
Computation Lab for Freshman Engineering
Students

Bruce Char, Jeremy Johnson and David Augenblick ∗

Keywords: Introductory computing, computer-based training, technical computation, mathematical mod-
eling,

Extended Abstract

1 Introduction
Computation Lab has been offered for the past five years to 800-1,000 Drexel freshmen including most
freshmen engineering students. Course objectives include:

1. To introduce students to desktop computational tools that can handle numeric, symbolic, and visual-
ization needs for technical problems.

2. To familiarize students with the basic ideas of mathematical modeling and simulation and their appli-
cation to elementary problem-solving situations similar to what might occur in other undergraduate
technical courses.

3. To introduce students to basic programming concepts such as: scripts, variables, loops and conditional
statements, user-defined functions and procedures in the context of solving typical engineering.

4. To familiarize students with the application of computation to solve technical problems through the
use of modeling and simulation.

5. To introduce students to the software development process in the context of solving such problems.

The current version of the course uses Maple[1], although it is clear that the approach would carry over
to other technical computation systems such as Mathematica, Matlab, Octave, Sage, Scientific Python, etc.

2 Course elements
Scheduling The class consists of 12 two hour lab sessions, held every two weeks during the three terms
of the standard Drexel freshman year, along with pre-lab and post-lab on-line exercises. There are three
proficiency exams, one given at the end of each term. Lab sessions are conducted in sections of 30-35 students,
staffed by an instructor and two assistants (a mixture of regular faculty, graduate TAs, and undergraduate
assistants). In Fall 2011, we had ten instructors and fifteen undergraduate assistants for the 33 sections.
On-line work is graded automatically by Maple TA[2]. Lab work is graded by instructional staff during the
lab session.

Pre-lab activity In lieu of lectures, pre-lab reading and demonstration videos are available on-line. A
required pre-lab on-line quiz (see Figure 1 for an example problem) checks that a student is familiar with
key concepts and knows enough to be able to provide answers to simple problem situations. Figure 2 shows
an excerpt of a chapter pre-lab reading.

∗Department of Computer Science, 3141 Chestnut Street, Drexel University, Philadelphia, PA 19104 bchar@cs.drexel.edu

mailto:bchar@cs.drexel.edu


Figure 1: A pre-lab multiple choice question. The correct and incorrect options are randomly selected from
a larger list of responses, then permuted.

Figure 2: A paragraph from the chapter readings of the first term. It explains how to produce a plot to
help understand a population management problem.

Lab work Each two hour lab typically consists of a 20-30 minute overview and demonstration by the
instructor, as well as work on “Part 0”, where the staff and students work together in a synchronized fashion
through basic concepts and actions. In the remainder of the two hour period students work on additional
problems in small groups of two to three students.

Each lab room is equipped with individual laptops, with the students in small clusters to facilitate group
interaction. Each group has a computer projector and whiteboard space that they or the instructional staff
can use. Instructional staff (typically, in a 11:1 student/staff ratio) circulate among the groups during the
period. At the end of the period, each group must save their work (to themselves, using a cloud-based
resource or email). Lab work is broken up into objectives and graded by the staff on a “verification sheet”
which provides a checklist of what the group was able to accomplish. Time is provided post-lab for students
to come back and complete their work under supervision. We find that typically we have paced the material
so that at most 10% of the groups need this extra time. Figures 3 and 4 show an example of lab work
midway through the course.

Lab work often uses “starter” Maple worksheets that provide some of the code necessary to solve the
problem. We have found that “complete the work” exercises are a way to get interesting things to happen in
the time limits provided by the lab. Activities where the student is expected to create complete codes are
described below in Post-lab activities.

One of the advantages of using Maple in the course is that Maple worksheets can be used both to

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012



publish the course readings as well as provide environments for the active lab work. This ability to write
up calculations in the same environment where the calculations are being done is a feature of modern
computational tools that we want the students to experience and use themselves.

