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Computational Pedagogy: Fostering a New Method of Teaching 

Abstract 
Teaching with technology still remains as a challenge. Making judicious choices of when, what and how 
specific tools and pedagogies to use in the teaching of a topic can be improved with the help of curriculum 
inventories, training, and practices but as new and more capable technologies arrive, such resources and 
experience do not often transfer to new circumstances. This article presents a case study in which 
computational modeling and simulation technology (CMST) is used to improve technological pedagogical 
content knowledge (TPACK) of teachers. We report findings of a summer training program for both pre-
service and in-service teachers in the Northeastern United States. CMST has shown to be effective on both 
teaching and learning. Results show that it helps teachers to integrate technology into their teaching in a 
more permanent, constructive, and tool-independent way. It has also shown to improve student learning 
in a constructive fashion by first enabling deductive introduction of a topic from a general simplistic 
framework and then guiding the learner to inductively discover underlying STEM principles through 
experimentation.  
 
General Terms 
Technological Pedagogical Content Knowledge, Computational Pedagogy, K-12 Teaching 
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Deductive and Inductive Reasoning, Cognitive Processes, Memory Retrieval 
 
1. Introduction 
Educators structure training and curriculum based on learning theories of how the human mind works. 
Recent findings from empirical research by cognitive psychologists and neuroscientists have created a 
critical mass to change the way we prepare teachers and support their classroom instruction. Make it Stick, 
an ostensibly groundbreaking book published recently and coauthored by several prominent cognitive 
scientists has turned conventional ideas of learning upside down.9 The book offers many sound practices 
to help students easily retrieve content they learned in class, retain it, and apply it in different contexts to 
solve problems. New research suggests that repeated, delayed and interleaved retrievals make new 
concepts stick in memory longer if the process is effortful (pp. 47). Learning is mediated by memory, 
because human brain attempts to interpret new concepts in terms of previously registered knowledge and 
facts. However, some degree of forgetting is also good for learning because it forces the learner to use 
effort to cognitively engage oneself to recall or reconstruct newly acquired concepts through different 
neural pathways or links that exists and are retrievable. And, the more links to associated concepts, the 
higher the chances of recalling the newly acquired concept when needed later. Cognitive retrieval practices 
attempted at different times, various settings and contexts are good because every time the recall is 
attempted it establishes more links that will help the remembering and learning. Exposure to new concepts 
through links to multiple views from different fields of study is, therefore, an effective retrieval strategy 
recommended by cognitive psychologists (pp. 49). This is called interleaved retrieval practice and it forms 
a cognitive foundation for the interdisciplinary computational pedagogical content knowledge (CPACK) 
framework that has been developed recently by computational science practitioners and educators.69 In 
the following sections, we will describe an in-service and a pre-service implementation of CPACK and 
how its findings relate to the current literature in engineering education and teacher professional 
development. 
 

 
 



2. Interdisciplinary CPACK Education 
Interleaving retrieval practices by weaving together multi-disciplinary features around a common topic 
(i.e., interdisciplinary education) has great advantages for gaining deep and lasting knowledge but it is not 
easy for several reasons. It would require a more cognitive effort than usual and as such, it would slow 
down the process of learning. In college, it would delay graduation and in public schools’ packed 
schedules it would risk compliance with local and state-mandated curriculum. Technology can be used to 
speed up this interdisciplinary learning but it needs training of teachers to teach content in pedagogically 
appropriate ways, thereby requiring a close integration of technology, pedagogy, and content as shown in 
Fig. 1. Recently, a theoretical framework, namely technological pedagogical content knowledge 
(TPACK), has been developed by Mishra & Koehler36 to address challenges of T, P, and C integration. 
Practicing teachers have been offered professional development (PD) to help them deploy appropriate 
technologies in the classroom, stay up-to-date with emerging technologies, and assess efficacies of 
different pedagogical approaches.10, 33 But, due to frequent changes in available tools, challenges might 
never go away as far as transferring curriculum inventories and PD content to new circumstances. 
Furthermore, teaching with technology often requires customization and the needed technologies must be 
both content specific and pedagogically suitable at the same time.28 While latest technologies offer more 
capacity for applicability, their optimum utilization may necessitate knowledge of tools’ operational 
underlying principles for easier transfer into new circumstances and better integration.21, 28, 44, 69, 73 

There is an important feature of interdisciplinary education that can be best described by Aristotle’s well-
known statement, “the whole is more than the sum of its 
parts,” or the theory of Gestalt psychology, “the whole is 
other than the sum of its parts,” which means that the whole 
has a reality of its own, independent of the parts.30 
Accordingly, educators have noted an emerging nature of 
TPACK when technology, pedagogy, and content are 
closely integrated.36 When mathematics, computing, and 
sciences are integrated, as shown in Fig. 1, their integration 
gives birth not only to a new content domain of 
computational science, as witnessed by degree programs in 
the past two decades,32,47,60,76 but also a particular 
computational pedagogy which was not among the 
constitutive domains of CMST to start with.71-72 This multi-
faceted interdisciplinary knowledge domain has been called 
Computational Pedagogical Content Knowledge (CPACK) 
domain framework, which has received a Best Paper award 
from the TPACK community.69 CPACK involves the use of 
computational modeling and simulation tools in a 
pedagogical way that support both deductive and 
inductive67, 71 approaches to teaching and learning. 
 
3. Computational Modeling and Simulation Technology (CMST) & Relevant Pedagogies 
Modeling and testing has been an important tool for scientific and engineering research for hundreds of 
years. Scientists often start deductively with a model (e.g., a hypothesis or a concept) based on the current 
research, facts, and information. They test the model’s predictions against experimental data. If results do 
not match, they, then break down the model into its parts (sub models) to identify what needs to be 
tweaked. They retest the revised model through what-if scenarios by changing relevant parameters and 
characteristics of the sub models. By putting together new findings and relationships inductively among 

Math 
C 

Comp 
Science 

T 

Science 
C 

Computational  
Pedagogical Content Knowledge 

(CPACK) 

Computational  
Math, Science and Technology 

(C-MST) 

Figure 1: CPACK framework.69 
Computational pedagogy is an inherent 
outcome of computing, math, science 
and technology integration. 
 

