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Combining MATLAB and EXCEL to Improve Understanding in Controls 

 

Abstract: 

 

Control systems are modeled by using differential equations. The same control system can be 

stable or unstable depending on the input parameters into the system. Stability or lack of stability 

of a control system can theoretically be determined by solving the control system differential 

equation(s). The differential equation(s) can be solved numerically. A numerical solution of a 

differential equation produces numbers that can be plotted but not an expression. The differential 

equations can also be solved by classical differential equation techniques. The classical 

differential equation solution techniques can be supplemented by using Laplace Transform and 

using the MATLAB software to expedite the Laplace Transform formulations. Damping level(s) 

in a vibrating system greatly influence the stability level of the system. It is shown that the 

system can be stable or unstable depending on the system parameters, namely the type of 

external excitation, the system natural frequency, system damping level and the frequency of the 

external excitation force. The similarity and differences of the EXCEL based numerical solution 

and the MATLAB based theoretical solution are discussed. The use of the numerical technique 

and MATLAB will help students with less than perfect mathematical skills to be able to learn 

practical control engineering. The use of these techniques eliminates the need for physical labs 

which will reduce the possibility of Covid-19 virus spreading. 

 

Introduction: 

 

A single degree of freedom vibrating system consists of a mass, a spring and a damper. Spring 

force is proportional to mass displacement. Damping force is proportional to mass velocity, and 

the product of mass times its acceleration determines the force due to acceleration. Velocity is 

the first derivative of displacement with respect to time, and acceleration is the second derivative 

of displacement with respect to time. Because of the presence of the derivatives, the equation of 

motion of a single degree of freedom vibrating system is a differential equation. A single degree 

vibrating system is an example of an open loop control system. 

 

A numerical technique for the solution of the differential equation is developed and implemented 

using EXCEL. The characteristic of a numerical solution is that the results are numbers and not 

in the form of expressions.  The differential equation can also be solved by first putting it in 

Laplace Domain and then using the partial fraction and the inverse Laplace Transform 

capabilities of MATLAB. By using the MATLAB technique, the solution in the form of an 

equation is obtained. 

A single degree of freedom vibrating system subjected to an external excitation at a frequency 

close to its resonance frequency can be unstable. This article demonstrates the solutions of a 

stable and an unstable vibrating system using EXCEL and MATLAB. The comparison of the 



 
 

 
 

solutions will enable the students to better understand the concept of stability in controls which 

will prepare them for more advanced studies of controls engineering concepts. 

The goal is to train students to be able to perform complicated control analysis without highly 

advanced mathematical skills. The approach also eliminates the need for setting up physical 

controls laboratories that are impractical under the Covid-19 restriction. 

Technical discussion: 

 

Figure 1 is a graphical representation for a single degree of freedom vibrating system. 

 

Figure 1: Graphical representation of a single degree of freedom vibrating system 

The equation of a single degree of freedom vibrating system is shown in equation (1). 

                                            m d2X / dt2 + C dX / dt + KX = F                                                    (1) 

Equations (2) through (9) are the numerical solution of equation (1), where “h” is the time 

increment and the subscripts are the steps in the numerical solution. [1] 

For the approximation to produce acceptable results, h must be small enough for the results to be 

close to exact solutions, but not too small such that excessive numerical errors are accumulated 

as a result of too many solution steps.  [2], [4] 

                                         X1 = X0 + h (dX / dt)0 + {(h2 / 2) (d2X / d t2)0}                                     (2) 

                          (dX/dt)1= (-2 m X0 + 2 m X1 + F0 h
2 – k h2 X1) / (2 m h + C h2)                        (3) 

                                            (d2X/ dt2)1= {F0 – C (dX/dt)1  – k X1} / m                                        (4) 

                                                    X2 = 2 X1 – X0 + h2 (d2X / d t2)1                                                (5) 

                                  (dX / dt)2 = -(X1 / h) + (X2 / h) + {(h / 2) (d2X / d t2)2}= 

                                           -(X1 / h) + (X2 / h) + (h/2){f [X2 ,(dX / dt)2]}                                    (6) 



 
 

 
 

                                                      X3 = 2 X2 – X1 + h2 (d2X / d t2)2                                              (7) 

                            (dX/dt)3= (-2 m X2 + 2 m X3 + F2 h
2 – k h2 X3) / (2 m h + C h2)                      (8) 

                                            (d2X/ dt2)3= {F2 – C (dX/dt)3  – k X3} / m                                        (9) 

Calculations for additional time increments can be performed by incrementing the calculation 

indexes in equations (7), (8) and (9). 

