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Abstract: This paper presents main paradigms of computational intelligence (CI) techniques and 
emphasizes their importance in understanding complex systems and designing proactive adaptive 
systems in uncertain, unknown, and dynamic environment. Several novel applications of hybrid 
CI techniques proposed by the author in engineering, manufacturing, biomedical and health care 
systems as well as engineering education are discussed. The experiences of presenting CI as a 
course and summer projects are also presented. The importance of introducing the CI techniques 
and their multidisciplinary applications as a senior level interdisciplinary engineering elective 
course and integrating these in research experiences for undergraduates (REU) and STEM 
education (GK-12) is discussed.  

I. Introduction 
In the digital generation, large volumes of data are collected in various forms in different 
endeavors related to business, science, engineering and biomedicine, among others. There is a 
need to make sense of the voluminous data for assessing the current status of the system and 
detecting an early indication of any possible deterioration of the system health.  Computational 
intelligence (CI) techniques are ideal for such applications as tools of ‘knowledge discovery 
from data’ or in short, ‘data to knowledge’ for complex and often apparently intractable systems. 
There is another kind of situation where the systems have to act proactively in view of the 
predicted system status in an unknown, uncertain and changing environment leading to 
development of ‘intelligent autonomous systems’. These systems form a broader class of newly-
coined ‘cyber-physical systems’ or CPS. In a CPS, the ‘cyber’ resources representing computing, 
communication and control combine and coordinate with ‘physical’ resources. For development 
of CPS systems, CI techniques are used with inspirations from nature. These systems have 
unique ability to learn and adapt to new situations utilizing the processes of generalization, 
abstraction and association with inspirations from nature [1-19].   
 
There are main five paradigms of CI algorithms, namely, (1) neural networks (NN), (2) 
evolutionary computation (EC), (3) swarm intelligence (SI), (4) fuzzy systems (FS), and (5) 
immunological computation (IC). The wide range of CI algorithms from these paradigms 
include: (1)- artificial neural networks (ANN); (2)-genetic algorithms (GA), genetic 
programming (GP), differential evolution (DE); (3)- particle swarm optimization (PSO), ant 
colony optimization (ACO); (4)  fuzzy inference system (FIS); and (5)- artificial immune system 



(AIS), clonal selection algorithm (CSA). ANNs have been developed in form of parallel 
distributed network models based on biological learning process of the human brain 
(neuroscience) [6]. GA and GP are developed as simulated evolution of ‘survival of the fittest’ 
(genetics) [1, 3]. Similarly, particle swam optimization (PSO) is proposed as a population based 
stochastic optimization technique inspired by the social behavior of bird flocking [2, 4, 5, 9]. FIS 
embodies human reasoning and concept formation to deal with imprecise and uncertain 
information [7, 8].  AIS has been developed with an inspiration from the mechanisms of immune 
systems [10-13]. Application domains of CI include science, engineering, economics, social 
science, computing, bioinformatics and biomedicine, among others [4-7, 9, 12-15, 20-41]. There 
is a need to expose engineering students to CI and their multidisciplinary applications for better 
utilization of these techniques and their future development [16-19]. It is also important to 
introduce the CI techniques and their applications in the K-12 education through avenues of 
federal programs and initiatives (like REU and GK-12) for encouraging school students join 
STEM disciplines [42, 43]. 

This paper deals with an introduction of the CI techniques along with their several applications.  
In Section II, different CI paradigms are briefly discussed. Brief introductions to different 
hybridization schemes are given in Section III. Author’s experiences are presented covering 
several novel applications of combining CI techniques and utilizing the hybrid forms in different 
practical areas like engineering systems used in military and civilian applications, 
manufacturing, biomedical and health care systems as well as engineering education. In Section 
IV, the experiences of presenting a CI course and summer projects are also presented. The 
importance of introducing the CI techniques and their multidisciplinary applications to 
engineering students as well as in K-12 STEM education is discussed in the concluding section. 

  

II.  Computational Intelligence (CI) Paradigms 
In this section, the main paradigms of CI are briefly discussed for completeness. Some of the 
popular algorithms from each paradigm are considered here for lack of space. For details, readers 
are referred to texts [1-7, 13]. 