 
 



sub models, the initial model gets revised again. This deductive/inductive cycle of modeling, testing, what-
if scenarios, synthesis, decision-making, and re-modeling is repeated  as shown in Fig. 2  while 
resources permit until there is confidence in the revised model’s validity.6   
 
In recent years, computational modeling and simulation 
technology (CMST) has been very effective in conducting 
scientific and engineering research because computers 
speed up the model building and testing of different 
scenarios through simulations that provide quick feedback 
to researchers in order to improve the initial model.45 
CMST’s role in scientific and industrial research was 
proven beyond doubt when computational predictions 
matched behavior of physical models in high-stake cases 
(e.g., safety of cars and planes, emissions from engines, and 
approaching storms). Its use was uniquely justified when a 
study was impossible to do experimentally because of its 
size (too big such as the universe or too small such as 
subatomic systems), environmental conditions (too hot or 
dangerous) or cost. CMST eventually demonstrated to be 
generating innovation and insight, just like experimental 
and theoretical research and this ultimately led to the 
recognition of computation by the scientific community as a 
third pillar of doing science besides theory and 
experiment.47 
 
While such capacity was available only to a small group of scientists in national labs, their demand for 
computationally competent post-docs and doctoral students led to graduate programs in research 
universities. A dramatic increase in access to and power of high performance computing and the drop in 
its cost in the past 20 years helped spread the use of CMST tools into the manufacturing industry. Driven 
by market needs and trends, rather than empirical research into their effectiveness in education, funding 
agencies and colleges started investing in new CMST-based BS, MS and Ph.D. degree programs across 
the world.31, 56-57, 60, 76-78 It was not until friendly versions of such tools were available and considered for 
use in K-12 settings that a detailed and thorough empirical research was undertaken to measure their 
effectiveness in education (see reviews by Smetana & Bell,58 Rutten et al.,54 de Jong & Joolingen14 and 
Yaşar et al.73)  
 
Modeling is a simplification of reality ─ it eliminates the details and draws attention to what is being 
studied. In education, it enables the learner to grasp important facts surrounding a topic before revealing 
the underlying details. Tools such as those in Table 1 now make it possible for instructors to offer easy 
experimentation in the classroom without having to expose students to underlying STEM concepts and 
principles. For example, Interactive Physics (IP) and AgentSheets (AS) can be used to create many fun 
things that could engage students into science experimentation, either by modifying an existing model or 
creating one from scratch. These user-friendly tools can shield students from having to know content 
knowledge of mathematics (e.g., differential equations), computing (e.g., algorithmic and programming) 
and science (e.g., physics) to conduct scientific experiments such as harmonic and planetary motion. 
 
Simulation adds another level of benefit on top of easy modeling by providing a dynamic medium for the 
learner to conduct scientific experiments in a friendly, playful, predictive, eventful, and interactive way 

 Model/Concept 
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Figure 2: Scientific methodology of 
modeling-testing-remodeling process 
used in the conduct of research. 

 
 



to test hypothetical scenarios. For example, in a harmonic motion of an object attached to a spring (Fig. 
3), Interactive Physics can provide control buttons to change physical parameters such as string constant, 
mass of the swinging object and its initial velocity, intensity of gravitational acceleration, among others. 
It also gives the user the ability to change some operational parameters, such as the run-time and accuracy 
desired from the simulation. Furthermore, it allows the learner to go into the initial model’s details and 
break it into its constitutive parts in order to run various what-if scenarios. Based on these scenarios and 
their outcomes, the learner can go back to the design phase and change the model (spring and box) to his 
desire. This dynamics of making decisions that lead to modifications to the initial model based on what-
if scenarios is an inductive process because it lets the learner to put pieces of the puzzle to come up with 
a revised model.67 
 
Table 1. A typical list of CMST tools. 

Interactive Physics (IP): investigate concepts without 
prior physics background. http://www.design-
simulation.com/IP. 
AgentSheets (AS): create games and simulations 
through agents and rules of engagement. 
http://www.agentsheets.com. 
STELLA: model a system by a pictorial diagram of 
initial values and rate of change equations. 
http://www.iseesystems.com. 
Geometer’s Sketchpad (GSP): model geometrical 
concepts; compute distances, angles & areas. 
http://www.dynamicgeometry.com. 
Project Interactivate (PI): online courseware for 
exploring scientific and mathematical concepts. 
http://www.shodor.org. 
Excel Spreadsheets: conduct modeling & simulations 
using a simple algebraic equation (new = old + change) 
for rate of change.  
Texas Instruments (TI) Tools: advance graphing tools 
to conduct algebra, functions, and rates of change 

 
If used appropriately, CMST tools can involve students in inquiry-based, authentic science practices that 
are highlighted in the recent framework for K-12 science education.42 A growing body of research3-4, 64 
identifies computer simulation as an exemplar of inquiry-guided (inductive) learning through students’ 
active and increasingly independent investigation of questions, problems and issues. Research into the use 
of computer simulations in science education has been reviewed periodically and quite frequently in recent 
years. These include early efforts by de Jong & van Joolingen14 and by Bell & Smetana4 as well as recent 
efforts by Rutten et al.54 and by Smetana & Bell.58 The article by the Rutten et al.54 reviewed (quasi) 
experimental research in the past decade (2001-2010) and the one by Smetana & Bell58 reviewed outcomes 
of 61 empirical studies since 1972. The overall findings support effectiveness of computer simulations. In 
many ways simulation has been found to be even more effective than traditional instructional practices. 
In particular, the literature shows that computer simulations can be effective in: 1) developing science 
content knowledge and process skills, and 2) promoting inquiry-based learning and conceptual change. 
Effectiveness of CMST in education is also well grounded in contemporary learning theories that 
recognize the role of experience, abstract thinking, and reflection in constructing knowledge and 
developing ideas and skills.16, 22, 27, 38, 61 Cognitive aspects of CMST are being further detailed in a recent 
article by Yaşar67 using a computational model of how the mind learns. Computational modeling and 

Figure 3. An example of harmonic motion by a 
box attached to a spring on a flat surface. 

 
 



simulation is no longer an adhoc methodology or technology that scientists and engineers use in their 
narrow fields of study ─ everything in the universe, including matter and mind, is now suspected to behave 
computationally.68 An awareness of computation’s universality could help spread its utilization as a 
pedagogy in the advancement of STEM teaching and learning as briefly explained in the next section.  
 
