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Computational Expertise in Engineering: Aligning Workforce Computing 
Needs with Computer Science Concepts 

 
Abstract 
 

The 20th century ended with a multitude of engineering accomplishments that influenced 
and changed every aspect of human life. Globalization, international competition, an increasingly 
diverse population, and a rapid growth in computational capabilities and infrastructure are some 
of the challenges that will test the boundaries of engineering ingenuity in the 21st century. The 
Collaborative Process to Align Computing Education with Engineering Workforce Needs 
(CPACE) project team developed a collaborative process to identify the computational skills that 
are essential for a vital 21st century engineering workforce1, 2. Our objective is to revise the 
undergraduate engineering curricula to infuse computational problem-solving competencies—
across engineering departmental courses. These competencies are aligned with industry needs 
and enable students to integrate conceptual knowledge, technical skills and professional practice. 
In this paper we describe the process that we used to translate our findings⎯computational 
competencies/needs in the engineering workplace—into fundamental computer science (CS) 
concepts that can be used in curricular implementation. We also discuss the initial phase of our 
curricular implementation strategy in two disciplinary engineering programs at Michigan State 
University (MSU) and transfer program at Lansing Community College (LCC). 
 
Project Implementation Strategy 
 
 Our project implementation strategy is based on the transformation model depicted in 
Figure 1, which comprises five interactive nodes: 
 

• Node 1: Interview/survey engineering stakeholders to identify the computational 
competencies needed in the engineering workplace. 

• Node 2: Abstract common⎯in an engineering context⎯ computational problem-solving 
principles from the interview/survey data. 

• Node 3: Align the computational problem-solving principles with computer science (CS) 
concepts. 

• Node 4: Identify opportunities to integrate/reinforce these CS concepts in the curricula. 
• Node 5: Implement revisions in engineering curricula. 

 
 The Transformation Model provides a framework that allows all stakeholders to see the 
interrelationships between what have, up to now, been discrete activities.  The goal is to help 
each of the stakeholders view their needs in the context of this larger framework and to find 
ways to better engage all stakeholders in the entire process. This is a cyclic model with feedback 
among the five major nodes (dashed arrows). Given the rapid pace of technical change, the 
iterations and interactions through the nodes in the transformation model would continue, with 
increasingly better integration across all phases of the model. 
 

P
age 22.360.3



 
  
Figure 1. The Transformation Model provides a framework that allows all stakeholders to see 
the interrelationships among the different activities (nodes). The black solid arrows indicate the 
flow of [project] activities starting in node 1 through node 5. This is a cyclic model with 
feedback among the five major nodes as indicated by the blue dashed arrows.  
 
Workforce-Computing Needs 
 
 As indicated in the transformation model (Figure1-node 1) we interviewed and surveyed 
engineering stakeholders to understand engineering workplace needs for computational 
competence both at the practical-tool level and at the computational thinking level. We 
interviewed the head of engineering, human resources executives (preferably both) to understand 
their employees’ use of computer technology and the computational skills needed in their 
businesses; we conducted 27 interviews with companies representing a cross-section of 
engineering disciplines and different industry sectors 1, 2. The main objectives of the employee 
surveys were 1) to understand what people working in engineering and technology feel are the 
strengths and weaknesses of their undergraduate computing education and 2) to identify current 
and future computational problem-solving gaps based on employee’s views of future needs and 
trends. We conducted electronic surveys of 250 employees of participating companies 1, 2. 
 
 We organized the results of the interview and survey analyses in three general categories: 
general skills, computational skills and future of engineering practice. Table I presents a 
summary of our findings. In general employers: a) place a high value on interpersonal skills such 
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as communication, ability to organize and present data, and the ability to function in a team; b) 
see critical and innovative thinking and problem solving as important attributes; c) see trends 
towards computational globalization, which translate to the need for engineers to understand 
business practices and the importance of integrating engineering data across larger systems. 
 
Table I. Categories of skills identified by engineering stakeholders. 
 