Post-lab activity The week after a lab, students are required to do another on-line quiz. The quiz is
typically four or five problems, most of which require computation similar to but different from the problem-
solving work done in lab. Although it is called a quiz, it is really a homework assignment where the
intermediate and final results are checked to verify that the work has been done correctly. Because of the
limitations of our on-line grader, we check only for results rather than award partial credit for incorrect code
that “looks plausible”. However, we believe the lack of credit for incorrect but plausible answers reinforces
the dictum that in computation results must be very close to completely correct in order to be useful. The
harshness of this requirement is ameliorated by giving immediate feedback, and allowing unlimited retries.
Problems are tuned to make exhaustive guessing unlikely to payoff in the time available.

Figures 5 through 7 show a heating problem. The question is programmed to choose the heating param-
eters so that each student is asked a different variant of the problem.

Figures 10- 13 shows a post-lab problem developed in Computation Lab II, after the students have already
been introduced to how to fit data using linear least squares. Variant generation synthesizes a new set of data
to be fit for each student. Most of the generation for this question occurs in Maple programming written by
the question author invoked from the Maple TA generation script.

Figure 14 describes a problem in a simulated car controller in which the presentation facilities are used
to create an animated GIF to be viewed in the student’s web browser as part of the problem presentation.
Students must write a control program in the Maple language using an API developed and used in a lab.
They use it to successfully navigate the car through several variant scenarios. The quiz problem statement
shows students the desired scenario outcomes as gif animations similar to what the students should see
when they run their control programs through the simulator. Problem variants are randomly selected for a
student’s quiz.

Proficiency exam Each term ends in a two hour in-class proctored proficiency exam, where students take
an exam that consists of a combination of pre-lab and post-lab questions, as well as additional questions that
are similar to those used during the term. All questions are posted for on-line practice the week before the
exam. Students are allowed access to most of the course written materials and Maple’s on-line help during
the exam. This allows us to give the students an exam where they are allowed to use the same computation
system and information on the exam as they have been during the term. The proficiency exam allows us
one major quantified observation of individual performance each term. The results are weighted heavily in
the final grade.

The exams are constructed by categorizing the pool of questions as to type and degree of difficulty (which
can be corroborated by quiz results from prior use of a question when it has been used before) and then
selecting some at random from various categories. Multiple exams are constructed and scheduled into exam
time slots at random. This allows us to give an exam across multiple time periods, because there is no extra
information available about the questions to the later exam takers.

Overall performance on the proficiency exam is not typically as good (8-15 percentage points less) as for
the pre- and post-lab on-line quizzes, which are not proctored, untimed, and can be taken anywhere including
during staff consultation hours (often highly popular just before a quiz is due). We believe our on-line quiz
grades are an indicator of time spent practicing with feedback, but when unproctored and untimed are not
a proof of proficiency in a realistic performance. We would make the same comments about estimating
proficiency in a conventional course with manually graded submitted homework.

3 More on Programmable On-line grading
Having an on-line grading system to provide practice and immediate feedback has become an important
feature of the course. Deliberate practice is an crucial ingredient in learning [3, p. 236], particularly subjects
that require procedural knowledge. Giving students feedback is crucial to the development of their skill

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012



as technical problem-solvers, since they may not be efficient at telling how well their efforts are working.
Recording evaluation results is useful in large courses where there are many details.

On-line quizzes and exercises, as well as the proficiency exam, are graded by programming an on-line
automatic grading system, Maple TA[2]. We have provided the programming for all problems we use, which
includes the problem generation, the production of the html and graphics to present the problem to the
student’s web page, and answer checking.

If the questions are static then students may find it easier to replace learning of facts or processes by
learning by rote or Internet look up. Random generation of numerical or structural parameters to the
problem allows each student to be given their unique version of a problem without increasing the staff effort
in grading. Over 120,000 student responses are automatically graded annually. This allows most staff time to
be spent in assisting students in labs and tutoring sessions, and in materials and presentation development.

An important characteristic of the technology is its anytime-availability with immediate feedback. Stu-
dents can work on pre- and post-lab exercises 24/7. Having immediate feedback and allowing retries typically
results in a successful completion rate of over 90% for pre- and post-lab exercises. Immediate feedback with
retries also seems to encourage practice by students. In Fall 2011, our class of approximately 900 students
took a total of 2867 non-credit, optional practice tests in preparation for the exam. Use of the on-line system
has made it easier to use “best practices” such as interleaving worked example solutions and problem-solving
exercises, and use of quizzing to re-exposing students to information, as well as use of pre-questions to in-
troduce a new topic. [4]. We have also found it easier to schedule exams and quizzes for large classes over
multiple time periods, and allows unproctored student practice outside of class or lab.