4. CPACK Teacher Education 
Supported by the National Science Foundation through various grants, and in partnership with local school 
districts, namely Rochester City School District (RCSD) and Brighton Central School District (BCSD), 
and national organizations (Shodor Foundation, Krell Institute, and Texas Instruments), we founded a 
CMST Institute in 2002 and have been offering CPACK training since then. While we constantly explore 
new CMST tools, we are currently using those in Table 1 because of a large repository of artifacts and 
lesson plans we have developed using these tools over the past decade. These modules have been 
downloaded by people around the world at a rate of 50-80 per day, totaling almost 100,000 since the 
database was launched. To this date, about 700 in-service and pre-service teachers from twenty local 
school districts have directly benefited from the CPACK training in the form of summer institutes and 
credit-bearing college courses. Partnering school districts, such the urban RCSD and the suburban BCSD, 
have reported using the training modules in their professional development days and teacher resources 
centers over the past decade, bringing the total of teachers affected by this initiative close to a thousand.  
 
While the CPACK has been an initiative by practitioners of CMST in scientific research and education, 
the requirements by the sponsoring agency, particularly the National Science Foundation’s Math and 
Science Partnership (MSP) program, helped evolve it and assess its impact by involving professional 
evaluators and educational researchers from other MSP Research, Evaluation and Technical Assistance 
(RETA) awardees. The RETA awardees that took an interest in the progress of CPACK work included 
the American Institute for Research, the Wisconsin Center for Education Research, Technical Education 
Research Centers (TERC), the Concord Consortium, and The Council of Chief State School Officers 
(CCSSO). The quantitative and qualitative evaluation methodology used by project evaluators were based 
on previously validated methods11 and instrumentations from RETA studies as well as those found in 
TPACK1, 29, 55 and PD literature.19-20, 33 What follows are details and key findings from our implementation 
of in-service and pre-service CPACK programs. 
 
A. In-service Teacher Education 
The preparation of in-service teachers to integrate CMST tools and pedagogy into their classrooms 
involved multiple approaches. This included a multi-tier in-depth instruction in the summer and yearlong 
activities such as weekend workshops as well as mentoring and coaching. The summer training was done 
in three steps by incrementally adding a new domain of knowledge at each year of training for the first 
three years. The first step included technology knowledge (TK) training, the second step included 
technological content knowledge (TCK) training, and the final step included teaching of STEM content 
through computational and pedagogical tools (i.e., TPACK). Participating teachers received 80 contact 
hours during their first summer institute and a minimum total of 200 by the end of their third year. They 
also received additional PD hours through TI-certification (~60 hours), Saturday sessions (~8 hours) and 
one-on-one training (~8 hours) via a CMST Coach and or Team Leader. Table 2 shows the number of in-
service teachers who attended the summer institute during the life of the initiative from 2003 to 2008. 
Almost half of the teachers who attended TK training returned for additional TCK training, and half of 
those returned for the final TPACK training. 
 
The Concord Consortium and The Council of Chief State School Officers (CCSSO) staff members 
conducted periodic on-site PD surveys in order to report back to NSF about our project’s progress on the 

 
 



following aspects: 1) Partnership effectiveness, 2) Teacher preparation, 3) Curriculum and classroom 
impact, 4) Student achievement, and 5) Sustainability and institutional change. The quantitative and 
qualitative data collected from our teacher participants by these RETA projects was compiled along with 
other MSP projects for the purpose of overall accountability to the U.S. Congress. The sites and related 
data were not linked to each other in these reports, but based on their reporting, NSF highlighted our 
project in its reports to the Congress for its overall impact and as a result we were invited to testify before 
the U.S. Congress on behalf of NSF.26  
 

Table 2. Number of in-service teachers attending the summer training.  
Summer Training (2003-2008) TK TCK TPACK Total 
Math Teachers 110 44 22 176 
Science Teachers 53 26 17 96 
Technology/Special Education Teachers 25 8 4 37 
TOTAL in-service Teachers 188 78 43 309 

 
The instrumentations used by our project evaluators benefited from those of the national RETA projects; 
all of which targeted the 5 areas listed above. Additionally, we used a commonly known Guskey model 
of professional development evaluation.19-20 As seen in Table 3, Guskey’s model involves examining five 
critical levels of evaluation, which basically correspond to the five aspects of project evaluation required 
by the sponsoring NSF program. The research and evaluation questions and how the responses were 
gathered followed the general outline in the table. Project evaluators collected quantitative data through 
school records, teacher journal entries, activity logs, interviews, and reflective answers to survey 
questions. Two independent evaluators read the text and coded the text segments to arrive at descriptions 
and common themes. An inductive process11 was used to group these codes in order to form broad themes. 
The project employed additional independent experts to assist with content development and reviews of 
professional development. 
 
In a survey of 40 participant teachers in 2010 who had at least two years of training, 94% agreed that the 
training made them more effective in the classroom; 87% agreed that it strengthened their pedagogical 
skills; 73% agreed that it strengthened their pedagogical content knowledge; 100% agreed that training 
strengthened their skills related to modeling and simulation; 86% reported that they continue to use the 
hardware, software and other materials made available through project in their classrooms; and 80% 
believed that their participation served to build leadership skills. Districts also reported high teacher 
retention − e.g., at the end of 7 years, 73% of participating teachers at RCSD were still teaching while 
10% had moved to lead positions. This is better than the ~50% national retention rate.41 Furthermore, 
according to district officials12 the training helped retain veteran teachers and drew more and better 
teachers to an urban school with a hard time recruiting teachers because of the well-known urban 
problems.35  
 
The percent of teachers feeling prepared to teach with the tools and methodology after the first year TK 
training averaged as follows: 50% were confident about their preparedness and the remainder felt that they 
were “probably” prepared. After the second year of TCK training, 50% felt “definitely” prepared to use 
modeling with the remainder feeling “probably”.  The ongoing annual data suggested that after their first 
summer training, while knowledgeable about the CMST tools, teachers did not immediately feel fully 
prepared to put their training into practice. In fact, what teacher data revealed is that it was not until their 

 
 



third year of training that involved fully using CMST pedagogy and tools that the average teacher felt 
confident and comfortable. This is consistent with the PD literature.5 
 
Table 3: Guskey’s 5-level evaluation of Professional Development as applied to the CPACK project.19-20 

Evaluation Level What Questions Are Addressed: 
How Will Information Be 

Gathered? 
1.Participants’ 
(Teacher) Reactions 

Did they like it? 
Was their time well spent? 
Did the material make sense? 
Will it be useful? 
Was the leader knowledgeable and helpful? 