If the damping term is non zero for the system of Figure 1, the equation of motion for free 

damped vibration becomes as shown in equation (10). 

                                                   m d2X / dt2 + C dX / dt + KX = 0                                            (10) 

Solution of equation (10) in Laplace domain is shown in equation (11). 

                                    X(S) = {m X0 S + m (dX/dt)0 + C X0}/ {m S2 + CS + K}                      (11) 

X(S) defines the motion of mass m in Laplace domain. Taking the inverse Laplace transform of a 

function defined in Laplace domain results in an equation defining the function in time domain. 

If the system of Figure 1 is exposed to a sinusoidal excitation force, then the equation of motion 

is defined by equation (12). 

                                                m d2X / dt2 + C dX / dt + KX = A sin ωt                                    (12) 

If ω (frequency of excitation force) in equation (12) is at or close to the natural frequency of the 

system, then the system becomes unstable unless the system damping can stabilize the vibration. 

[2]  

Solution of equation (12) in Laplace domain is shown in equation (13). 

                     X(S)=S3mX0 + S2(m V0 + C X0) + S (m ω2 X0) + (m ω2V0 +  C  ω
2 X0 + Aω)  / 

                                            S4m + S3C + S2 (K + m ω2)+ S C ω2 + K ω2                                   (13) 

Examples of numerical solutions of vibration of a single degree of freedom system using 

EXCEL based numerical techniques and using MATLAB based Laplace transform 

techniques: 

 

The numerical formulation can be programmed into an EXCEL spread sheet and the Laplace 

transform formulation can be programmed in MATLAB and different scenarios of a single 

degree of freedom vibrating system can be studied using both techniques. 

Scenario 1: 

Table 1 summarizes the vibrating system parameters of scenario 1. 



 
 

 
 

Table 1 (Summary of Parameters of Scenario 1) 

Mass 

(lb.sec2/inch) 

Damping 

(lb.sec/inch) 

Siffness 

(lb/inch) 

Time 

increment 

(sec) 

External 

force (lbf) 

Initial 

displacement 

(inch) 

Initial 

velocity 

(inch/sec) 

1 3 2 .2 0 .1 .05 

 

Figure 2 is a plot of the EXCEL implementation. 

Inputting the parameters defined in scenario (1) into equation (11) results in equation (14). 

                                                 X(S) = {.1 S + .35}/ {S2 + 3S + 2}                                            (14) 

Rearranging equation (14) results in equation (15). 

                                         X(S) = [{.1 S2 + .35S}/ {S2 + 3S + 2}] (1/S)                                     (15) 

Therefore, the motion of mass m can be obtained as a unit-step response of the transfer function 

defined in equation (16).[4]. This response is shown in Figure 3. 

                                          G(S)= X(S) = {.1 S2 + .35S}/ {S2 + 3S + 2}                                     (16) 

 

Figure 2: Result of vibration analysis of scenario 1 using EXCEL 



 
 

 
 

 
Figure 3: Result of vibration analysis of scenario 1 using MATLAB 

A comparison of Figures 2 and 3 shows that there is a slight difference between the results 

obtained through EXCEL and MATLAB. However, the closeness of results indicates that the 

difference is due to numerical errors associated with all numerical techniques. It can be 

concluded that both sets of numerical results are correct. 

Scenario 2: 

Table 2 summarizes the vibrating system parameters of scenario 2. 

Table 2 ((Summary of Parameters of Scenario 2) 

Mass 

(lb.sec2/inch) 

Damping 

(lb.sec/inch) 

Siffness 

(lb/inch) 

Time 

increment 

(sec) 

External 

force (lbf); 

t is sec 

Initial 

displacement 

(inch) 

Initial 

velocity 

(inch/sec) 

1 0 2 .8 Sin 1.4 t 0 0 

 

Figure 4 is a plot of the EXCEL implementation. 



 
 

 
 

 

Figure 4: Result of vibration analysis of scenario 2 using EXCEL 

The natural frequency of the system is 1.41 rad/sec. The frequency of the input force is also  

1.41 rad/sec. As expected, the vibration amplitude in the absence of a damping mechanism will 

grow indefinitely (the system is unstable).  

 

Inputting the parameters defined in scenario 2 into equation (13) results in the transfer function 

shown in equation (17). 

                                                   X(S) = (S3 + 1.41) / (S4 + 3 S2 + 6)                                          (17) 

Using MATLAB, equation (17) can be converted into equation (18). 

