
AC 2011-1050: COMPUTATIONAL EXPERTISE IN ENGINEERING: ALIGN-
ING WORKFORCE COMPUTING NEEDS WITH COMPUTER SCIENCE
CONCEPTS.

Claudia Elena Vergara, Michigan State University

Claudia Elena Vergara. PhD Purdue University. Fields of expertise: Plant Biology and STEM Education
Research. Dr. Vergara is a Postdoctoral Fellow at the Center for Engineering Education Research (CEER)
at Michigan State University. Her research interest is in STEM education through research projects on
instructional design, implementation and assessment of student learning, aimed to improve science, engi-
neering and technology education.

Mark Urban-Lurain, Michigan State University

Director of Instructional Technology Research & Development Division of Science and Mathematics
Education College of Natural Science Michigan State University

Abdol-Hossein Esfahanian, Michigan State University

Abdol-Hossein Esfahanian received his B.S. degree in Electrical Engineering and the M.S. degree in
Computer, Information, and Control Engineering from the University of Michigan in 1975 and 1977 re-
spectively, and the Ph.D. degree in Computer Science from Northwestern University in 1983. He was
an Assistant Professor of Computer Science at Michigan State University from September 1983 to May
1990. Since June 1990, he has been an Associate Professor with the same department, and from August
1994 to May 2004, he was the Graduate Program Director. He has developed a number of software pack-
ages which have been used both inside and outside the University. He was awarded ’The 1998 Withrow
Exceptional Service Award’, and ’The 2005 Withrow Teaching Excellence Award’. Dr. Esfahanian has
published articles in journals such as IEEE Transactions, NETWORKS, Discrete Applied Mathematic,
Graph Theory, and Parallel and Distributed Computing. He was an Associate Editor of NETWORKS,
from 1996 to 1999. He has been conducting research in applied graph theory, computer communications,
fault-tolerant computing, Information Technology, and databases.

Daina Briedis, Michigan State University

DAINA BRIEDIS is a faculty member in the Department of Chemical Engineering and Materials Science
at Michigan State University. Dr. Briedis has been involved in several areas of education research includ-
ing student retention, curriculum redesign, and the use of technology in the classroom. She is a co-PI
on two NSF grants in the areas of integration of computation in engineering curricula and in developing
comprehensive strategies to retain early engineering students. She is active nationally and internationally
in engineering accreditation and is a Fellow of ABET.

Dr. Neeraj Buch, Michigan State University
Thomas F. Wolff, Michigan State University

Dr. Thomas F. Wolff is Associate Dean of Engineering for Undergraduate Studies at Michigan State
University. In this capacity, he is responsible for all activities related to student services (academic ad-
ministration, advising, career planning, women and diversity programs, etc.) and curricular issues. He
is principal investigator on several NSF grants related to retention of engineering students. As a faculty
member in civil engineering, he co-teaches a large introductory course in civil engineering. His research
and consulting activities have focused on the safety and reliability of hydraulic structures, and he has
participated as an expert in three different capacities regarding reviews of levee performance in Hurri-
cane Katrina. He is a three-time recipient of his college’s Withrow Award for Teaching Excellence, a
recipient of the Chi Epsilon Regional Teaching Award, and a recipient of the U.S. Army Commander’s
Award medal for Public Service. In 2010, he was elected to the National Council of Chi Epsilon, the civil
engineering honor society, and serves as National Marshal of that organization.

Jon Sticklen, Michigan State University

c©American Society for Engineering Education, 2011

P
age 22.360.1

Jon Sticklen is the Director of the Center for Engineering Education Research at Michigan State Univer-
sity. Dr. Sticklen is also Director of Applied Engineering Sciences, an undergraduate bachelor of science
degree program in the MSU College of Engineering. He also is an Associate Professor in the Department
of Computer Science and Engineering. Dr. Sticklen has lead a laboratory in knowledge-based systems
focused on task specific approaches to problem solving. Over the last decade, Dr. Sticklen has pursued en-
gineering education research focused on early engineering; his current research is supported by NSF/DUE
and NSF/CISE.