General Skills Computational Aspects Future Engineering Practice 
- Communication 
skills 
- Team work 
- Critical thinking 
- Innovative 
thinking 
- Problem solving 
(both conceptual 
and operational) 
- Ability to 
learn/adapt 

- Basic computational skills.  
- Understanding of principles, 
application and limitations of 
computational tools 
- Using technology to collaborate 
at all levels  
- Use of technology to support 
broad problem solving and 
decision making 
- Familiarity with multiple 
software systems 
- Ability to move between 
abstractions in software and 
physical systems 
- Multiple CAD programs 
including 3D modeling 
- Process simulation packages 
- Numeric computational 
platforms 
- Excel (High level capabilities) 
- MS Office 
- Some programming 

-Corporate development, 
leadership, management skills. 
- Project management software 
- Increasing integration of 
engineering data across larger 
systems 
- More business intelligence 
embedded in systems 
- Data Mining 
- Globalization 
- Environmental impact across 
disciplines. Design for the 
environment (DFE) 
- Research and development 
including: 
• Material development/new 

applications for existing 
material. 

• Electronic communication. 
• Next generation of technology 
- Increasing use of simulation to 
reduce materials usage in design 
phase. 

 
 Our results are consistent with other research on engineering education3, 4 and details of 
the process and findings resulting from the completion of nodes 1 and 2 in the transformation 
model in figure 1 are presented elsewhere1, 2. In the sections below we describe the process that 
we used to align the engineering workforce-computing needs with CS concepts that can be used 
in curricular implementation (nodes 2-4). We also discuss how we are using this data-to-CS-
concept alignment as a framework to design and implement curricular revisions. 
 
Workforce-Computing Needs Alignment to CS-Concepts  
 
 Based on employer interviews and employee surveys conducted in engineering 
businesses and industries we identified their needs for computational competencies. Since the 
computational competencies noted in our interview and survey data can be specialized to 
particular disciplines, industries, or even companies, we focused on identifying the underlying 
computational principles. These common principles incorporate key components of 
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computational needs in the broad [workplace] engineering context. In other words we used these 
common principles to translate our interview and survey data into fundamental computer science 
(CS) concepts that can be integrated in the curricula. To accomplish this task we evaluated three 
different computational frameworks. Below we discuss some elements from each of the 
frameworks and discuss the issues that we encountered when trying to apply these frameworks to 
our interview and survey data. 
 
1) In his Great Principles of Computing5, Peter Denning adopts the terms ‘Computing 
Mechanics’ to group the structure and operations of computations. He refers to the principles of a 
field as “a set of interwoven stories about the structure and behavior of field elements.” He 
groups the stories of the computing field into five categories [principles]: computation, 
communication, coordination, automation, and recollection; the lines between these categories 
overlap and any given element can fall within various categories. In his portrait of computing 
Denning incorporates computing mechanics, design principles and computing practices—one of 
which is engineering systems. 
  
 The depth of Denning’s characterization, which includes not only the computing 
principles but also computing practices and core technologies, aligns seamlessly with curricula 
for CS majors. Indeed its focus on computing as a discipline made it difficult to apply to our 
interview and survey data, which reflects the use of computational tools and computational 
thinking in the context of the engineering workplace. 
 
2) Jeannette Wing’s discussion of Computational Thinking (CT)6 can be summarized in terms of 
eight exemplar categories: 

• Building on power and limits of computing processes. 
• Solving problems, designing systems, and understanding human behavior. 
• Reformulating a difficult problem into one we can solve. 
• Thinking recursively. 
• Using abstraction and decomposition. 
• Thinking in terms of prevention, protection and recovery from worst-case scenarios. 
• Using heuristic reasoning to discover a solution. 
• Complementing and combining math and engineering thinking. 

 
 We aligned our interview and survey data to some of these exemplars⎯those CT 
activities that are relevant in an engineering context. Upon completion of the alignment, it was 
clear that Wing’s CT exemplars were too general to move from the common principles⎯from 
our interview and survey data⎯into fundamental computer science (CS) concepts that can be 
used for curricular revisions. For example the problem-solving category is too general and 
several competencies derived from our interview and survey analyses fit within this category. 
Using the FITness principles⎯as explained below⎯ we were able to assign these competencies 
into more fitting categories.  
 