Pre- and post-activity 
questionnaires administered 
at the beginning and end of 
activity sessions 

2. Teacher Learning Did participants (teachers) acquire the intended 
knowledge and skills? 

Paper-and-pencil 
instruments, 
Simulations,  
Demonstrations, 
Participant reflections (oral 
and/or written), 
Participant portfolios 

3.  Organization 
Support & Change 

Was implementation advocated, facilitated and 
supported? 
Was the support public and overt? 
Were problems addressed quickly & efficiently? 
Were sufficient resources made available? 
Were successes recognized and shared? 
What was the impact on the organization? 
Did it affect the organization’s climate & procedures? 

District and school records 
Minutes from follow-up 
meetings 
Questionnaires 
Structured interviews with 
participants and district or 
school administrators 
Participant portfolios 

4. Teacher Use of 
New Knowledge and 
Skills 

Did participants effectively apply the new knowledge 
and skills? 
To what degree are participants actually implementing 
new knowledge and skills? 

Questionnaires 
Structured interviews with 
participants and their 
supervisors 
Participant reflections (oral 
and written) & portfolios 
Direct observations 
Video or audio tapes 

5.  Student Learning 
Outcomes 

What was the impact on students? 
Did it affect student performance or achievement? 
Did it influence students’ physical or emotional 
wellbeing? 
Are students more confident as learners/readers? 
Is student attendance improving? 
Are dropouts decreasing? 
 

Math 8, Science 8 exams 
Regents exams: Math, 
Biology, Chem. and Physics 
Course Enrollments, report 
cards & achievement scores. 
Unit tests 
Questionnaires 
Structured interviews with 
students, parents, teachers, 
and/or administrators 
Participant portfolios 

 
When mastering new skills or strategies, the learner typically advances through a predictable series of 
learning stages.23 At the start, the learner is usually halting and uncertain as he or she tries to use the target 
skill. With feedback and much practice, the learner becomes more fluent, accurate, and confident in using 
the skill. This process was typical of the CMST learners. To add a vital piece to findings in the literature,5,23 

 
 



our research suggested that a significant period of authentic practice in the classroom between training 
sessions was also critical in changing teacher’s behavior and the classroom environment (in addition to 
the minimum of 80 contact hours to effect changes in teachers’ instructional behaviors and a minimum of 
160 contact hours to effect changes in the classroom environment). Our data implies that in this model the 
learning process for the average CMST Teacher appeared to occur in four overlapping stages as follows.23 
 
1. Acquisition. The teacher has begun to learn how to complete the target skill correctly but is not yet 
accurate or fluent in the skill. 
2. Practice. The teacher is able to complete the target skill accurately but works slowly. The goal of this 
phase is to increase the teacher's fluency with the tools and pedagogy.   
3. Implementation The teacher is accurate and fluent in using the target skill but does not typically use it 
in different situations or on a regular basis.   The goal of this phase is to get the teacher to use the tools 
and pedagogy in the widest possible learning situations.  
4. Assimilation The teacher is accurate and fluent in using the skills learned. He or she also integrates the 
skill regularly in learning situations and is able to modify or adapt the skill to fit novel task-demands or 
situations.  
 
Annual surveys of teachers showed that usage of the tools in the classroom was directly linked to the 
amount of training teachers received. All trained teachers reported that on a daily base they used laptops 
for presentations, graphing calculators for math instruction, and electronic smart boards for interactive 
lessons. In post-training journals, while only 60% of the teachers reported occasional use of modeling 
tools in their classrooms after initial TK training, 78% of teachers reported that they used these tools 
regularly after gone through the TPACK training.  
 
In a 2007 survey of 65 active teachers who had received at 
least two years of training, many reported a significant use 
of modeling tools for both classroom instruction and special 
projects (see Table 4). It appears that the higher the grade 
level, the more regularly these tools were used in the 
classroom. In the survey, teachers who reported regular use 
of modeling tools agreed that using such tools in their 
classrooms significantly increased student engagement. As 
seen in Fig. 4, students in higher-grade levels found 
computational modeling more engaging in both math classes 
(grades 7-8: 77% vs. grades 9-12: 90%) and science classes (grades 7-8: 75% vs. grades 9-12: 85%). 
Modeling was even found helpful to non-traditional (special education) learners (Fig. 5); again the higher 
the grade level the higher the engagement: math classes (grades 7-8: %76 vs. grades 9-12: 100%) and 
science classes (grades 7-8: 75% vs. grades 9-12: 85%). 92% of surveyed teachers agreed that 
computational inquiry made math and science concepts more comprehensible to students. 72% of math, 
and 31% of science teachers reported observed improvement in problem solving skills. Student reaction 
to modeling (versus traditional techniques) was found to be 97% favorable in math and 77% in science 
classes. While science classes utilized technology less due to limited access and lack of science-related 
modeling examples, in instances where it was utilized, a deeper understanding of science topics was 
achieved, compared to math topics (83% vs. 76%).  
 
To further triangulate self-reporting data by teachers, annual student achievement data were analyzed in 
the partnering school districts via report cards and standardized test scores. While we cannot fully isolate 

Table 4: 

Grade Level 

Frequency 

Regularly Special 
Projects 

No 

7-8 Math 46% 46% 8% 

9-12 Math 60% 35% 5% 

7-8 Science 25% 75% 25% 

9-12 Science 54% 38% 8% 

 
 



the impact of teacher training from other contributing factors, an upward district-wide trend was noted in 
both urban and suburban districts during the life of the initiative from 2003 to 2008 (see Table 5 and 6). 
The percentage of students receiving a Regents diploma increased significantly from the baseline (RCSD: 
21%  59%, BCSD: 84%  95%). The initiative exposed students from the urban district to college 
experiences and opportunities, and this may have led to an increased interest (78%  83%) in both 2-year 
and 4-year college enrollments over the period examined. Furthermore, the passing rate (>65/100) in NY 
State Grade-8 Math exam increased in RCSD from 10% to 33%, while the passing rate in NY Regents 
Math-A exam (Grade 11-12) also increased from 13% to 67%. Passing rate in sciences also increased in 
areas such as Physics (3%  22%) and Chemistry (9%  27%). At BCSD, passing rates improved in 
mathematics (Math-A: 51%  99%) and sciences (Physics: 52%  78%). The number of students taking 
General Physics at Brighton increased from 50% to ~100% and the number of students taking AP Physics 
also doubled. Student passing rates at both districts seemed to reflect relative participation of district’s 
math and science teachers in the initiative. All of the improvements have been found to be statically 
significant for sample sizes from each district. 
 