Ms. Cindee Dresen
Kysha L. Frazier, Corporation for a Skilled Workforce
Louise Paquette, Lansing Community College

Louise A. Paquette Lansing Community College Mathematics and Computer Science Department

Degrees EdS in Curriculum and Instruction with a minor emphasis in Systems Science, Michigan State
University, 1982 MAT in Mathematics Education with a minor emphasis in Computer Science, Michigan
State University, 1978 BA in Mathematics Education with a minor in business, Michigan State University,
1969

Professional Experience Sum 1983 present Mathematics professor at Lansing Community College (full-
time since January 2000) Sept 1994 present Coordinator of the 2+2+2 Engineering Program. Responsi-
bilities include: arranging tours, orientations, and meetings; academic advising; mentoring; monitoring
progress; tutoring. Jan 97 Jun 09 Coordinator of the Liberal Studies Divisional Awards Jan 95 present Ti-
tle III Academic Advisor Fall 96,97,98,99 Professor at Lyman Briggs College, Michigan State University
Spring 94 Visiting Instructor, Mathematics Department, Michigan State University Sept 82 Dec 85 Assis-
tant Instructor, Mathematics Department, Michigan State University Sept 76 Jun 82 Graduate Assistant,
Mathematics Department, Michigan State University Sept 69 Jun 75 High school mathematics/computer
science teacher for L’Anse Creuse Public Schools, Mt Clemens, MI 48043

Presentations Fall1996 I gave brief demonstrations of the capabilities of the TI-092 graphing calculator
to mathematics faculty. I continued to meet with some faculty throughout Spring 1997 to continue the
discussion about the calculator. July1995 I gave a presentation ”Use of the Graphing Calculator in the
Classroom” at the Liberal Studies Division Sharing Meeting at LCC. I also conducted a Professional De-
velopment Workshop for the LCC Science Department on use of the TI-82 graphing calculator. Sept1994
I conducted a Professional Development Meeting for the LCC Mathematics Department on the features of
the TI-82 graphing calculator. Mar1976 I co-presented a demonstration of the tutorial algebra computer
program I co-wrote at the NCTM Detroit meeting. April1975 I co-presented a talk and demonstration of
the tutorial algebra computer program I co-wrote at the CBI Expo, Macomb Intermediate School District.

NSF Grants Sept 07 Aug 09 CPATH CB: Computing and Undergraduate Engineering: A Collaborative
Process to Align Computing Education with Engineering Workforce Needs Jul 07 Jun13 EEES: Engag-
ing Early Engineering Students to Expand Numbers of Degree Recipients Jan 10 Dec 12 CPACE II:
Implementation of a Reformed Curriculum that Integrates Computational Thinking across Engineering
Disciplines

Award Jan 1997 ”Striving for Excellence” award from LCC and WLAJ-53ABC

Curriculum Work 2006 Development of CPSC131, ”Numerical Methods and MATLAB”

Interest Integration of technology (graphing calculator and mathematical software) into the classroom to
assist the students in understanding mathematical concepts and as a tool in problem solving.

c©American Society for Engineering Education, 2011

P
age 22.360.2

Computational Expertise in Engineering: Aligning Workforce Computing
Needs with Computer Science Concepts

Abstract

The 20th century ended with a multitude of engineering accomplishments that influenced
and changed every aspect of human life. Globalization, international competition, an increasingly
diverse population, and a rapid growth in computational capabilities and infrastructure are some
of the challenges that will test the boundaries of engineering ingenuity in the 21st century. The
Collaborative Process to Align Computing Education with Engineering Workforce Needs
(CPACE) project team developed a collaborative process to identify the computational skills that
are essential for a vital 21st century engineering workforce1, 2. Our objective is to revise the
undergraduate engineering curricula to infuse computational problem-solving competencies—
across engineering departmental courses. These competencies are aligned with industry needs
and enable students to integrate conceptual knowledge, technical skills and professional practice.
In this paper we describe the process that we used to translate our findings⎯computational
competencies/needs in the engineering workplace—into fundamental computer science (CS)
concepts that can be used in curricular implementation. We also discuss the initial phase of our
curricular implementation strategy in two disciplinary engineering programs at Michigan State
University (MSU) and transfer program at Lansing Community College (LCC).

