understand problems. To moti-
vate students to work on CFT problems, we strive to make
the problems fun to work on and easy to understand.
Many of the problems are designed based on intriguing
games, puzzles or math problems. Table I lists several
interesting problems and the concepts that they intend to
cover. For instance, we use multiple games (e.g., Power-
ball lottery, card games, stock trading, card shuffling)
and math problems (Fibonacci number, Fibonacci and
Geometric sequences, Pascal Triangle, Catalan numbers).
One example CFT problem that was designed based on
a math problem will be described in more detail in
Section III.

• Small incentives. In addition to making the problems
engaging, we also provided a small incentive for students
to complete CFT problems. Specifically, we offered up
to 3 extra credits for completing CFT problems. For
example, if there are 31 CFT problems in one semester, a
student only get 3 credits after completing all 31 problems
successfully; if a student completes 10 problems success-
fully, then he/she only gets 1 extra credit. We found this
small extra credit was important to incentize students in
completing more CFT problems (see Section IV-B).



When CFT is being implemented in a different institution,
the instructors can consider the institution-specific conditions
and include other key factors into CFT.

III. APPLICATION OF CODE FOR THOUGHT PROBLEMS BY
EXAMPLES

CFT assignments are intended for helping students digest
course materials covered in a lecture right after that lecture.
These problems can be designed and used in many different
ways. We list several ways below, including helping students
learn to debug and practice new skills, setting up good ex-
amples, cautioning students on common mistakes, illustrating
difficult concepts, and helping students to find more efficient
solutions.

A. Learning to Debug

Debugging is a notoriously hard problem. Many students
have frustrating experiences debugging their program. In some
CFT assignments, we purposely introduce bugs in the code
and provide students the opportunity to debug the code.
By going through this process, students can associate error
messages with potential problems, and gain more confidence
in debugging. Fig. 1 shows an example that includes bugs in
the recursion part of a program.

When students run this code, they will see the following
error message:
RecursionError: maximum recursion depth

exceeded
After reading this error message, students will check

whether the recursion is defined properly, and they will find
out that the base case of the recursion is not defined, and hence
leading to infinite depth, causing the maximum recursion depth
to be exceeded. Once they realize this error, they can easily
correct the code.

B. Practicing New Skills

We can use CFT assignments to show students how to
apply the knowledge they have just learned in a lecture.
Students tend to use techniques they are familiar with to
solve problems. Therefore, they may not consciously try out
new techniques, even though they have just learned the new
techniques in class. Instead, they tend to use old knowledge
that they are comfortable with. To overcome this tendency, we
set up CFT problems in ways so that students have to use the
new techniques that they have just learned.

In this example (see Fig. 2), we convert a math problem
into a coding problem to let students practice using lists, a
basic and important data structure in computer programming.
Specifically, the math problem is from a past MathCounts
competition [10]:

A fair, twenty-faced die has 19 of its faces numbered from
1 through 19 and has one blank face. Another fair, twenty-
faced die has 19 of its faces numbered from 1 through 8
and 10 through 20 and has one blank face. When the two
dice are rolled, what is the probability that the sum of the

two numbers facing up will be 24? Express your answer as a
common fraction.

Fig. 2 shows the corresponding CFT program. It covers two
important concepts: list comprehension and difference between
index and value of a list. It further shows how to use simulation
to calculate probability of a certain event. The comments in the
program (in red) provide students guidance on how to solve
the problem. We first use list comprehension to construct two
lists that describe the two dice mentioned in the problem. We
then generate two random numbers that reflect the resultant
faces after rolling the dice. At the end, we ask students to fill
in the code to check whether the sum of numbers on the faces
of the two dice equals to 24 or not. The intention here is for
student to fill in just one line of code.

In the main part of the Python code, we set up the template
code to repeat this experiment 100, 1000 times, and calculate
the empirical probability that the sum of the two numbers
facing up equals 24. If we did not set up the template code,
students might solve the problem using other ways, and lose
the opportunity of practicing lists that they just learned in
class. By setting up the code and only asking students to fill
in one line, students are forced to use lists, and practice how
to use list comprehension, obtain the length of a list, and use
index to obtain values from a list. All of the above are critical
elements of using lists.