3) Being Fluent with Information Technology Report (FITness report)7. The concepts identified 
in the FITness report outline the basic ideas and principles underpinning CS. The fundamental 
nature of these concepts notwithstanding, they are instantiated in practical technologies and 
applications that allowed us to move from the computational competencies identified in our 
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industrial data to CS concepts that can be integrated in the curricula. The CS concepts 
enumerated in the Fluency with Information Technology (FITness) report offered the best 
framework to complete our alignment; Table II shows an example using the data that we 
collected from one of our companies and aligning it to the FITness principles.  
  
 Operationally, each member of the research team used this framework to categorize the 
data. This was followed by a group discussion to reach a consensus alignment. The process was 
iterative until all the data were analyzed. We used excel to create a matrix mapping the interview 
responses from each company [rows] to each of the FITness categories [columns] (Appendix 1). 
At the end of this mapping we counted the cells containing text for each interviewed company 
and under each FITness category. A complete alignment of all the data showing the text counts is 
included in Appendix 1. 
 
Table II. Alignment of engineering computational competencies to FITness report concepts 
 

Industrial Data from Interviews and Surveys 
Mission Critical Themes (reported by 

employers) 
Computational Competencies* (reported by 

employers) 
Focus is launching new products, from 
concept to production. Sharing 
information, design, and computations. 
Develop ideas into parts. Mold flow 
analysis is very important. CAD design 
and being able to analyze the designs 
regardless of the software. (This 
highlights the fact that we work with 
different types of customers and need to 
accommodate all of them and come up 
with the product that the customer wants 
even if the customer has less definition 
about the product). 

Mold flow analysis, simulations from CAD 
drawings, CAD design, Multiple CAD* programs, 
MS Office tools, word, outlook, power point, excel 
how to use/manipulate complex spreadsheets, FEA 
software, send CAD to tool-shops. Try to use 
particular packages but may need to use IGES to 
translate. Homegrown DB for monitoring 
manufacturing process. QID, Manufacturing Pro, 
Pilgrim QS software, MS Project, GANTT charts. 

Alignment to FITness Principles 
FITness Principles** Alignment to Interview and Survey Data 

Information Systems Homegrown DB for monitoring manufacturing 
process. 

Digital Representation of Information Try to use particular packages but may need to use 
IGES to translate. 

Information Organization MS Office tools, word, outlook, power point, excel 
how to use/manipulate complex spreadsheets. 

Modeling and Abstraction Mold flow analysis, simulations from CAD 
drawings, CAD design, Multiple CAD* programs. 

Algorithmic Thinking and Programming Excel how to use/manipulate complex spreadsheets. 
* The computational competencies are color coded to indicate how the alignment to the 
particular FITness principle was done. 
** For a complete description of each FITness principle please refer to Appendix 2 
  

P
age 22.360.7



 The chart in Figure 2 is the result of the final alignment of all the interview data. The 
percentages are based on counts of numbers of cells in columns containing text (Appendix 1). 
The chart shows the distribution of the computational competencies⎯required in the engineering 
workplace⎯mapped to CS concepts that can be used to implement curricular changes in 
engineering courses. 
 
 
      

 
 
 
Figure 2. Distribution of engineering workplace computational competencies aligned to 
computer science concepts. The percentages are based on counts of numbers of cells in columns 
containing text (see the text for details). 
 
Curricular Implementation Strategy 
 
 Our goal is to better align our engineering graduates capabilities⎯to solve disciplinary 
problems utilizing computational skills⎯with the needs of industrial stakeholders. To 
accomplish this, we are using this data-to-CS-concept distribution (Figure 2) as a framework to 
implement curricular revisions in two test-bed programs at MSU and LCC. We are mapping the 
concepts across all four years of the engineering curricula beginning with two engineering 
disciplines, Chemical and Civil, at MSU and pre-engineering courses (transfer) at LCC. 
  