Project Implementation Strategy

 Our project implementation strategy is based on the transformation model depicted in
Figure 1, which comprises five interactive nodes:

• Node 1: Interview/survey engineering stakeholders to identify the computational
competencies needed in the engineering workplace.

• Node 2: Abstract common⎯in an engineering context⎯ computational problem-solving
principles from the interview/survey data.

• Node 3: Align the computational problem-solving principles with computer science (CS)
concepts.

• Node 4: Identify opportunities to integrate/reinforce these CS concepts in the curricula.
• Node 5: Implement revisions in engineering curricula.

 The Transformation Model provides a framework that allows all stakeholders to see the
interrelationships between what have, up to now, been discrete activities. The goal is to help
each of the stakeholders view their needs in the context of this larger framework and to find
ways to better engage all stakeholders in the entire process. This is a cyclic model with feedback
among the five major nodes (dashed arrows). Given the rapid pace of technical change, the
iterations and interactions through the nodes in the transformation model would continue, with
increasingly better integration across all phases of the model.

P
age 22.360.3

Figure 1. The Transformation Model provides a framework that allows all stakeholders to see
the interrelationships among the different activities (nodes). The black solid arrows indicate the
flow of [project] activities starting in node 1 through node 5. This is a cyclic model with
feedback among the five major nodes as indicated by the blue dashed arrows.

Workforce-Computing Needs

 As indicated in the transformation model (Figure1-node 1) we interviewed and surveyed
engineering stakeholders to understand engineering workplace needs for computational
competence both at the practical-tool level and at the computational thinking level. We
interviewed the head of engineering, human resources executives (preferably both) to understand
their employees’ use of computer technology and the computational skills needed in their
businesses; we conducted 27 interviews with companies representing a cross-section of
engineering disciplines and different industry sectors 1, 2. The main objectives of the employee
surveys were 1) to understand what people working in engineering and technology feel are the
strengths and weaknesses of their undergraduate computing education and 2) to identify current
and future computational problem-solving gaps based on employee’s views of future needs and
trends. We conducted electronic surveys of 250 employees of participating companies 1, 2.

 We organized the results of the interview and survey analyses in three general categories:
general skills, computational skills and future of engineering practice. Table I presents a
summary of our findings. In general employers: a) place a high value on interpersonal skills such

#1
Workforce

computational
competencies

#2
Abstract

computing
principles

(CPs)

#4
Curricular
integration

#3
Align CPs with

computing
concepts

#5
Curricular

implementation

 Education
Stakeholders Business

Stakeholders Accreditation
Stakeholders

P
age 22.360.4

as communication, ability to organize and present data, and the ability to function in a team; b)
see critical and innovative thinking and problem solving as important attributes; c) see trends
towards computational globalization, which translate to the need for engineers to understand
business practices and the importance of integrating engineering data across larger systems.

Table I. Categories of skills identified by engineering stakeholders.

General Skills Computational Aspects Future Engineering Practice
- Communication
skills
- Team work
- Critical thinking
- Innovative
thinking
- Problem solving
(both conceptual
and operational)
- Ability to
learn/adapt

- Basic computational skills.
- Understanding of principles,
application and limitations of
computational tools
- Using technology to collaborate
at all levels
- Use of technology to support
broad problem solving and
decision making
- Familiarity with multiple
software systems
- Ability to move between
abstractions in software and
physical systems
- Multiple CAD programs
including 3D modeling
- Process simulation packages
- Numeric computational
platforms
- Excel (High level capabilities)
- MS Office
- Some programming

-Corporate development,
leadership, management skills.
- Project management software
- Increasing integration of
engineering data across larger
systems
- More business intelligence
embedded in systems
- Data Mining
- Globalization
- Environmental impact across
disciplines. Design for the
environment (DFE)
- Research and development
including:
• Material development/new

applications for existing
material.