C. Setting up Good Examples

Whenever possible, we show students good programming
practice to help them program more professionally and avoid
mistakes. Our goal is that by emphasizing such practices
through many small sample codes, they can be gradually
embedded into a student’s mind set and the student will then
apply such good practice in his/her own programming. Such
good practice will not only benefit students in this particular
course, it will also benefit their future career. As an example,
in Fig. 2, we point out it is better to use len(die1) and
len(die2), instead of using a fixed value 20, for better
generality and readability of the code. Moreover, this example
provides a general template for students to calculate the
empirical probability of an event, which is commonly used
in simulation and has many applications in practice.

D. Pointing out Common Mistakes

From our past experiences, we identify some common
mistakes that students make. To avoid students making such
mistakes in their large programming assignments, we show
these mistakes in CFT assignments, so that students are aware
of such mistakes and do not make them when working on their
own computer programs. One example is shown in Fig. 3.

In this example, we are trying to reverse a list that contains
integers from 0 to 9, and print out the reversed list. But what is
printed out is ”None” instead. This is because L.reverse()
does not return anything. Instead, what happens is that L is
reversed. In order to achieve what we desired, we need to do

L.reverse()
print(L)



Fig. 1. CFT example #1: learning to debug.

Fig. 2. CFT example #2: practicing new skills.

E. Illustrating Difficult Concepts

Some concepts in programming are difficult to grasp, and
require multiple ways of illustration and practices from the
students to achieve a deeper understanding. Generator in
Python is such a concept. It is used in the course material,
but is not the focus of the course. In order to make students
gain familiarity with the concept of generator, we composed a
CFT problem (figure omitted), which uses multiple examples
to illustrate and demystify this difficult concept.

F. Finding Better Solutions

As students gain more and more experience with computer
programming, a higher requirement for them is to be able to
write more efficient programs (i.e., with lower running time),
instead of simply a program that runs. This is a significant

leap for many students, and requires careful thinking from the
students. We use CFT assignments to provide students with
guided exercises to achieve such a leap gradually over time.
One example that we used is calculating Fibonacci numbers.
We first provide students with a sample code that prints out the
number of functions calls in inefficient ways. We then guide
the student to fill in only one line of code to implement a
more efficient efficient way for the calculation.

IV. EFFECTIVENESS OF CODE FOR THOUGHT

We applied the CFT approach in a data structure course,
one of the most important programming courses for the
students in the Computer Science & Engineering Department
at the University of Connecticut. In this course, students learn



Fig. 3. Code for thought example #3: pointing out common mistakes.

important data structures and apply them in problem solving
through extensive programming practices using Python.

We report our experiences of using CFT in three semesters,
indexed in chronological order. In Semesters 1 and 3, there
were two sections in each semester, and we applied CFT
in both sections. In Semester 2, there were two sections: in
one section, we provided a total of 3 extra credits for CFT
assignments, while in the other section, students had access to
CFT assignments, but did not get extra credits for doing them
and hence had less incentives in working on CFT assignments.

In the following, we first report the results in Semester
1 and 3. We then report the results in Semester 2, with a
focus on comparing the experience of the two sections in that
semester. In Semester 1, there were 20 CFT assignments; in
Semesters 2 and 3, we significantly extended the number of
CFT assignments to 31. In all the three semesters, the major
assignments were homework assignments, which were large
programming assignments that were due due in one to two
weeks after posting the assignments. We examine whether
finishing CFT problems help students in achieving better grade
in their homework assignments. The number of homework
assignments in the three semesters is 7, 11 and 10, respectively.
For each semester, the homework grade is a weighted average
of all the homework assignments. Similarly, CFT grade is an
average of all the CFT assignments.

A. Result for Semesters 1 and 3

There were 198 and 211 students in Semesters 1 and 3,
respectively. For each of these two semesters, we measure
the effectiveness of the CFT approach by comparing the
homework grades of two groups of students. Specifically, we
divide students into two groups based on how many CFT
assignments they completed. The students in Group A finished
at least half of all the CFT assignments; the rest of the students
belong to Group B. We compare the homework grades of the
students in these two groups.

From Table II, we can clearly see that for both semesters, the
two group of students achieve very different homework grades:
the students in Group A obtain much better homework grades
than those in Group B, demonstrating the benefits of complet-
ing CFT assignments. Specifically, the mean homework grade
of the students in Group A is 32.4 and 26.4 points higher
than those in Group B in Semesters 1 and 3, respectively. The

TABLE II
COMPARISON OF HOMEWORK GRADES OF TWO GROUPS OF STUDENTS

(SEMESTERS 1 AND 3).