         X(S) = {(0.29S – 0.4) / [(S – 0.69)2 + 1.42]} + {(0.71S + 1.79) / [(S + 0.69)2 + 1.42]}    (18) 

Laplace Transform formulas are used to find the Inverse Laplace transform of equation (18) 

shown in equation (19). 

              X(t) = e0.69t (-0.42 sin 1.4t + 0.2 cos 1.4t) + e-0.69t (0.92 sin 1.4t + 0.71 cos 1.4t)         (19) 

Equation (19) can be put in the format of equation (20). 

                             X(t) = 0.46 e0.69tsin(1.4t – 2.67) + 1.16 e-0.69tsin(1.4t+0.785)                        (20) 

The portion of the solution of equation (20) containing the e-0.69t
 will die down as time is 

increased. However, the portion of the solution containing the e0.69t will increase as time is 

increased. This observation is consistent with the increasing amplitude of Figure 4. 



 
 

 
 

Figure 5 is a plot of equation (20).  

 

Figure 5: Result of vibration analysis of scenario 2 using exact solution 

A comparison of Figures 4 and 5 shows that both Figures indicate an unstable system as 

expected. However, the numerical responses are different. This is due to the large time interval 

used in the numerical solution of scenario 2 which results in numerical errors for solution of 

scenario 2. Recall that the ideal choice for h is not obvious because h must be small enough for 

the results to be close to exact solutions, but not too small such that excessive numerical errors 

are accumulated as a result of too many solution steps.  [3], [5] 

The plot of Figure 5 is the accurate plot because MATLAB tools along with inverse Laplace 

Transform formulas were used to find an exact solution. The numerical technique gives a smooth 

plot as shown in Figure 4 that is not the ideal plot for an accurate analysis of a control system. 

The exact solution gives a complete picture of system behavior including the decaying portion of 

the solution and phase angles as indicated in equation 20 and Figure 5. For these reasons, the 

choice of obtaining an exact solution is the preferred method for control system analyses. 

Classroom use and lab use of technique: 

 

The lab portion of a controls course the author has taught consisted of some physical controls 

experiments. However, the physical experiments were time consuming. By using the type of 

computer simulations demonstrated in this article, various changed scenarios related to the 

physical experiments were quickly implemented. The speed by which the computer simulations 



 
 

 
 

were implemented greatly enhanced the student learning process regarding stability of control 

systems.  

 

The end of the semester comments by students showed that the majority of the students benefited 

from the approach. The instructor’s observation was that the introduction of the technique 

reduced the mathematics burden on the part of the students. This especially helps Engineering 

Technology students which are generally weaker than the engineering students in theoretical 

aspects including mathematics. 

 

The technique can be expanded to more advanced controls courses by extending it to state-space 

analysis technique. A more complex system can and should be represented by higher-order differential 

equations. The higher order differential equations can be solved by classical mathematical or numerical 

techniques which is time consuming and difficult for most students (especially Engineering Technology 

students). Or, a higher order differential equation can be put in a matrix form consisting of only first 

order differential equations (MATLAB has the capability to do this automatically). Putting higher order 

differential equations in a matrix form consisting of only first degree differential equations is the basis of 

the state-space analysis technique. The matrix equations can then be solved by the extensive matrix 

solution capabilities of MATLAB (MATLAB stands for Matrix Laboratory).   

 

Summary and Conclusion: 

 

A control system can be mathematically described by developing a differential equation of the 

system. There are techniques for analyzing a differential equation. One technique would be to 

find an exact solution for the differential equation. However, most differential equations don’t 

have known exact solutions. All differential equations can be solved by numerical techniques. 

However, the numerical techniques do not provide expressions that can be used to gain insight 

into the system, and the numerical techniques have the potential of being inaccurate. Numerical 

techniques produce results that can be plotted and the plots give some level of insight into the 

system behavior. 

 

The control system can also be modeled in Laplace domain and the MATLAB partial fraction 

features can be used to put the output in a format that can readily be put in time domain by using 

the Inverse Laplace Transform formulas. This technique provides an expression that defines the 

control system behavior that will be more useful than only a plot in fine tuning a control system. 

 

The techniques discussed in this article were used in a controls course and its accompanying lab 

the author has taught. The demonstrated techniques reduced the mathematical effort necessary on 

the part of the students. The demonstrated techniques can be expanded in more advanced 

controls courses to involve more complex control systems that would have higher order 

differential equations. The use of the state-space technique for mathematically solving the higher 

order differential equations is discussed but details of this technique are outside the scope of this 

article and not presented.  
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