• Electronic communication.
• Next generation of technology
- Increasing use of simulation to
reduce materials usage in design
phase.

 Our results are consistent with other research on engineering education3, 4 and details of
the process and findings resulting from the completion of nodes 1 and 2 in the transformation
model in figure 1 are presented elsewhere1, 2. In the sections below we describe the process that
we used to align the engineering workforce-computing needs with CS concepts that can be used
in curricular implementation (nodes 2-4). We also discuss how we are using this data-to-CS-
concept alignment as a framework to design and implement curricular revisions.

Workforce-Computing Needs Alignment to CS-Concepts

 Based on employer interviews and employee surveys conducted in engineering
businesses and industries we identified their needs for computational competencies. Since the
computational competencies noted in our interview and survey data can be specialized to
particular disciplines, industries, or even companies, we focused on identifying the underlying
computational principles. These common principles incorporate key components of

P
age 22.360.5

computational needs in the broad [workplace] engineering context. In other words we used these
common principles to translate our interview and survey data into fundamental computer science
(CS) concepts that can be integrated in the curricula. To accomplish this task we evaluated three
different computational frameworks. Below we discuss some elements from each of the
frameworks and discuss the issues that we encountered when trying to apply these frameworks to
our interview and survey data.

1) In his Great Principles of Computing5, Peter Denning adopts the terms ‘Computing
Mechanics’ to group the structure and operations of computations. He refers to the principles of a
field as “a set of interwoven stories about the structure and behavior of field elements.” He
groups the stories of the computing field into five categories [principles]: computation,
communication, coordination, automation, and recollection; the lines between these categories
overlap and any given element can fall within various categories. In his portrait of computing
Denning incorporates computing mechanics, design principles and computing practices—one of
which is engineering systems.

 The depth of Denning’s characterization, which includes not only the computing
principles but also computing practices and core technologies, aligns seamlessly with curricula
for CS majors. Indeed its focus on computing as a discipline made it difficult to apply to our
interview and survey data, which reflects the use of computational tools and computational
thinking in the context of the engineering workplace.

2) Jeannette Wing’s discussion of Computational Thinking (CT)6 can be summarized in terms of
eight exemplar categories:

• Building on power and limits of computing processes.
• Solving problems, designing systems, and understanding human behavior.
• Reformulating a difficult problem into one we can solve.
• Thinking recursively.
• Using abstraction and decomposition.
• Thinking in terms of prevention, protection and recovery from worst-case scenarios.
• Using heuristic reasoning to discover a solution.
• Complementing and combining math and engineering thinking.

 We aligned our interview and survey data to some of these exemplars⎯those CT
activities that are relevant in an engineering context. Upon completion of the alignment, it was
clear that Wing’s CT exemplars were too general to move from the common principles⎯from
our interview and survey data⎯into fundamental computer science (CS) concepts that can be
used for curricular revisions. For example the problem-solving category is too general and
several competencies derived from our interview and survey analyses fit within this category.
Using the FITness principles⎯as explained below⎯ we were able to assign these competencies
into more fitting categories.

3) Being Fluent with Information Technology Report (FITness report)7. The concepts identified
in the FITness report outline the basic ideas and principles underpinning CS. The fundamental
nature of these concepts notwithstanding, they are instantiated in practical technologies and
applications that allowed us to move from the computational competencies identified in our

P
age 22.360.6

industrial data to CS concepts that can be integrated in the curricula. The CS concepts
enumerated in the Fluency with Information Technology (FITness) report offered the best
framework to complete our alignment; Table II shows an example using the data that we
collected from one of our companies and aligning it to the FITness principles.

 Operationally, each member of the research team used this framework to categorize the
data. This was followed by a group discussion to reach a consensus alignment. The process was
iterative until all the data were analyzed. We used excel to create a matrix mapping the interview
responses from each company [rows] to each of the FITness categories [columns] (Appendix 1).
At the end of this mapping we counted the cells containing text for each interviewed company
and under each FITness category. A complete alignment of all the data showing the text counts is
included in Appendix 1.

