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Abstract - In this paper a design procedure and successful experimental results obtained from it are
being reported for implementing internally compensated operational amplifiers powered from a single
power supply and with high gain-bandwidth product, good slew-rate, low output impedance and good
drive levels. The procedure was developed for an in-house training course on "analog integrated
circuit design" as an example of using mathematical tools (MathCad) in the design of analog
integrated circuit blocks. The resulting MathCad file became a design automation tool for CMOS
OpAmp Design. It is shown that all opamp specs targeted are met or exceeded by the sample opamp
designed and fabricated using Fairchild Semiconductor's CS80C CMOS process with the W/L ratios
predicted by this tool.

1. Introduction

In the design of electronic circuits, in particular, those falling within the classification "Analog"
lack of design automation tools results in over reliance on engineering intuition and experience,
and time consuming trial and error method to make the circuit "work". The more complex the
circuit, and the less experience and intuition the designer has, the more the time spent becomes
on trial and error runs simulating and re-simulating to find an acceptable solution. In many
instances this is a justified method, because of non-linear and mathematically difficult nature of
the electronic circuit design problems. However, just like in the solution of simultaneous
nonlinear equations, if initial guesses are far away from the true solution, at some point the
designer may face the frustrating and embarrassing situation that the trial and error method stops
improving the performance and the required specs cannot be met. In order to minimize the time
needed for trial and error period initial design results should be as close to the solution as
possible.

In this work, design, fabrication and testing of an internally compensated CMOS operational
amplifier was done complete with its reference bias current source and internal capacitor. The
work was done as an example in the CMOS Analog training class taught by M.G. Guvench at
Fairchild Semiconductor's Product Development Center. A MathCad file developed by the
instructor was used as a design automation tool to calculate W and L parameters of all of the
transistors in the circuit as well as resistors and frequency compensation capacitor in a PMOS
input CMOS operational amplifier circuit.
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2. Design and Fabrication

Design specifications were chosen to create a realistic device whose specifications match or
exceed a competitor's product, namely Texas Instruments' TLV2332 CMOS Operational
Amplifier.[7], and yet generic enough to be employed as an on-chip operational amplifier in the
new analog and mixed-signal products to help with bias and temperature stability, to build active
filters, and other uses. For this second purpose, single and low power supply operation, high
differential gain, low offset voltage and low power consumption become the primary design
goals.

Fairchild Semiconductor's "CS80C" generic CMOS process was chosen to make it compatible
with most mixed-signal designs which do not require the options available in its more expensive
BiCMOS version, "CS80Cbi". In the absence of Poly1-Poly2 capacitor option, the on-chip
frequency compensation capacitor had to be built creatively by employing the Metal1-Metal2
and Poly-Metal1 parasitic capacitances by constructing a Poly-Metal1-Metal2 sandwich structure
which forms a shielded Metal1 capacitor.

Figure 1. Schematic Diagram of the OpAmp

The opamp's circuit diagram is shown in Figure 1. It comprises of three stages, (1) a PMOS input
differential amplifier for low noise, and for a common-mode input range that covers the negative
rail (or ground) for single power supply operation, (2) an NMOS  common-source high gain
middle stage, and (3) an NMOS source-follower output stage for low output impedance and high
current. It employs Miller capacitance frequency compensation technique. However, unlike the
traditional connection (see Refs. [1,2,3]) of the compensation capacitor, CC which goes across
the second stage, in this circuit CC is connected across the input of the second stage and the
output of the third. By including the source-follower output stage as unidirectional buffer feed
forwarding and the zero introduced by feed-forwarding is eliminated. Thus, the source follower
is made to serve both for buffering the output and for internal frequency compensation, as well. P
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The circuit is biased by a 10A current source implemented as a beta-multiplier [2]. This bias
current reference, I1= 10 A is cloned into individual stage bias currents as it passes through the
current mirrors (M8, M5, M7) and  (M4, M10) into all three stages of the operational amplifier to
create tracking bias currents. Since the open-loop gain, the gain-bandwidth product and the
output drive current directly depend on the drain bias currents of the active transistors in the
circuit, this interdependence can be used to program the specs of the opamp via an externally
supplied current if needed.

Equations giving bias and device dependent relationships of CMOS amplifiers can be found in
texts listed in the References section of the paper [1,2,3]. The design procedure should employ
these quantitative relationships and add assumptions, restrictions, limitations and accurately
determined device model parameters so as to be able to calculate the sizes of the devices. For a
given set of power supply voltage, maximum output swing, minimum acceptable slew rate,
voltage gain and gain-bandwidth product values specified, the MathCad program calculates the
dimensions of all of the transistors and size of the compensating capacitor. It also predicts the
common-mode range, common-mode-rejection-ratio and the power supply current of the circuit.
The design equations used are based on the analytical square-law model of the MOSFET ,
similar to the Spice Level2 model. Therefore, the program works seamlessly with Spice level2
model parameters. However, if more accurate Bsim3 models are available instead the model
parameters have to be passed through a translation/interpretation step [2]. Fairchild's CS80C
processed devices are characterized in Bsim3, therefore a second version of the program
including such translation/conversion steps had to be written.

Because of limited space, the MathCad program named "OpAmp-Design.mcd", or its Bsim3
enhanced version are not being included in this paper. However, interested readers may request a
copy from the author (see References [9]).

3.  Test and Measurement Results

The design was put into Spice simulation tests thoroughly. Open loop DC tests were employed to
check for output drive levels, differential gain, input offset voltage and common mode range
under varied temperature  (-40C to +85C) and VDD supply voltage steps ( 2V, 3V, 4V, 5V and
6VDC). Once input offset voltages were ascertained, after proper bias for offset correction is
applied, Spice AC test simulations were run to determine the frequency response, gain and
phase, of the operational amplifiers. With Fairchild's 0.8 gate CS80C process gain bandwidth
products of several MHz were easily reached with the design criterion of 60 phase margin.
Spice transient simulations on the circuit yielded good slew rates (1V/s).