II.A Neural Networks (NN) 

Artificial neural networks (ANNs) draw inspirations from neuroscience for generating nonlinear 
input-output mapping for complex systems [6]. There are numerous applications of ANNs in 
data analysis, pattern recognition and control. Among different ANNs, multi-layer perceptron 
(MLP), radial basis function (RBF), and probabilistic neural networks (PNN) are most popular 
[4-6]. In general, an ANN consists of an input layer, an output layer and one or more hidden 
layers in between. The number of hidden layers, number of neurons in each layer, the activation 
functions for the neurons and the learning algorithm are some of the major issues to be 
considered in the implementation of an ANN. There are both supervised and unsupervised NN. 

II.B  Evolutionary Computation (EC) 
Genetic algorithms (GA) and genetic programming (GP) are among the popular EC techniques 
used in a wide variety of applications. GAs represent a class of stochastic search procedures 
based on the principles of natural genetics and through simulated evolution process on a 



constant-size population of possible solutions in the search space. Each individual member of the 
population is represented by a string known as genome [1]. The genomes could be binary or real-
valued numbers depending on the nature of the problem. The standard GA implementation 
involves the following issues: genome representation, creation of an initial population of 
individuals, fitness evaluation, selection of individuals, creation of new individuals using genetic 
operators like crossover and mutation, and specifying termination criteria. GP has a lot of 
similarities with GA. The main difference of GP and GA is in the representation of the solution. 
In the case of GA, the output is in the form of a string of numbers representing the solution. GP 
produces a computer program in the form of a tree-based structure relating the different inputs 
(leaves) through mathematical functions (nodes) to the output (root node) [3]. 

II.C Swarm Intelligence (SI) 
Particle swam optimization (PSO) is a population based stochastic optimization technique 
inspired by the social behavior of bird flocking [2]. PSO is a computationally simple algorithm 
based on group (swarm) behavior. The algorithm searches for an optimal value by sharing 
cognitive and social information among the individuals (particles). PSO has many advantages 
over evolutionary computation techniques like GA in terms of simpler implementation, faster 
convergence rate and fewer parameters to adjust [2, 4, 5]. The popularity of PSO is growing with 
applications in diverse fields of engineering, biomedical and social sciences, among others [9]. 

II.D Fuzzy System (FS) 
Fuzzy logic (FL) has been used in many practical engineering situations because of its capability 
in dealing with imprecise and inexact information [7, 8]. The powerful aspect of fuzzy logic is 
that most of human reasoning and concept formation is translated into fuzzy rules.  The 
combination of incomplete, imprecise information and the imprecise nature of the decision-
making process make fuzzy logic very effective in modeling complex engineering, business, 
finance and management systems which are otherwise difficult to model. This approach 
incorporates imprecision and subjectivity in both model formulation and solution processes. The 
major issues involved in the application of FL or FIS are the selection of fuzzy membership 
functions (MFs), in terms of number and type, designing the rule base simulating the decision 
process as well as the scaling factors used in fuzzification and defuzzification stages. These 
parameters and the structures are, in general, decided based on trial and error and expert 
knowledge.  

II.E Immunological Computation (IC) 
All living beings have the ability to present resistance and develop (partial or complete) 
immunity to disease-causing agents or infections. IC techniques have been developed with the 
ideas and metaphors from the biological immune systems [10-13]. IC techniques utilize the 
various aspects of the immune system like pattern matching, feature extraction, learning and 
memory, diversity, distributed processing, self-organization, and self-protection [13]. The 
development of an IC consists of three main stages: representation of the solution, evaluation of 
interactions,  and  procedure of adaptation. Various IC algorithms have been proposed based on 
model of adaptation, namely, bone marrow, negative selection, clonal selection, and continuous- 
and discrete- immune network models [12, 13]. IC algorithms are finding applications ranging 
from biology to robotics. 
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III. Hybridization of CI 

An important area of active research in CI is the hybridization of these techniques. This is often 
used to solve complex real-world problems where one technique is typically used to fix the 
weaknesses of the other. In adaptive neuro-fuzzy systems (ANFIS), the advantages of FL and 
ANNs are combined for adjusting the MFs, the rule base and related parameters to fit the training 
data set. The author has presented a large number of articles in the hybridization of CI techniques 
where the hybridization leads to much more effective algorithms. The author has combined 
ANNs (MLP, RBF, PNN), support vector machines (SVM), proximal SVM (PSVM), ANFIS 
with GA, GP, both binary and real-valued PSO. The author has shown the applications of these 
hybrid CI techniques in the areas of machine condition monitoring, detection, diagnosis, 
prognostics [20, 23-29, 34-37]; intelligent manufacturing systems [30, 31, 33]; inventory control 
[21, 22]; biomedical applications and health care systems [32, 38, 39]. These hybrid CI 
techniques have been proposed for automatic selection of classifier (ANN, SVM, PSVM, 
ANFIS) structure and parameters, selection of significant system features from a pool, and 
selection of most important sensors (in the context of on-line condition monitoring and 
diagnostics) or sensor fusion. In the following subsections, some representative results from the 
author’s publications are briefly presented. Details can be obtained from the relevant articles.  