Table II. Alignment of engineering computational competencies to FITness report concepts

Industrial Data from Interviews and Surveys
Mission Critical Themes (reported by

employers)
Computational Competencies* (reported by

employers)
Focus is launching new products, from
concept to production. Sharing
information, design, and computations.
Develop ideas into parts. Mold flow
analysis is very important. CAD design
and being able to analyze the designs
regardless of the software. (This
highlights the fact that we work with
different types of customers and need to
accommodate all of them and come up
with the product that the customer wants
even if the customer has less definition
about the product).

Mold flow analysis, simulations from CAD
drawings, CAD design, Multiple CAD* programs,
MS Office tools, word, outlook, power point, excel
how to use/manipulate complex spreadsheets, FEA
software, send CAD to tool-shops. Try to use
particular packages but may need to use IGES to
translate. Homegrown DB for monitoring
manufacturing process. QID, Manufacturing Pro,
Pilgrim QS software, MS Project, GANTT charts.

Alignment to FITness Principles
FITness Principles** Alignment to Interview and Survey Data

Information Systems Homegrown DB for monitoring manufacturing
process.

Digital Representation of Information Try to use particular packages but may need to use
IGES to translate.

Information Organization MS Office tools, word, outlook, power point, excel
how to use/manipulate complex spreadsheets.

Modeling and Abstraction Mold flow analysis, simulations from CAD
drawings, CAD design, Multiple CAD* programs.

Algorithmic Thinking and Programming Excel how to use/manipulate complex spreadsheets.
* The computational competencies are color coded to indicate how the alignment to the
particular FITness principle was done.
** For a complete description of each FITness principle please refer to Appendix 2

P
age 22.360.7

 The chart in Figure 2 is the result of the final alignment of all the interview data. The
percentages are based on counts of numbers of cells in columns containing text (Appendix 1).
The chart shows the distribution of the computational competencies⎯required in the engineering
workplace⎯mapped to CS concepts that can be used to implement curricular changes in
engineering courses.

Figure 2. Distribution of engineering workplace computational competencies aligned to
computer science concepts. The percentages are based on counts of numbers of cells in columns
containing text (see the text for details).

Curricular Implementation Strategy

 Our goal is to better align our engineering graduates capabilities⎯to solve disciplinary
problems utilizing computational skills⎯with the needs of industrial stakeholders. To
accomplish this, we are using this data-to-CS-concept distribution (Figure 2) as a framework to
implement curricular revisions in two test-bed programs at MSU and LCC. We are mapping the
concepts across all four years of the engineering curricula beginning with two engineering
disciplines, Chemical and Civil, at MSU and pre-engineering courses (transfer) at LCC.

 Our objective is to introduce a series of authentic engineering problems that provide a
context where students are required to apply the various computational concepts for their
solution. We are developing the problems in consultation with stakeholders from industry, and
faculty from engineering disciplines to ensure that they exemplify relevant industrial scenarios
within the discipline.

P
age 22.360.8

 We are currently identifying problems that are appropriate to a variety of courses and can
be used with varying degrees of complexity depending upon the course level. First-year courses
would use simplified versions of problems. As students progress through their programs, the
problems will become more complex. However, the underlying computing concepts⎯ fitting
course objectives⎯will be explicitly addressed across the various courses and throughout the
degree program. A generic example of concept distribution and course mapping across the four
years of the engineering curricula is depicted in table III.