Figure 4: Student engagement per grade level  Figure 5: Impact on non-traditional learners. 

While cohorts of 8th grade male and female students from both districts had a gap in their average math 
performance at the beginning of the initiative, not only were the gaps closed but also reversed four years 
later (12th grade) as shown in Table 7. At RCSD, while both male and female students did much better 
than four years earlier, the graduation rate of the same cohorts still reflected a gender-based trend in 
performance growth, favoring female students. To examine whether the difference is statistically 
significant, we calculated the two-proportion z-scores assuming a normal distribution approximation 
(Brase & Brase 2012). The sample sizes for male and female students were roughly the same at both 
districts, with about 1200 at RCSD and 150 at BCSD. The column p indicates the confidence level that 
the difference between males and females may be due to a nonrandom effect. Normally, any confidence 
level below 90% is less than significant. Here, with more than 90% confidence level female cohorts 
outperformed male cohorts in both math performance and graduation rates. This is consistent with gender-
based response to AgentSheets as reported by Repenning.52 
  
The main goal of the sponsoring No Child Left Behind program was to train as many teachers as possible 
to potentially create a district wide impact on student achievement scores. As a result we trained twice as 
many as we had committed to (see Table 2). While the goals of the sponsoring agency were met, as 
witnessed by gains in the standardized test scores reported by partnering districts, no comprehensive 
research was done by the project to more closely link the gains in student achievement scores to the 
teaching and learning resulted from the initiative. By the time the goals of sponsoring NSF program shifted 
from ‘leaving no child behind’ outreach to ‘researching the interventions’ we had almost run out of control 
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groups in partnering school districts’ math classrooms. The initiative invited science teachers but limited 
access to computer labs, skepticism about use of technology, and inadequate number of readymade 
curricular modules discouraged many to invest in trainings that lacked significant science content and 
representative lesson plans. By the end of the project while almost all secondary math teachers in RCSD 
and BCSD received training and yearlong PD, only 20% of science teachers took part.  
 

Table 5: Student achievement at RCSD. 

School District Passing Rate > 65 2002 2008 

RCSD: 35,000 
students & 400 
MST teachers 

Grade 8 Math 10% 44% 
Grade 12 Math-A 13% 67% 
Grade 12 Physics 3% 22% 

HS Diploma 20% 56% 
 

Table 7: Gender-based response to CMST at RCSD & BCSD. 
 2001-2002 2005-2006 

Male Female Male Female z score p (%) 
R 
C 
S 
D 

Math Cohort 13% 10% 41% 49% 3.97 99 
Graduation Rate  34% 44% 5.06 99 

B 
C 
S 
D 

Math Cohort 92% 84% 93% 93% 0 0 
Graduation Rate  85% 90% 1.29 90 

 
In final years of the study, when focus shifted towards researching the intervention, a few treatment-
control comparisons were conducted. A pair of CMST and non-CMST high school teachers from the same 
school taught properties of quadrilaterals in a mathematics class. The CMST teacher used GSP in a class 
of 24 pupils while the non-CMST teacher used conventional methods in a class of 14 pupils. Both teachers 
conducted the same unit test. Even though the CMST teacher taught a more crowded class, his classroom 
average was 82.5 versus 49.5 for the other class. The second study involved a math triathlon similar to 
Regents Math A and B tests involving use of TI graphing calculators. Scored by external judges, including 
teachers and college faculty, this study revealed that students taught by CMST teachers outperformed 
other students in all categories: Math-A: 60.26 vs. 49.54; Math-B: 71.9 vs. 55.6; and 7-8 Grade Math: 
64.0 vs. 58.6. These findings are consistent with previously reported data on the impact of CPACK 
professional development on teaching and learning in Yaşar et al.73 as well the pedagogical70-71 and 
cognitive aspects67 of computational modeling and simulation methodology. 
 
B. Pre-service Teacher Education 
The curriculum and lesson plans database developed by participation of in-service teachers provided 
content to three general education courses (CPS 101 Introduction to CMST Principles, CPS 105 Games 
in Sciences, and CPS 302 Science, Technology, and Society) and a pre-service methods course (NAS 
401/501 C-MST Methods and Tools) in the college’s teacher education program. These courses have 
become part of the NSF Robert Noyce Scholarship program since 2012 to educate a new cadre of 
computational STEM teachers whose responses are being reported in this section. Table 8 shows 
enrollments in the pre-service methods and tools course (NAS 401/501). The content of the NAS course 
is similar to the first year TK training (i.e., exposure to the tools listed in Table 1) received by in-service 
teachers. 

Table 6: Student achievement at BCSD. 

School District Passing Rate > 65 2002 2008 

BCSD: 3,000 
students & 40 
MST teachers 

Grade 8 Math 89% 91% 
Grade 12 Math-A  51% 99% 
Grade 12 Physics 52% 78% 

HS Diploma 84% 95% 

 
 



 
The major purpose of the Noyce program was to recruit pre-service science and mathematics teachers and 
improve their computational and pedagogical skills. So far, as shown in Table 9, the Noyce program has 
enrolled 16 interns (undergraduate students who have demonstrated some interest in teaching as a career) 
and 43 scholars (undergraduate and graduate students enrolled in the college’s teaching certification 
program). Cumulative demographics for all cohorts (I through IV) indicate a distribution of 55% female 
and 45% male students. The interns have no obligations for the summer support they get other than taking 
a CMST course (e.g., CPS 101) afterward but the scholars are required to serve in a high-needs school 
district for the tuition support they receive prior to completion of teaching certification. Programmatic 
requirements for the scholars include academic preparation in three domains, including a) content area, b) 
educational methods, and c) computational pedagogy. Besides content and education courses, they are 
required to take CPS 101 and NAS 401/501 courses and attend an intensive two-week capstone experience 
in the summer to develop skills of integrating computational technology with content teaching in their 
subject areas.  
 
Table 8. Number of pre-service teachers enrolled in the NAS methods and tools course. 

Courses 2003-2007 2008-2012 2013-
2015 

Total 

NAS 401/501 C-MST Tools for Teachers 113 107 105 325 
 
Table 9: Profiles of Noyce scholars and interns. 