 Our objective is to introduce a series of authentic engineering problems that provide a 
context where students are required to apply the various computational concepts for their 
solution. We are developing the problems in consultation with stakeholders from industry, and 
faculty from engineering disciplines to ensure that they exemplify relevant industrial scenarios 
within the discipline.  
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 We are currently identifying problems that are appropriate to a variety of courses and can 
be used with varying degrees of complexity depending upon the course level.  First-year courses 
would use simplified versions of problems.  As students progress through their programs, the 
problems will become more complex.  However, the underlying computing concepts⎯ fitting 
course objectives⎯will be explicitly addressed across the various courses and throughout the 
degree program.  A generic example of concept distribution and course mapping across the four 
years of the engineering curricula is depicted in table III.  
 
Table III. CS Concept distribution across engineering curricula 
 

  CS Concept 1 CS Concept 2 CS Concept 3 …CS Concept N 
Transfer* Target Course A  Target Course B  
Freshman Target Course C Target Course D  Target Course E 
Sophomore  Target Course F  Target Course G 
Junior  Target Course H Target Course I  
Senior Course J Course K Course L Course M 

*Refers to transfer students from <community college> 
 
Summary and Future Directions 
 
 To prepare graduates to flourish in the global economy of the 21st century, engineering 
educators need to design curricula that incorporate innovation and flexibility based on 
constituency input and quality improvement principles 8. The CPACE project team addresses 
these challenges in the context of computing education within engineering disciplines. CPACE 
brings together post secondary educators and business, industry and community leaders in a 
collaborative process to transform undergraduate computing education within the engineering 
and technology fields. We have created a partnership between engineering stakeholders from 
multiple sectors to identify the needs for computational problem-solving competencies in the 
engineering workplace, to define how these competencies can be integrated across curricula, and 
to revise the curricula to integrate these competencies across all four years of the engineering 
curricula1, 2. 
 
 Based on the results of our employer interviews and employee surveys we developed an 
understanding of industry needs with regard to computational competencies both at the practical-
tool level and at the computational problem-solving level. We aligned these data to computer 
science (CS) concepts that can be used to guide curriculum reforms (Figure 2). We are using this 
CS concept distribution to guide our design and implementation of the curricular reform. Our 
objective is to vertically integrate authentic problems that exemplify computational problem 
solving within the disciplines. The goal is for engineering graduates to enter the workforce with 
improved and practice-ready computational competencies that are aligned with industry needs 
and enables them to understand computational problem-solving in the context of the principles of 
computer science. The reform is beginning in two academic majors at MSU, chemical and civil 
engineering, and pre-engineering transfer courses at LCC. We expect to complete the 
implementation plan in the target courses in Fall 2012. 
  
 Our working hypothesis is that students going through the target courses sequences in 
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civil engineering and in chemical engineering prior to implementation of our modules (control 
groups) will apply fewer examples of computational problem-solving competencies in the senior 
capstone course within their discipline (either civil engineering or chemical engineering) as 
compared to those students who take the target courses with our implemented modules 
(treatment groups). Our approach includes collecting quantitative and qualitative data for both 
treatment and comparison groups. 
 
 Our future directions include: 

• Continue identifying authentic engineering problems. 
• Complete the instructional design for the target courses in chemical and civil engineering 

at MSU and targeted courses at LCC. 
• Develop appropriate instructional materials to support implementation by the disciplinary 

faculty who teach the target courses. 
• Continue collecting quantitative and qualitative data. 