Table III. CS Concept distribution across engineering curricula

 CS Concept 1 CS Concept 2 CS Concept 3 …CS Concept N
Transfer* Target Course A Target Course B
Freshman Target Course C Target Course D Target Course E
Sophomore Target Course F Target Course G
Junior Target Course H Target Course I
Senior Course J Course K Course L Course M

*Refers to transfer students from <community college>

Summary and Future Directions

 To prepare graduates to flourish in the global economy of the 21st century, engineering
educators need to design curricula that incorporate innovation and flexibility based on
constituency input and quality improvement principles 8. The CPACE project team addresses
these challenges in the context of computing education within engineering disciplines. CPACE
brings together post secondary educators and business, industry and community leaders in a
collaborative process to transform undergraduate computing education within the engineering
and technology fields. We have created a partnership between engineering stakeholders from
multiple sectors to identify the needs for computational problem-solving competencies in the
engineering workplace, to define how these competencies can be integrated across curricula, and
to revise the curricula to integrate these competencies across all four years of the engineering
curricula1, 2.

 Based on the results of our employer interviews and employee surveys we developed an
understanding of industry needs with regard to computational competencies both at the practical-
tool level and at the computational problem-solving level. We aligned these data to computer
science (CS) concepts that can be used to guide curriculum reforms (Figure 2). We are using this
CS concept distribution to guide our design and implementation of the curricular reform. Our
objective is to vertically integrate authentic problems that exemplify computational problem
solving within the disciplines. The goal is for engineering graduates to enter the workforce with
improved and practice-ready computational competencies that are aligned with industry needs
and enables them to understand computational problem-solving in the context of the principles of
computer science. The reform is beginning in two academic majors at MSU, chemical and civil
engineering, and pre-engineering transfer courses at LCC. We expect to complete the
implementation plan in the target courses in Fall 2012.

 Our working hypothesis is that students going through the target courses sequences in

P
age 22.360.9

civil engineering and in chemical engineering prior to implementation of our modules (control
groups) will apply fewer examples of computational problem-solving competencies in the senior
capstone course within their discipline (either civil engineering or chemical engineering) as
compared to those students who take the target courses with our implemented modules
(treatment groups). Our approach includes collecting quantitative and qualitative data for both
treatment and comparison groups.

 Our future directions include:

• Continue identifying authentic engineering problems.
• Complete the instructional design for the target courses in chemical and civil engineering

at MSU and targeted courses at LCC.
• Develop appropriate instructional materials to support implementation by the disciplinary

faculty who teach the target courses.
• Continue collecting quantitative and qualitative data.

 In a broadest context, our project is an exploration in institutional change necessary for
sustaining [our] curricular innovations after the funding ends. A central consideration of this
project is the implementation of an effective change strategy that allows the successful adoption
of the reform beyond classroom, individual faculty and ideally beyond institutions. This
dimension of the project will be discussed in a forthcoming publication.

Bibliography

[1] Vergara, C. E., Urban-Lurain, M., Dresen, C., Coxen, T., MacFarlane, T., Frazier, K., et al. (2009). Leveraging
workforce needs to inform curricular change in computing education for engineering: The CPACE project.
Computers in Education Journal, Vol XVIIII (4), 84-98.

[2] Vergara, C. E., Urban-Lurain, M., Dresen, C., Coxen, T., MacFarlane, T., Frazier, K., et al. (2009, October 18-
21). Aligning computing education with engineering workforce computational needs: New curricular directions to
improve computational thinking in engineering graduates. Paper presented at the Frontiers in Education, San
Antonio, TX.

[3] Committee on the Engineer of 2020, Educating the engineer of 2020: Adapting engineering education to the new
century. National Academy Press: Washington, DC, 2005

[4] Educating Engineers: Designing for the future of the field. The Carnegie Foundation for the Advancement of
Teaching 2008.

[5] Peter Denning (Nov. 2003). Great Principles of Computing. Communications of the ACM, Vol. 46, (11), p. 15.

[6] Jeanette Wing. (Mar. 2006). Computational Thinking, Communications of the ACM, Vol. 49, (3), p 33.

[7] Being Fluent with Information Technology Committee on Information Technology Literacy, National Research
Council. (1999).

[8] Lattuca, L. R., Terenzini, P. T., & Volkwein, J. F. (2006). Engineering change: A study of the impact of EC2000.
Baltimore, MD: ABET, Inc.

