
Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Collaboration Software

Steven Colgrove, Adam Svoboda: K-State Salina

The Problem

 Currently there are several different collaboration tools available online. These tools can
be useful when working on group projects, but each come with its own unique set of strengths
and weaknesses. Generally, tools such as TeamViewer and Remote Desktop do a good job of
sharing a screen, but force the users to share a single mouse cursor, which can be frustrating.
Additionally, they require the user to share an entire computer desktop instead of a single
window, which could be a major security issue.

The Goal

 The goal of this project was to create a piece of software that would allows users to easily
and securely collaborate on group projects without having to give up control over their mouse
cursor or entire desktop. The following list shows the basic requirements for this project:

● Transmit encrypted screen data from one user to another
● Transmit encrypted input data from one user to another
● Traverse NAT to allow connections behind strict firewalls
● Process all transmitted data in real-time
● Provide a way for a user to connect and start a share with another user
● Show individualized mouse cursors for each connected user
● Run on all Windows operating systems XP and later

Methodology

 There were several methodologies used in the creation of the project. Prototyping was
used heavily in the early stage of the project to help hash out the most effective method to
accomplish some of the more difficult tasks. Due to the complexity of the project and the
likelihood of frequent changes to be performed, a chief-programmer style of programming was
implemented in the early stages of the final product. Once the overall project reached a more
stable state, pair programming was used. This allowed for the more difficult problems to be
solved using the different perspectives and strengths of each of the programmers. Each
methodology used provided unique advantages that were beneficial to the completion of the
project.

The Solution

 The final project resulted in a desktop/window-sharing tool backed by an asynchronous
client/server system. Main features include:

● The possibility to share the entire desktop or a specific window with one or more
individuals in real-time.

● Individualized, custom mouse cursors, isolated at a window-level to prevent interference
with background tasks.

Proceedings of the 2013 Midwest Section Conference of the American Society for Engineering Education

Technical Overview

 All desktop/window capturing functionality was accomplished through heavy usage of
the Windows API. In order to utilize the Windows API from the .NET language, platform
invoking is required [2]. Frequent calls utilized in screen capture are outlined below.

GetWindowRect Used to get the boundaries of a window object in order to prepare
for the screen capture.

GetWindowDC,
CreateCompatibleDC

Acquire the device context of the window and create a compatible
device context for the bitmap.

BitBlt [1] Perform a bit-block color transfer of the data from the source
device context into our bitmap object

PrintWindow Used to send a redraw to windows whose borders are not rendered
using GDI, but DirectX (Windows Aero/DWM, Vista+).

Technical Challenges

One of the most challenging parts of the project was a result of a TCP socket size
limitation in Windows XP. Initially, images transferred over the network were only partially
received on the other end. The maximum TCP buffer size in Windows XP is 17,520 bytes, and
images exceeding that amount. To fix this issue, a check was implemented to split the image into
smaller pieces before sending the data over the wire. In addition, TCP message framing was
added so that the client-server model understood the packet boundaries. Data was sent after
being serialized with protobuf, Google’s open-source data exchange format [3]. Message framing
was implemented by sending the full packet size in the beginning of each packet header.

The multiple mouse cursors required a way to draw a customizable mouse cursor on top
of anything, and limit its boundaries to a specific window. In order to accomplish this, a “mouse
canvas” was drawn on top of the target window, which was a borderless, transparent window in
itself. On top of this canvas, anything could be drawn. This was used to host the custom mouse
cursor objects and keep them confined within the windows boundaries.

When transmitting image data, maintaining low bandwidth consistency and reducing line
congestion is very important. The software was designed to automatically discard repetitive data
and only send data that has changed since the last screen capture. This keeps line congestion low
and reduces overall bandwidth consumption. If the computer’s screen is idle, no data will be sent
over the wire. With these optimizations, the software was able to transmit compressed youtube
video at 1080p at a consistent rate of 60FPS over a LAN connection.

Bibliography

1. http://msdn.microsoft.com/en-
us/library/windows/desktop/dd183385%28v=vs.85%29.aspx, “Bitmap Functions”, MSDN
2. http://www.pinvoke.net/
3. http://code.google.com/p/protobuf/, “Protobuf – Google’s data exchange format”

Collaboration Software K‐State Salina, CMST Senior Project
Steven Colgrove & Adam Svoboda

• Possible to share the entire desktop or a specific
window with one or more individuals in real‐time.

• Each user acquires their own mouse cursor to
relieve the awkwardness of potential input
collision that can occur when multiple people try
to use the same device.

• Once connected, users can control the same
application seamlessly, with individualized input.

• Shared cursors or applications are isolated at the
window‐level, to prevent interference with
background tasks.

The Solution
• We only transmit data in the window that has changed

since the last transmission. This saves bandwidth and
improves overall performance.

• Multiple mouse cursors are drawn on a hidden,
transparent window that sticks on top of the window
being shared, which allows click pass‐through.

• Bitmap data is compressed in the JPEG format.

• Screen/window data is broken up into smaller bitmaps
before its sent across the network, to avoid problems that
result from transmitting large buffers on some machines.

• Asynchronous client/server model with TCP message
framing.

The Problem
Software such as Remote Desktop and
TeamViewer do exceptional jobs at sharing the
entire desktop, however they aren’t able to
restrict themselves to a specific window.

When using screen sharing software, multiple
users fight for control over the same mouse
pointer when using these products in a group
environment.

Collaboration with two or more individuals can
become difficult and intrusive.

Behind the Scenes

	Svoboda - Collaborative - Final Paper.pdf
	Svoboda - Collaborative - Final Poster