 
 In a broadest context, our project is an exploration in institutional change necessary for 
sustaining [our] curricular innovations after the funding ends. A central consideration of this 
project is the implementation of an effective change strategy that allows the successful adoption 
of the reform beyond classroom, individual faculty and ideally beyond institutions. This 
dimension of the project will be discussed in a forthcoming publication. 
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Company Information 
Systems Networks

Digital 
Representation 
of Information

Information 
Organization

Modeling and 
Abstraction

Algorithmic 
Thinking & 
Programming

Limitations 
of IT

1 51 0 68 119 87 48 0
2 53 0 3 67 108 100 0
3 144 0 110 42 347 0 100
4 0 26 162 93 162 0 0
5 98 0 7 100 167 74 45
6 36 36 95 192 266 76 112
7 287 287 287 287 8 31 111
8 210 0 121 125 238 132 0
9 292 0 34 43 106 58 0
10 365 142 11 88 276 48 0
11 186 29 41 205 271 16 0
12 0 0 0 0 0 0 0
13 0 0 24 133 201 0 0
14 0 0 3 0 309 75 0
15 50 0 7 0 102 0 0
16 222 108 137 61 103 195 243
17 30 0 130 126 156 0 294
18 0 0 0 0 32 58 164
19 505 0 11 0 57 0 0
20 0 0 23 46 228 60 0
21 0 0 31 0 461 6 180
22 0 0 9 90 203 38 0
23 43 0 27 215 242 0 188
24 53 0 38 96 279 153 67
25 130 61 34 126 503 0 330

COUNTA 17 7 23 19 24 16 11

FITness Categories
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Appendix 2 
 
 Contains the list and definitions of the computational concepts used to create the 
Workforce-Computing Needs Alignment to CS-Concepts. The list of concepts is taken from the 
FITness report7 (pg. 29).  
 
Computers 
Key aspects of a stored-program computer, including: 

• The program as a sequence of steps, 
• The process of program interpretation, 
• The memory as a repository for program and data (including notions of memory 

hierarchy and associated ideas of permanence / volatility), and 
• Overall organization, including relationship to peripheral devices (e.g., I / O devices). 

The appropriate emphasis is not necessarily a specific electronic realization such as a particular 
computer, but rather the idea of a computational task as a discrete sequence of steps, the 
deterministic interpretation of instructions, instruction sequencing and control flow, and the 
distinction between name and value. Computers do what the program tells them to do given 
particular input, and if a computer exhibits a particular capability, it is because someone figured 
out how to break the task into a sequence of basic steps, i.e., how to program it. 
 
Information systems 
The general structural features of an information system, including, among others, the hardware 
and software components, people and processes, interfaces (both technology interfaces and 
human-computer interfaces), databases, transactions, consistency, availability, persistent storage, 
archiving, audit trails, security and privacy and their technological underpinnings. 
Most knowledge workers in the labor force interact with one or more information systems, 
becoming knowledgeable about their characteristics and idiosyncrasies. Understanding the 
abstract structure of such systems prepares students for employment, enhances job mobility, 
enables workers to adapt to new systems more quickly, and helps them to exploit more fully the 
facilities of a given system. 
 
Networks 
Key attributes and aspects of information networks, including their physical structure (messages, 
packets, switching, routing, addressing, congestion, local area networks (LANs), wide area 
networks (WANs), bandwidth, latency, point-to-point communication, multicast, broadcast, 
Ethernet, mobility), and logical structure (client / server, interfaces, layered protocols, standards, 
network services). 
Computers are generally much more useful when connected to each other and to the Internet. 
The goal is to understand how computers can be connected to each other and to networks, and 
how information is routed between computers. The appropriate emphasis is how the parameters 
of communication, such as latency and bandwidth, affect the responsiveness of a network from a 
user's point of view and how they might limit one's ability to work. 
 
Digital representation of information 
The general concept of information encoding in binary form. Different information encodings: 
ASCII, digital sound, images, and video / movies. Topics such as precision, conversion and 
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interoperability (e.g., of file formats), resolution, fidelity, transformation, compression, and 
encryption are related, as is standardization of representations to support communication. 
The appropriate emphasis is the notion that information that is processed by computers and 
communication systems is represented by bits (i.e., binary digits). Such a representation is a 
uniform way for computers and communication systems to store and transmit all information; 
information can be synthesized without a master analog source simply by creating the bits and so 
can be used to produce everything from Toy Story animations to forged e-mail; symbolic 
information in machine-readable form is more easily searchable than physical information. 
 