The Spice simulation of the operational amplifier were done on both a PC running Microsim's
version 8 and also on a Sun station running Cadence suite, namely Analog Artist v.4.4.3. It was
determined that the differences in the results were insignificant. After this thorough design
verification of the opamp and also the peripheral circuits designed for biasing it, layout designs
were generated using Fairchild's CS80C process parametrized component library and Cadence
suite. The resulting experimental chip whose name "OpAmp1" reflects the fact that it is a
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candidate to become the first CMOS operational amplifier in Fairchild Products list came out
from the fab recently.  The 20-pin chip contains two current sources, one "beta-multiplier" and
one "Vt-reference" and two test capacitors in addition to the three opamps designed each with
some variation in the design specs. In the experimental data presented below the opamps were
biased by the beta-multiplier circuit built on the same chip by simply connecting opamp bias
terminal to the beta multiplier reference output.

Figure 2. Open-loop DC Transfer Characteristics Measured at VDD= 2V, 3V, 4V, 5V and 6V.
(Note 100 times expansion in x-axis scale, i.e. true x-axis voltage is 100x smaller than shown.)

Figure 2 shows open-loop DC transfer characteristics of OpAmp1 measured under different
VDD supply voltages. Open-loop gain and input offset voltages extracted from the DC transfer
characteristics are 165,100 and -1.27mV for VDD=3VDC and 291,990 and -1.09mV for
VDD=5VDC, respectively. This measurement was done using a HP4145 Semiconductor Device
Analyzer GPIB interfaced to a Pentium PC and driven by ICS software. In order to achieve
10V step resolution mandated by the very high gain of the sample, HP4145's voltage was
applied to the opamp's input after a voltage reduction of 100x via a resistive voltage divider. The
horizontal voltage axis shown in Figure 2 shows HP4145's output, therefore, true voltage applied
to the opamp's input has to be found by dividing it by 100x.

In the measurement of open-loop DC characteristics of high gain opamps, even though internally
frequency compensated, the high differential gain of the amplifier coupled with parasitic
capacitances can easily create conditions of instability and oscillations. A high-pass RC feedback
from the output terminal to the inverting input, while not interfering with DC measurements,
helps to suppress positive feedback and any potential oscillation due to it.

The frequency response characteristics of the operational amplifier are shown above in Figure 3.
Both gain and phase plots are drawn using the same frequency axis. In this case the opamp was
connected as a 100 gain amplifier to avoid parasitic oscillations under open loop high-gain P
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conditions. From the gain plot it is obvious that a single pole dominates the frequency response
over the useful (gainful) range of frequencies (up to about 5MHz) with a constant roll off of -
20dB/decade. The gain curve hits 0 dB at about 2.3 MHz, implying the unity gain frequency (or
GBW product) of the opamp to be as high as 2.3 MHz. At that frequency the phase plot shows a
phase value of about -130, implying the opamp is quite stable with a phase margin of 50. These
measurements were done using a home-made automated frequency measurement system
described in Reference [6]. Scattered appearance of the data points above 5 MHz is due to noise
limitations of the measurement setup.

OpAmp1-3 
Frequency Response
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Figure 3. Frequency Response of OpAmp1-3

Figure  4. Slew Rate Test

Slew rate tests done on the operational amplifier (see Figure 4 ) have shown that the opamp can
deliver about +1.7 V/s  and  -1.4V/s. In Figure 4 the narrow pulses (purple) coinciding with
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the edges of the green (opamp output wave) are actually the time derivative of the opamp output,
therefore the narrow pulses' heights display the slew rate (dV/dt) directly.

Figure 5. Frequency Response of A PMOS Input OpAmp Designed and
Fabricated Using  MOSIS 2 micron N-well technology

4. Conclusions

Measurements done on OpAmp1 chip  showed that we have matched or exceeded TI's TLV 2332
(an arbitrary reference picked at the beginning) in the power supply and temperature ranges of,
2V < VDD < 6V ;  -40C < T < +85C   with  I(VDD) < 300uA,  Voffset ~ 1mV,  Gain > 100,000,
VOH > 3.5V @ VDD=5V  and   VOH > 1.8V @VDD=3V,  Slew Rate >  0.5 V/us and GBW >
0.5MHz @ VDD=5V and GBW > 0.3MHz @VDD=3V.

Experimental verification of the design procedure and the success obtained has resulted in the
utilization of  this operational amplifier as a building block in other designs. Already opamp1
reported here has found its application in implementing VDD and temperature independent VCO
design for PLL applications, band-gap reference and constant current modules.

The same design procedure has also resulted in successful OpAmp designs with both NMOS and
PMOS input versions using MOSIS 2-micron N-well CMOS technology.  This latter technology
is used by the author in his "ELE 444 Analog VLSI Design" course at the University of Southern
Maine for teaching. Figure 5 is displaying the frequency response (both phase and magnitude),
on a recently acquired HP 4194A Gain-Phase Analyser, of a sample PMOS input OpAmp
designed by the author as an example for class use. This OpAmp, as observed from the screen
shot, yielded 63 degree phase margin at 1.26 MHz unity gain frequency.  In the presentation, an
example of the  OpAmp design procedure and calculations will be demonstrated using the
MathCad file developed. (see Reference [9])
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This work would not have been possible without the equipment and funding received from
Sandia Laboratories, National Science Foundation and Fairchild Semiconductor Corporation.
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