 Cohort I Cohort II Cohort III Cohort IV 
Graduate 5 8 5 2 
Undergraduate 6 9 3 5 
Interns (Undergraduate) 5 10 1 0 

 
One of the biggest challenges facing TPACK teacher education is to teach pre-service students how to 
judiciously choose the pedagogical technologies that can help them teach a topic in their content areas. 
Given the availability of multiple tools these days, teachers and pre-service students are faced with the 
burden of mastering a good many before making judicious choices. A tool-independent education could 
remedy the situation as mentioned earlier if the underlying mathematical and computational principles of 
modeling and simulation technology are learned. The plan was to have the Noyce scholars learn these 
principles in the CPS 101 course. Also, while the original plan included only one summer experience, 
based on our experience from in-service training we added 2nd summer experiences to give scholars 
additional time and support to further improve their CPACK skills before graduation. All in all, the 
CPACK pre-service training was similar to the multi-tier in-service training except that the pre-service 
students had an additional opportunity to learn mathematical and computational principles of modeling 
and simulation tools. 
 
Since the beginning of the Noyce initiative in 2012, project evaluators have conducted focus groups 
interviews and pre- and post-activity surveys. These surveys were developed based on previous studies in 
the literature on how to measure TPACK1, 24-25, 29, 55 and general PD skills.19-20, 33, 65 While the TPACK 
literature usually covers general information technology skills, our focus has been rather on 
interdisciplinary computational technology skills. Noyce students were given an annual satisfaction 
survey at the end of the summer course. An inductive approach46 was used for analyzing the participants’ 
responses to the open-ended questions. The inductive approach allowed for themes to emerge from the 
data instead of predetermined patterns. First, the data was read carefully and core categories were 

 
 



developed to describe the participants’ perceptions about using computational modeling as an instructional 
method including topics, purposes, instructional approaches, and challenges. The data was then organized 
in a matrix to look for cross-case themes.  
 
The quantitative Likert-scaled surveys initially attempted to measure student satisfaction with workshop 
content, learning new software skills and principles of computational modeling and simulation as well as 
benefits of group work and projects. A typical survey response from 14 students in 2014 is shown in Table 
10. As the project evolved and new personnel were added, surveys attempted to measure additional 
responses, particularly the following values as shown in Table 1165: 1) Intrinsic Value (IV); questions 1-
10: How much pre-service teachers enjoyed engaging in the collaboration among STEM subjects – i.e., 
integration of technology, science, and mathematics. 2) Attainment Value (AV); questions 11-17: How 
much importance pre-service teachers place on doing well in their computational modeling coursework. 
3) Utility Value (UV); questions 18-26: How likely pre-service teachers feel that being successful in the 
creation of the STEM model will lead to success integrating STEM content in their future classrooms. In 
Table 11, each group is highlighted in different color for easy reading. The table also shows average scores 
(out of 5) from a 2015, which we will mention later. Here, questions Pre-activity average scores for all 3 
groups (IV, AV, and UV) are high, indicating that these pre-service students had an overall positive 
attitude coming into the workshop. From pre-activity intrinsic value scores, it appears that students came 
in with a strong interest and motivation, and they had high expectations (average of questions 1-10 is 
4.12). Post-activity average scores improved for every question; on the average it went up about 5% for 
all groups. The consistent improvement in all categories points out to a favorable trend. However, because 
of the sample size, we cannot make any significant statistical inferences and generalizations.  
 

Table 10: 2013 survey Very satisfied Somehow satisfied Not satisfied None of these 
1. Workshop content 8 4 0 0 
2. Learning new software skills 9 5 0 0 
3. Learning CMST principles  8 6 0 0 
4. Project based learning 14 0 0 0 
5. Group work (collaboration) 8 5 1 0 
6. Instructors’ knowledge and skills  12 2 0 0 

 
Due to changing logistics and project personnel, we have not been able to conduct a longitudinal study to 
see the evolution of student responses over the 4-year duration of the project, but we were able to conduct 
a study on the effect of training amount on a cohort of students. Preliminary results were presented in 
2014 Association for Science Teacher Education39 and EDULEARN Conferences.40 Additional data since 
then indicates that participants’ perception of CMST-based instructional methods has been highly positive 
after the training. In addition to the focus group interviews, semi-structured interviews with 6 participants 
(3 science and 3 mathematics) were conducted a semester after the initial summer training. Interpretive, 
qualitative analysis of open-ended questions and interview transcripts indicated that students perceive that 
computational modeling can be used to help them understand science concepts in various ways, including 
visualization of science concepts, improving critical thinking and problem solving skills, and 
understanding real-world application of mathematics. Pre-service teachers’ perception of what technology 
knowledge (TK), technological content knowledge (TCK), pedagogical content knowledge (PCK), and 
technological pedagogical content knowledge (TPACK) means improved after their 1st year exposure to 
CMST tools, as shown in Table 12. Understanding of computational modeling increased their interest in 
teaching as unanimously stated by expressions such as “I am more interested in teaching than ever and I 

 
 



hope to create unique lesson plans and laboratory modules utilizing modeling and simulation technology.” 
Participants felt after their initial exposure that they needed more training and experience to practice 
integrating technological content knowledge (TCK) with technological pedagogical knowledge (TPK) in 
order to teach topics in their areas of teaching. Based on this input, in the following years, a 2nd summer 
workshop was added to the program.     
 
Table 11: Responses by pre-service students before and after the 2015 summer training 

Please indicate how you feel about the following statements by circling the best representative of your 

perspective. SA = Strongly Agree (5); A = Agree (4); N = Neutral (3);  D = Disagree (2);   

SD = Strongly Disagree (1) 