P
age 22.360.10

Company Information
Systems Networks

Digital
Representation
of Information

Information
Organization

Modeling and
Abstraction

Algorithmic
Thinking &
Programming

Limitations
of IT

1 51 0 68 119 87 48 0
2 53 0 3 67 108 100 0
3 144 0 110 42 347 0 100
4 0 26 162 93 162 0 0
5 98 0 7 100 167 74 45
6 36 36 95 192 266 76 112
7 287 287 287 287 8 31 111
8 210 0 121 125 238 132 0
9 292 0 34 43 106 58 0
10 365 142 11 88 276 48 0
11 186 29 41 205 271 16 0
12 0 0 0 0 0 0 0
13 0 0 24 133 201 0 0
14 0 0 3 0 309 75 0
15 50 0 7 0 102 0 0
16 222 108 137 61 103 195 243
17 30 0 130 126 156 0 294
18 0 0 0 0 32 58 164
19 505 0 11 0 57 0 0
20 0 0 23 46 228 60 0
21 0 0 31 0 461 6 180
22 0 0 9 90 203 38 0
23 43 0 27 215 242 0 188
24 53 0 38 96 279 153 67
25 130 61 34 126 503 0 330

COUNTA 17 7 23 19 24 16 11

FITness Categories

P
age 22.360.11

Appendix 2

 Contains the list and definitions of the computational concepts used to create the
Workforce-Computing Needs Alignment to CS-Concepts. The list of concepts is taken from the
FITness report7 (pg. 29).

Computers
Key aspects of a stored-program computer, including:

• The program as a sequence of steps,
• The process of program interpretation,
• The memory as a repository for program and data (including notions of memory

hierarchy and associated ideas of permanence / volatility), and
• Overall organization, including relationship to peripheral devices (e.g., I / O devices).

The appropriate emphasis is not necessarily a specific electronic realization such as a particular
computer, but rather the idea of a computational task as a discrete sequence of steps, the
deterministic interpretation of instructions, instruction sequencing and control flow, and the
distinction between name and value. Computers do what the program tells them to do given
particular input, and if a computer exhibits a particular capability, it is because someone figured
out how to break the task into a sequence of basic steps, i.e., how to program it.

Information systems
The general structural features of an information system, including, among others, the hardware
and software components, people and processes, interfaces (both technology interfaces and
human-computer interfaces), databases, transactions, consistency, availability, persistent storage,
archiving, audit trails, security and privacy and their technological underpinnings.
Most knowledge workers in the labor force interact with one or more information systems,
becoming knowledgeable about their characteristics and idiosyncrasies. Understanding the
abstract structure of such systems prepares students for employment, enhances job mobility,
enables workers to adapt to new systems more quickly, and helps them to exploit more fully the
facilities of a given system.

Networks
Key attributes and aspects of information networks, including their physical structure (messages,
packets, switching, routing, addressing, congestion, local area networks (LANs), wide area
networks (WANs), bandwidth, latency, point-to-point communication, multicast, broadcast,
Ethernet, mobility), and logical structure (client / server, interfaces, layered protocols, standards,
network services).
Computers are generally much more useful when connected to each other and to the Internet.
The goal is to understand how computers can be connected to each other and to networks, and
how information is routed between computers. The appropriate emphasis is how the parameters
of communication, such as latency and bandwidth, affect the responsiveness of a network from a
user's point of view and how they might limit one's ability to work.

Digital representation of information
The general concept of information encoding in binary form. Different information encodings:
ASCII, digital sound, images, and video / movies. Topics such as precision, conversion and

P
age 22.360.12

interoperability (e.g., of file formats), resolution, fidelity, transformation, compression, and
encryption are related, as is standardization of representations to support communication.
The appropriate emphasis is the notion that information that is processed by computers and
communication systems is represented by bits (i.e., binary digits). Such a representation is a
uniform way for computers and communication systems to store and transmit all information;
information can be synthesized without a master analog source simply by creating the bits and so
can be used to produce everything from Toy Story animations to forged e-mail; symbolic
information in machine-readable form is more easily searchable than physical information.