III.A Machine condition monitoring, detection, diagnosis and prognostics [20, 23-29, 34-37] 
Feature selection is an important issue in many real-world problems. Hybrid CI techniques have 
been proposed by author for feature selection in machine condition monitoring, detection, 
diagnosis and prognostics. Figures 1(a) and (b) show the role of a hybrid CI combination (PSO 
and PSVM)  in  separation of the data clusters for machine condition detection compared to 
principal component analysis (PCA). The classification success the CI (98-99%) is much than 
PCA (59-65%) [35]. 

 

 

III.B Intelligent Manufacturing System [30, 31, 33] 
Surface roughness is widely used as an index of product quality in finish machining processes. 
The requirement of desired surface roughness imposes critical constraints on selection of 
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Fig.1. Scatter plot three features (a) selected using hybrid CI, (b) principal components [35] 
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optimum machining parameters in engineering manufacturing processes. The selection of proper 
set of input features for accurate prediction of surface roughness is considered to be a challenge 
because of the uncertainty inherent in 
the machining process.  The author has 
shown applications of CI for 
automated selection of the machining 
variables for modeling the surface 
roughness. Figure 2(a) and (b) show 
respectively the generated GP and the 
predicted surface roughness in turning. 
In Fig. 2(a) the variables represent as 
x1: speed and x2: feed rate [31].  

 

 

 

 

 

 

 

 

III.D Biomedical Applications [32, 38, 39] 
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The author has presented hybrid CI techniques in biomedical applications. Figure 3 shows the 
continuous wavelet transform (CWT) of digitally acquired heart sound recorded during 
auscultation for three different heart conditions. The features extracted from the CWT 

Fig. 2. Prediction of surface roughness (a) GP, (b) roughness 

Fig. 3. CWT scalograms for heart sound signals (a) Normal, (b), 
Systolic murmur, (c) Diastolic murmur 

Fig. 4. Decision tree for prediction PVL in neonates 



scalograms were used in CI for diagnosis of heart condition [32]. Figure 4 shows the decision 
tree to predict a neurological condition, namely, periventricular leukomalacia (PVL), for 
neonates using hybrid CI in a collaborative study [38, 39]. 

 

IV. Courses and Summer Projects [40, 41] 

The author developed and offered a course on Engineering Applications of  CI as a graduate 
course at Villanova. The students were introduced to different CI paradigms and their 
applications. The students applied the CI algorithms in their term projects. In addition, an 
exploratory project to provide research experiences on swarm robotics to high school students 
was initiated. A group of three simple mobile robots (Lego NXT) was used to study ‘search and 
rescue’ operation. PSO was used as the main algorithm. Figures 5(a) and (b) respectively show 
the two assembled LEGO NXT robots and the paths of the swarm of three such robots [40, 41]. 
Undergraduate students are also engaged as summer interns for research experiences with 
University and external support.  

 
Fig. 5. Lego NXT mobile robots using in robot swarm, (a) the robots, (b) the swarm paths 

 

V. Conclusions 
The growing interest in education and research in the broad areas of cyber infrastructure, cyber 
systems for understanding of complex multidisciplinary systems and their development is 
evident from different programs adopted at the federal level (NSF, NIH, DoD). The need to 
educate and train the future generation in such ‘cyber’ related areas and CI cannot be over 
emphasized. It is imperative to attract more students to Science, Technology, Engineering and 
Mathematics (STEM) disciplines, in general, and to CI, in particular, with a transformative 
outlook in engineering programs. To start with, CI related courses should be introduced as senior 
level interdisciplinary senior elective in engineering. Several programs funded by NSF like REU 
and GK-12 should be actively considered to reach out to and involve school students (K-12), 
undergraduates and graduates in STEM disciplines. 
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