Semester 1 Semester 3
Group A Group B Group A Group B

count 117 81 95 116
mean 98.8 66.4 90.8 64.4
stdev 3.4 33.8 15.3 34.0
min 85.7 0 4.5 0
25% 100 42.9 88.7 41.9
50% 100 71.4 97.0 79.3
75% 100 100 99.9 89.9
max 100 100 100 100

(a) Semester 1 (b) Semester 3
Fig. 4. Boxplots of homework grades for Groups A and B for Semesters 1
and 3.

grades of the median and 25th percentile also show significant
differences.

Fig. 4(a) plots the homework grades for Groups A and B
for Semester 1. The results are consistent with the values
in Table II: we observe more uniform higher grades for the
students in Group A; for the students in Group B, the grades
tend to be lower and the variance is significantly larger.
Fig. 4(b) plots the results for Semester 3. It shows similar
trends as those observed for Semester 1.

Figures 5(a) and (b) plot the homework grade (scaled to
100) versus CFT grade (scaled to 100) for the students in
Semesters 1 and 3, respectively. We see that students with
higher CFT grades tend to have higher homework grades. The
correlation coefficient between homework and CFT grades is
0.64 for Semester 1 and 0.56 for Semester 3. These significant
positive correlations confirm the positive impact of CFT on
students’ performance on homework assignments.



(a) Semester 1 (b) Semester 3
Fig. 5. Homework grade versus CFT grade.

TABLE III
COMPARISON OF HOMEWORK GRADE BETWEEN TWO SECTIONS IN

SEMESTER 2.

Section A Section B
count 58 49
mean 76.1 72.9
stdev 25.5 25.9
min 0 0
25% 71.3 60.0
50% 84.8 83.7
75% 92.2 93.5
max 100 100

Last, we report the consistency of students completing CFT
assignments throughout a semester. In Semester 1 (with 20
CFT assignments), for the students who finished the first 7
assignments (in the first 2-3 weeks of the semester), 78% of
them finish at least 90% of all the 20 CFT assignments in the
entire semester. In Semester 3 (with 31 CFT assignments), for
the students who finished the first 10 assignments (in the first
3-4 weeks of the semester), 73% of them finish at least 90%
of all the 31 assignments in the entire semester. The above
results demonstrate that CFT problems help students to form
a habit of reviewing course materials in time.

B. Results for Semester 2

During this semester, students are in two sections, both have
access to CFT assignments. The first section has 58 students
and the second section has 49 students. In the first section
(that was taught by the author), students were encouraged
to work on CFT assignments and can get up to 3 extra
credits for completing them, while in the second section
(taught by another faculty), no extra extra credit was given.
For the 31 CFT problems assignments to all students, i.e.,
considered as 31× 58 and 31× 49 assignments for these two
sections respectively, 44% were completed correctly in the first
section, while only 4% were completed correctly in the second
section. The significantly different completion rate in these two
sections thus provides us an opportunity to compare the impact
of CFT on these two sections. In the following, we refer to
the first section as Section A and the second as Section B.
We first compare the homework grade of these two sections,
and then compare the homework grade of the two groups in
Section A.

Fig. 6. Homework grade comparison between two sections (Semester 2).

Fig. 7. Homework grade for Group A & B in Section A (Semester 2).

1) Comparison Between Two Sections: Table III lists the
statistics of these two sections. The mean and median home-
work grade are 76.1 and 84.7 respectively for Section A,
which are 3.2 and 1.6 points higher than that in Section B.
The differences between these two sections are shown more
clearly in the boxplots in Fig. 6. We see significantly lower
variance in Section A than that in Section B. Although the
median homework grades are not significantly different across
these two sections, the 25-th percentile (71.3 versus 60.0) is
significantly different. Specifically, 16% of homework grade
is below 60 for Section A, while 26% of homework grade is
below 60 for Section B.

2) Comparison Between Two Group in Section A: Follow-
ing the methodology in Section IV-A, we divide the students
in Section A into two groups, Groups A and B, based on
how many CFT assignments they completed. Fig. 7 plots
the boxplot of the homework grade of these two groups of
students. We can clearly see that students in Group A did
much better in homework assignments than their counterparts.
For instance, the students in Group A have a mean homework
grade of 89.5, while the students in Group B have a mean
homework grade of 66.6.

Fig. 8 plots homework grade versus CFT grade for all the
students in Section A. This figure again shows that students
who have higher CFT grades tend to have higher homework



Fig. 8. Homework grade vs CFT grade for students in Section A (Semester
2).

grades. The correlation coefficient between homework grade
and CFT grade is 0.55.