Information organization 
The general concepts of information organization, including forms, structure, classification and 
indexing, searching and retrieving, assessing information quality, authoring and presentation, and 
citation. Search engines for text, images, video, audio. 
Information in computers, databases, libraries, and elsewhere must be structured to be accessible 
and useful. How the data should be organized and indexed depends critically on how users will 
describe the information sought (and vice versa), and how completely that description can be 
specified. In addition to locating and structuring information, it is important to be able to judge 
the quality (accuracy, authoritativeness, and so forth) of information both stored and retrieved. 
Section 3.2 provides some additional discussion. 
 
Modeling and abstraction 
The general methods and techniques for representing real-world phenomena as computer models, 
first in appropriate forms such as systems of equations, graphs, and relationships, and then in 
appropriate programming objects such as arrays or lists or procedures. Topics include continuous 
and discrete models, discrete time, events, randomization, and convergence, as well as the use of 
abstraction to hide irrelevant detail. 
Computers can be made to play chess, predict the weather, and simulate the crash of a sports car 
by abstracting real-world phenomena and manipulating those abstractions using transformations 
that duplicate or approximate the real-world processes. One goal is understanding the 
relationship between reality and its representation, including notions of approximation, validity, 
and limitations; i.e., not all aspects of the real world are modeled in any one program, and a 
model is not reality. 
 
Algorithmic thinking and programming 
The general concepts of algorithmic thinking, including functional decomposition, repetition 
(iteration and / or recursion), basic data organizations (record, array, list), generalization and 
parameterization, algorithm vs. program, top-down design, and refinement. Note also that some 
types of algorithmic thinking do not necessarily require the use or understanding of sophisticated 
mathematics. The role of programming, which is a specific instantiation of algorithmic thinking, 
is discussed in Chapter 3. 
Algorithmic thinking is key to understanding many aspects of information technology. 
Specifically, it is essential to comprehending how and why information technology systems work 
as they do. To troubleshoot or debug a problem in an information technology system, 
application, or operation, it is essential to have some expectation of what the proper behavior 
should be, and how it might fail to be realized. Further, algorithmic thinking is key to applying 
information technology to other personally relevant situations. 
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Universality 
The "universality of computers" is one of the fundamental facts of information technology 
discovered by computing pioneers A.M. Turing and Alonzo Church in the 1930s, before 
practical computers were created. Shorn of its theoretical formalism and expressed informally, 
universality says that any computational task can be performed by any computer. The statement 
has several implications:  

 No computational task is so complex that it cannot be decomposed into instructions 
suitable for the most basic computer. 

 The instruction repertoire of a computer is largely unimportant in terms of giving it power 
since any missing instruction types can be programmed using the instructions the machine 
does have. 

 Computers differ by how quickly they solve a problem, not whether they can solve the 
problem. 

 Programs, which direct the instruction-following components of a computer to realize a 
computation, are the key. 

 
Limitations of information technology 
The general notions of complexity, growth rates, scale, tractability, decidability, and state 
explosion combine to express some of the limitations of information technology. Tangible 
connections should be made to applications, such as text search, sorting, scheduling, and 
debugging. 
Computers possess no intuition, creativity, imagination, or magic. Though extraordinary in their 
scope and application, information technology systems cannot do everything. Some tasks, such 
as calculating the closing price for a given stock on the NASDAQ exchange, are not solvable by 
computer. Other tasks, such as that of placing objects into a container so as to maximize the 
number that can be stored within it (e.g., optimally filling boxcars, shipping containers, moving 
vans, or space shuttles), can be solved only for small problems but not for large ones or those of 
practical importance. Some tasks are so easily solved that it hardly matters which solution is 
used. And, because the programs that run on computers are designed by human beings, they 
reflect the assumptions that their designers build into them, assumptions that may be 
inappropriate or wrong. Thus, for example, a computer simulation of some "real" phenomenon 
may or may not accurately reflect the underlying reality (and a naïve user may be unable to tell 
the difference between a generally true simulation and one that is fundamentally misleading).  
Assessing what information technology can be applied—and when it should be applied—is 
essential in today's information age. 
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