Information organization
The general concepts of information organization, including forms, structure, classification and
indexing, searching and retrieving, assessing information quality, authoring and presentation, and
citation. Search engines for text, images, video, audio.
Information in computers, databases, libraries, and elsewhere must be structured to be accessible
and useful. How the data should be organized and indexed depends critically on how users will
describe the information sought (and vice versa), and how completely that description can be
specified. In addition to locating and structuring information, it is important to be able to judge
the quality (accuracy, authoritativeness, and so forth) of information both stored and retrieved.
Section 3.2 provides some additional discussion.

Modeling and abstraction
The general methods and techniques for representing real-world phenomena as computer models,
first in appropriate forms such as systems of equations, graphs, and relationships, and then in
appropriate programming objects such as arrays or lists or procedures. Topics include continuous
and discrete models, discrete time, events, randomization, and convergence, as well as the use of
abstraction to hide irrelevant detail.
Computers can be made to play chess, predict the weather, and simulate the crash of a sports car
by abstracting real-world phenomena and manipulating those abstractions using transformations
that duplicate or approximate the real-world processes. One goal is understanding the
relationship between reality and its representation, including notions of approximation, validity,
and limitations; i.e., not all aspects of the real world are modeled in any one program, and a
model is not reality.

Algorithmic thinking and programming
The general concepts of algorithmic thinking, including functional decomposition, repetition
(iteration and / or recursion), basic data organizations (record, array, list), generalization and
parameterization, algorithm vs. program, top-down design, and refinement. Note also that some
types of algorithmic thinking do not necessarily require the use or understanding of sophisticated
mathematics. The role of programming, which is a specific instantiation of algorithmic thinking,
is discussed in Chapter 3.
Algorithmic thinking is key to understanding many aspects of information technology.
Specifically, it is essential to comprehending how and why information technology systems work
as they do. To troubleshoot or debug a problem in an information technology system,
application, or operation, it is essential to have some expectation of what the proper behavior
should be, and how it might fail to be realized. Further, algorithmic thinking is key to applying
information technology to other personally relevant situations.

P
age 22.360.13

Universality
The "universality of computers" is one of the fundamental facts of information technology
discovered by computing pioneers A.M. Turing and Alonzo Church in the 1930s, before
practical computers were created. Shorn of its theoretical formalism and expressed informally,
universality says that any computational task can be performed by any computer. The statement
has several implications:

 No computational task is so complex that it cannot be decomposed into instructions
suitable for the most basic computer.

 The instruction repertoire of a computer is largely unimportant in terms of giving it power
since any missing instruction types can be programmed using the instructions the machine
does have.

 Computers differ by how quickly they solve a problem, not whether they can solve the
problem.

 Programs, which direct the instruction-following components of a computer to realize a
computation, are the key.

Limitations of information technology
The general notions of complexity, growth rates, scale, tractability, decidability, and state
explosion combine to express some of the limitations of information technology. Tangible
connections should be made to applications, such as text search, sorting, scheduling, and
debugging.
Computers possess no intuition, creativity, imagination, or magic. Though extraordinary in their
scope and application, information technology systems cannot do everything. Some tasks, such
as calculating the closing price for a given stock on the NASDAQ exchange, are not solvable by
computer. Other tasks, such as that of placing objects into a container so as to maximize the
number that can be stored within it (e.g., optimally filling boxcars, shipping containers, moving
vans, or space shuttles), can be solved only for small problems but not for large ones or those of
practical importance. Some tasks are so easily solved that it hardly matters which solution is
used. And, because the programs that run on computers are designed by human beings, they
reflect the assumptions that their designers build into them, assumptions that may be
inappropriate or wrong. Thus, for example, a computer simulation of some "real" phenomenon
may or may not accurately reflect the underlying reality (and a naïve user may be unable to tell
the difference between a generally true simulation and one that is fundamentally misleading).
Assessing what information technology can be applied—and when it should be applied—is
essential in today's information age.

P
age 22.360.14