Because we make up the questions and their grading ourselves, we are not tied to what a publisher or
textbook author has developed. The downside of this is the time it takes to develop a good question, typically
five hours or more. We have found that the development cost can be amortized not only over the grading
savings from our large class, but also because the variability allows reusability of our questions over several
course offerings. To enhance variability, we sometimes use the symbolic computation facilities of Maple to
generate structural variations in the problem statement or solution algorithm that should be used.

Figure 1 shows a simple multiple choice problem. The variation there consists of choosing one from
several possible correct answers, and four of several possible incorrect responses. The variation comes from
random selection rather than varying parameter values.

4 Conclusions
Computation Lab introduces students to the use of mathematical models and computation by having them
work and receive feedback on problems from instructional staff by lab work, and through graded on-line work.
We use autograding technology to increase the amount of time the instructional staff has helping students
with problems they face when problem solving. It allows students to develop proficiency by providing a large
supply of practice problems with immediate feedback. On-line grading technology also gives us convenient
means to run the course consistently across many time periods and offerings over several terms.

Writing autograded questions with variation incurs a higher cost in software engineering (analysis, testing,
and design) than a typical one-paper/single-use assignment or exam question. However, the cost may be
amortized by grading savings in several offerings over time of large courses.

References
[1] Maplesoft, Maple 15 User Guide. Maplesoft, 2011.

[2] ——, Maple T.A. 7 User Guide. Maplesoft, 2011.

[3] Committee on Developments in the Science of Learning for the Commission on Behavioral and Social Sci-
ences and Education, How People Learn, expanded edition ed., J. Bransford, A. Brown, and R. Cocking,
Eds. National Research Council, 2000.

[4] H. Pashler, P. Bain, B. Bottge, A. Graesser, K. Koedinger, M. McDaniel, and J. Metcalfe, “Organizing
instruction and study to improve student learning: A practice guide (ncer 2007-2004).” U.S. Department

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012



of Education, Institute of Education Sciences, National Center for Education, Tech. Rep., 2007. [Online].
Available: http://ies.ed.gov.ezproxy2.library.drexel.edu/ncee/wwc/pdf/practiceguides/20072004.pdf;

Biographical Information
Bruce Char is Professor of Computer Science in the College of Engineering at Drexel University. He is a
past chair of ACM SIGSAM, the special interest group on symbolic computation. He has had a long-term
interest in the application of IT tools to technical education. Jeremy Johnson is head of the Computer
Science Department at Drexel. He is present chair of ACM SIGSAM, and was the originator of the course.
David Augenblick is Auxiliary Professor of Computer Science at Drexel and has been course coordinator for
Computation Lab for several years.

Acknowlegments
The support of the Drexel University College of Engineering is gratefully acknowledged. Mark Boady helped
with question development and supplied some of the usage statistics.

Figure 3: A graph produced by student programming in the second term (Lab 8) to simulate motion of a
bouncing ball. Students have already learned about lists and loops. In this exercise they are asked to apply
this knowledge to flesh out a time-step simulation of a bouncing ball that loses velocity with each bounce.

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012

http://ies.ed.gov.ezproxy2.library.drexel.edu/ncee/wwc/pdf/practice guides/20072004.pdf;


Figure 4: Code fragment producing the visualization of 3. Students are given a code framework and expected
to fill in pieces of it.

Figure 5: A question with parametric variation, part 1.

Figure 6: A question with parametric variation, part 2

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012



Figure 7: Maple TA coding of parametric variation problem

Figure 8: Uninstantiated question text

Figure 9: Maple TA question – hints to students

Figure 10: (a) Sensor problem plot (b) Sensor question

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012



Figure 11: Sensor problem, continued

Figure 12: Sensor problem, continued.

Figure 13: Sensor problem, continued

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012



Figure 14: A frame of an animation for a car control simulator problem .

2012 ASEE Northeast Section Conference
Reviewed Paper

University of Delaware
April 20-21, 2012


	1 Introduction
	2 Course elements
	3 More on Programmable On-line grading
	4 Conclusions