Average Score 

Pre Post 

1 I am committed to developing program skills to integrate tech into teaching cross cutting concepts 4.1 4.2 
2 I want to continue developing programming skills to teach cross cutting concepts. 3.9 4.1 
3 Technology can be used to motivate learning of science and math concepts. 4.8 4.9 
4 I would enjoy designing instruction by combining math and science concepts with technology. 4.0 4.5 
5 I want to pursue computational modeling as a means to teach STEM content. 3.7 4.0 
6 I like integrating technology into the instruction of science and math. 4.4 4.5 
8 I would enjoy integrating modeling into the teaching of my content. 4.1 4.2 
9 I would enjoy teaching STEM content through modeling. 4.0 4.3 
10 I enjoy combining modeling with the teaching of content within my major. 4.1 4.2 
11 I value modeling as a way to integrate science and mathematics content. 3.9 4.3 
12 Mathematics is important for modeling real world problems. 4.3 4.6 
13 Technology is important for teaching across the curriculum. 4.5 4.7 
14 It is important to integrate modeling programs with instruction of science. 4.1 4.3 
15 It is important to integrate modeling programs with instruction of math. 3.9 4.0 
16 Realistically, modeling can be used as a means to teach mathematics. 4.1 4.3 
17 Modeling is an important tool for teaching cross cutting concepts. 4.1 4.1 
18 I am developing modeling skills that can be used to teach in my content. 4.0 4.1 
19 I am confident I can model mathematical concepts. 3.4 3.8 
20 I can use modeling to design teaching modules. 3.7 4.0 
21 I am confident I can model the cross cutting concepts. 3.4 3.8 
22 I am confident I can provide problem-solving opportunities using models. 4.1 4.2 
23 I am confident I can model scientific concepts. 3.9 4.0 
24 I am confident I can combine scientific and math content to teach the cross cutting concepts. 3.9 4.3 
25 I can model mathematics and science concepts using technology. 4.1 4.3 

 
The 2nd summer experience included a review of CMST principles to make sure students who had not 
taken CPS 101 had some understanding of tool-independent operation of CMST tools. This involved 
replicating some of the earlier simulations ─ done with tools in Table 1 ─ using Excel and programming 
languages such as freely available Scratch (scratch.mit.edu). Evaluators asked open-ended questions 
though focus group interviews and Likert-scaled questions through surveys. Table 13 shows quantitative 
responses to programming tools from a class of 14 pre-service students. Interactive Physics (IP) and 
AgentSheets (AS) are easy to use because of their graphical user interface but their multiple features give 
an impression of complexity that a learner may never feel proficient enough to overcome.  
 
The response to using Scratch and Excel has been overwhelmingly positive in comparison to the tools, 
such as IP and AS, that they had been using since the first training. While Scratch and Excel are simple 

 
 



tools, they enable students to see what computations are done and how they are done to model and problem 
and simulate its dynamics. For example, the harmonic motion done with Interactive Physics (Fig. 3) is 
replicable in Excel or Scratch by using a simple algebraic formula, new= old + change, that can be applied 
to position (xnew = xold + dx) and velocity (vnew= vold + dv) of a spring-driven object at times (tnew = told + 
dt) separated by an interval of choice dt. Here, change in x and v can be computed via dx= v · dt and dv= 
a · dt if acceleration (a = Force/mass) is known. Since the force applied by a spring with a stiffness k to 
an attached object of mass m is F= - k · x, then a= - (k/m) · x. A simple iterative computation, as shown in 
Table 14, can then be used to generate position and velocity profiles as predicted by the IP in Fig. 3.  
 
Table 12: Pre-service teachers’ perceptions of using CMST for teaching based on TPACK framework. 

TPACK Category Before the program  After the program 

TK MS office/Excel etc. Knowledge of using CMST tools 

TCK Visualization of small 
scale and unobservable 
phenomena or complex 
system. 

Recognition of the differences between CMST tools to 
represent and teach certain science and math concepts.  

TPK Motivation/Interest Recognition of the benefits of using CMST tools for 
improving teaching efficiency, student engagement, 
motivation, and classroom management.  

PCK  Feeling more comfortable integrating science and math 
concepts. Recognition that CMST reinforces the 
connections between STEM fields. 

TPACK  Concrete ideas of how CMST tools can be used for 
improving student understanding of science and math 
concepts, inquiry skills, and problem solving. 
Recognition that CMST tools can help teach difficult 
concepts such as those involving abstract ideas and 
extremely small-scale or global phenomena. 

 
Table 13: Responses to question of “How helpful are these tools for learning computational modeling.” 

 Very helpful Somewhat helpful Not helpful I did not understand it well 
Interactive Physics (IP) 3 4 4 3 

AgentSheets (AS) 11 3 1 0 

Scratch (programming-based) 14 0 0 0 

Excel (computation-based) 10 4 0 0 

   
One of the most important benefits of learning fundamentals of computational modeling is to understand 
that a computation is only an approximation of the reality and that its accuracy increases if we use smaller 
time steps (dt) ─ the smaller the step, the more data points to compute. There is cost for accuracy. Another 
important benefit is that a strong link gets established between computing and natural sciences through 
the computation of change because computation of change in position and in velocity requires 
computation of acceleration, which itself requires knowledge of the Force that is causing the motion. 
Learning principles of modeling and simulation can interest computer science majors into learning laws 
of natural sciences.  

 
 



While computational modeling and 
simulation is as an effective pedagogy71 
to expose non-science majors to STEM 
concepts in an incremental fashion by 
using tools that hide the underlying 
mathematics and science involved in the 
simulations, it can also motivate STEM 
majors to learn computer programming. 
By using multiple tools (IP, Excel, and 
Scratch) to solve the same problem, 
learners get a chance to weigh 
advantages of each tool and conclude first-hand that more accurate and faster computation of new =old + 
change for a large number of data points will require computer programming. The responses by pre-
service math and science students in our program are consistent with such expectation as they indicated a 
strong desire to learn and teach programming and computational modeling to young students (see Table 
15). So, learning fundamental operation of computational and simulation methodology and being able to 
generate the same simulations with multiple tools seem to be an effective way of giving pre-service 
teachers the high confidence and the choice that they need to judiciously and comfortably choose what 
tools to use with the teaching of a specific topic.  
 

Table 15: Common themes from interview transcripts 
• Scratch is really useful to look at parts of different models and see the math and the physics behind it. It 

was really a good exposure to those things and it kind of connects everything together. 
• Scratch allows students to see what’s going on a little bit better; plus you can see what other people have 

done. You can look at their code and see what goes on. It’s so simple that even a nine-year-old can do it. 
• I went home and showed my daughter Scratch. Within 5 minutes she created a program. And, that really 

showed me, you know that my students can do it too. And, the fact that Scratch allows you to share helps 
when having trouble getting your program to work. 

• I could use Scratch with calculus, trigonometry, geometry, and definitely with integrals and derivatives. 
• I would like to have a little more text based interface exposure to programming. If students are able to 

replicate what is shown or taught, then true learning will take place. 
 