C. Feedback from Students

We have received very positive feedback from students
on CFT. Below are quotes from students evaluations related
to CFT problems. Some students like the timeliness and
instantaneous feedback provided by CFT:

• “Code–for–thoughts allowed hands–on experience imme-
diately after a lecture.”

• “I personally really like the code for thought problems,
and the ability to check each part of my code through
mimir.”

A lot of students feel that CFT help them practice and gain
hands-on understanding:

• “A lot of code for thought assignments were given that
helped reinforce understanding of concepts covered in
class.”

• “Code for thought problems were helpful for practice and
exam preparation.”

• “The code for thought assignments were helpful and
reflected the material which appeared on the exams.”

• “Making detailed code for thought problems which al-
lowed an excellent way to both improve your grade and
study for upcoming tests in material that the instructor
knew was going to be tricky.”

• “(What I really like) Offering codes for thoughts and
practice exams.”

Many students think CFT enhances their conceptual under-
standing of computer programming:

• “The Code For Thought segments were good ways of
keeping us coding for habit.”

• “(What I really like) code for thought which was extra
credit and helped as conceptualize the specific topic we
had in classes.”

• “(What I really like) Give out code for thought that
enhance student’s knowledge on many details.”

• “Code examples & code for thought assignments were
useful in helping me understand the concepts of the
class.”

• “Code for thoughts really helped with earlier material.”
Many students like the idea of CFT overall:
• “Code for thoughts were a very fair way of giving extra

credit.”
• “Code in class and Code for thought is awesome!”
• “Your code for thought exercises really helped me learn!”

V. CONCLUSION AND FUTURE WORK

In this paper, we developed a novel methodology called
“Code for Thought” (CFT) for teaching computer program-
ming effectively in Computer Science and Engineering. CFT
uses a sequence of small programming assignment, each after
a lecture to help students reinforce their understanding, review
course materials, learn how to debug and good programming
practices. It provides student instantaneous feedback through
an automatic grading system and the problems are designed
to be fun and engaging. Our experience of using CFT in
three semesters in teaching a data structure course shows
that it is well received by the students. Our data analysis
demonstrates its significant benefits to students in achieving
better understanding of the course materials and forming a
good habit of reviewing course materials in time. It is also
beneficial for instructors to obtain quick feedback and adjust
their teaching accordingly.

As future work, we plan to use the idea of CFT in our
computer science courses and explore further improvements
to the design and practice of using CFT in classrooms.

REFERENCES

[1] F.P. Deek and J. McHugh. Problem solving and cognitive foundations for
program development: An integrated model. In Proc. of International
Conference on Computer Based Learning in Science (CBLIS), pages
266–271, Nicosia, Cyprus, 2003.

[2] Chan E. Y. K. Lee V. C. S. Lam, M. S. W. and Y. T. Yu. Designing an
automatic debugging assistant for improving the learning of computer
programming. In Lecture Notes in Computer Science, 5169, 2008.

[3] T Jenkins. On the difficulty of learning to program. In Annual
Conference of LTSN-ICS, 2002.

[4] Mendes A. J. Gomes, A. Learning to program - difficulties and solu-
tions. In International Conference on Engineering Education (ICEE),
Coimbra, Portugal, 2007.

[5] L. Rolandsson. Changing computer programming education: the di-
nosaur that survived in school. an explorative study about educational
issues based on teachers’ beliefs and curriculum development in sec-
ondary school. In Proc. of IEEE Learning and Teaching in Computing
and Engineering, 2013.

[6] J. Biggs. What the student does: teaching for enhanced learning. Higher
Education Research & Development, 18(1):57–75, 1999.

[7] Bassey Isong. A methodology for teaching computer programming:
first year students’ perspective. In I.J. Modern Education and Computer
Science, 2014.

[8] Hill D. A. Chabot A. E. Barrall J. F. Hill, M. B. A survey of college
faculty and student procrastination. College Student Journal, 12(3):256–
262, 1978.

[9] Norzad F. Badri Gargari R, Sabouri H. Academic procrastination: The
relationship between causal attribution styles and behavioral postpone-
ment. Iran J Psychiatry Behav Sci, 5(2):76–82, 2011.

[10] Mathcounts competition series. https://www.mathcounts.org/programs/mathcounts-
competition-series.