5. Conclusion 
Effectiveness of computational modeling and simulation technology in teaching and learning has been 
reported extensively in this manuscript. What our work adds to the literature is more complete and user-
friendly understanding of the cognitive and pedagogical aspects of CMST for engineering educators, along 
the lines of what other studies have done for science educators.67-78 Our previous studies have generally 
reported in-service and pre-service education programs separately, and this is the first attempt to put them 
together within a single framework, the CPACK. As stated before, CPACK is a special case of TPACK 
in which the technology employed is computational modeling and simulation technology.69 Results from 
our in-service and pre-service TPACK experience show that fundamental knowledge of how a particular 
technology works could help teachers to integrate it into their teaching in a more permanent, constructive, 
and tool-independent way. This TPACK knowledge is often of interdisciplinary nature and it might require 
a substantial amount of training. Logistically, it is easier to include such preparation of teachers in a pre-
service program as it can be spread into several courses and capstone experiences. In our program, while 
only a quarter of in-service participants reached a mastery level of CMST principles within a 5-year 
timeframe, all of the pre-service participants accomplished it in just two academic years. 
 

Table 14: Steps to simulate the harmonic motion 
 
Input initial position (x), velocity (v), and time (t) 
Input time step (dt), maximum time (T), mass (m) 
While t <=T: 
 Print position (x), velocity (v), and time (t) 
 Compute force: F = - k  · x 
       Compute acceleration: a = F/m 
 Compute velocity:  v = v + a × dt 
 Compute position: x = x + v × dt  
 Update the time: t = t + dt  
End of While Loop 
 

 
 



While we have not had a chance to study the impact of pre-service teacher preparation on student learning, 
the evidence from partnering school districts where the in-service teachers taught support what other 
researchers have reported about the effectiveness of CMST-enhanced teaching. When used together, 
computational modeling and simulations affords the learner the opportunity to cycle iteratively back and 
forth between the deductive and inductive approaches to learning.49-50, 67-72 CMST has also shown to 
improve student learning in a constructive fashion17 by first enabling deductive introduction of a topic 
from a general simplistic framework and then guiding the learner to inductively discover underlying 
STEM principles through experimentation. If used appropriately in the context of real world applications, 
CMST tools can involve students in inquiry-based, authentic science and engineering practices that are 
highlighted in the recent framework for K-12 science education.42-43 For instance, the K-12 Framework 
suggests that performance expectations combine relevant science and engineering practices with core 
disciplinary ideas and crosscutting concepts that are appropriate for students at each grade level. It is the 
crossroads of performance expectations, relevant practices, core disciplinary ideas and crosscutting 
concepts that the deductive aspect of computational modeling could help with in order to adjust the level 
of exposure to scientific and engineering principles. Further, deeper understandings of science and 
engineering practices could emerge based on the grade level these tenets would be designed.  
 
High levels of student engagement reported by our participating teachers strongly support the 
effectiveness of computational modeling as a deductive pedagogical tool. It shielded students from having 
to know detailed content knowledge of mathematics (e.g., differential equations), computing (e.g., 
algorithmic and programming) and science (e.g., physics) to conduct experiments of linear, harmonic, and 
planetary motion. Once immersed into an authentic experimentation through computer-based simulations, 
students can naturally engage in the eight practice of science and engineering as identified by the Appendix 
F of the K-12 Framework, including inductive analysis and interpretation of data which could lead to a 
constructive experience, conceptual change as well as modification to the initial design model. The 
inductive process resulting from experimentation through simulations helps learners to rediscover 
principles of computing and sciences, therefore leading to deeper content learning. Project-based 
experiences reported in the NSF’s MSPNET.org digital library by a group of 9th and 10th grade high school 
students from BCSD High School (NY) offers a testimony of how students could gain a deeper 
understanding of STEM concepts.79-80 Improved student achievement scores in both local and statewide 
exams at partnering school districts also point out to a lasting impact of the dual nature of computational 
pedagogy on learning. Computational thinking (CT) is heavily emphasized by the K-12 Framework and 
the NGSS standards as an element of recommended science and engineering practices. It is with the newly 
emerging NGSS themes and frameworks that highlight issues espoused in this paper that we believe that 
problem decomposition and abstract thinking aspects of CT skills2, 66 can be naturally fostered through the 
deductive and inductive reasoning cycle of computational pedagogy that has been articulated in Yaşar.67 
The top-down and bottom-up arrows in Figure 2 can help illustrate the parallels between distributive 
nature of deductive reasoning and decomposition as well as between associative nature of inductive 
reasoning and abstract thinking.  
 
While our initial focus on pedagogical aspects of CMST was to develop a tool-independent TPACK 
training for our teacher education program in order to maximize transfer of curriculum inventories to new 
conditions when newer technologies become available, we have actually stumbled upon much more. 
Information revolution has taken electronic computing devices to every corner of the globe but still very 
few would be familiar with and relate to computational modeling and simulation. In fact, even some 
researchers and educators might consider CMST as an ad hoc technology. Furthermore, computing is 
usually not considered as a branch of science15 because it deals with artificial phenomena, not natural 
phenomena. However, as artificial and imitational as electronic computation has been since 1936 by its 

 
 



inventor (Alan Turing62) we believe that it might eventually help us discover how the biological 
computation (i.e., the mind) generates complex mental states.37 We actually that think it might even do 
more than that because a full understanding of how pervasive computational behavior is in the universe 
could change how we relate to ourselves and everything else in the universe.68 That, indeed, would be a 
noble service to what other sciences try to accomplish. 
 
Effectiveness of computational modeling and simulation processes resonates well with how the mind itself 
works because it, too, uses a similar dual methodology (distributive and associative) in its information 
storage and processing.9, 34, 37, 53, 67 A scientist’s mind is a good example of how a mind learns best because 
it utilizes the scientific methodology.6 Computational modeling and simulation process is nothing but the 
scientific methodology itself, except that it is put on turbo because computers speed up the modeling and 
testing process which was illustrated earlier in Fig. 2. So, since the latest learning theories7 as well as the 
new K-12 Framework for next generation science standards42-43 suggest that students learn better if they 
are engaged in activities closely resembling the way scientists think and work, then this suggests, at least 
theoretically, that computational pedagogy have the potential to foster a new way of teaching and learning, 
as documented here in this article. The remaining challenge is to scale this up13 to a national level by 
creating programs, curriculum modules, tools, and databases to help prepare a greater number of teachers 
to implement the science and engineering practices recommended by the national standards.  
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