
1996 ASEE Annual Conference Proceedings

Session 1626

Computer Graphics and Image Processing Laboratory
for Undergraduate Instruction.

Dr. Dennis Mikkelson
University of Wisconsin-Stout

The ILI funded laboratory and curriculum development project described in this paper
provided UNIX workstations for undergraduate courses in computer graphics and image processing
at the University of Wisconsin-Stout. Prior to this project, the computer graphics course was
taught on 80286 class personal computers using an implementation of the Graphical Kernel System
(GKS) for PASCAL. This project allowed the computer graphics course to move to a C/Unix
environment using the Programmer's Hierarchical Interactive Graphics System (PHIGS). Some
basic software tools were developed to facilitate the use of PHIGS in an instructional setting.
PHIGS in the C/Unix environment has provided an excellent environment for teaching computer
graphics. The image processing course has also benefited greatly from the move to the
workstation environment. An image processing "workbench" to provide a highly interactive
environment for students to develop and test image processing algorithms is under development.

1.0 INTRODUCTION

The Department of Mathematics, Statistics and Computer Science at UW-Stout has offered a
course in computer graphics for the last ten years and has offered a course in image processing
for the last six years. During this period of time the hardware/software environments available
for computer graphics and image processing have evolved rapidly. While the environments have
changed rapidly, a solid understanding of the fundamentals of computer graphics and image
processing remains the primary goal for these courses.

A major upgrade in the hardware/software available for these courses was provided by the
NSF/ILI project described in this paper. The NSF/ILI project provided five DEC 3000 ALPHA/AXP
workstations for the graphics and image processing courses. The required PHIGS software was
provided by Digital Equipment Corporation under their College Software Library Grant program.
This paper gives some considerations for using PHIGS in an introductory computer graphics course
and how the project changed the graphics course. The effect of the project on the image
processing course is described more briefly, since software development for the image processing

P
age 1.113.1

1996 ASEE Annual Conference Proceedings

course is still in progress.

2.0 USING PHIGS IN AN INTRODUCTORY COMPUTER GRAPHICS COURSE

One fundamental decision to be made in the design of a computer graphics course is the
graphics environment to use for student exercises. Some of the many possibilities are listed
below:

 - Develop the entire environment from scratch during the course. That is, using the most
basic graphics operation, PutPixel, implement the graphics output primitives and use the
resulting set of primitives for all student exercises.

 - Use a commonly available set of graphics primitives such as the BGI graphics
available with Borland's compilers on PCs.

 - Use a graphics system designed for teaching graphics such as the Simple Raster
Graphics Package (SRGP), or Simple PHIGS (SPHIGS) system from Foley and Van Dam.

 - Use a standard graphics system such as the Graphical Kernel System (GKS),
Programmer's Hierarchical Graphics System (PHIGS) or OpenGL.

Each of these possibilities has advantages and disadvantages. During the first two years
that the graphics course was offered, it used the first approach. The primary disadvantages to
this approach are the following:

 - Too much of the course is spent developing the graphics primitives, leaving little
time for the students to construct exciting graphics programs.

 - Graphical input capabilities are quite limited. Implementing such input devices as
pop-up choice devices, pop-up valuators and pop-up string input devices would take
much more time than is available in such a course.

 - The time spent developing and using such a "home-grown" graphics system may seem to
be wasted when students leave the course. Specifically, the students will not see
such a system again when they begin their career or graduate school.

In an effort to address these concerns as completely as possible, it was decided to use a
standard graphics system. In order to do this as quickly as possible on the hardware available at
the time, a version of GKS was implemented, carefully following the PASCAL language binding
specification. This was eventually developed to a level 0b GKS implementation. This locally
developed version of GKS provided a quite effective environment for teaching computer graphics.

P
age 1.113.2

1996 ASEE Annual Conference Proceedings

However, as time progressed, the graphics course also had to progress. Specifically,
students frequently ended up working in a C/Unix environment upon graduation, so it would be
beneficial to provide them with more experience in that environment. Also, PHIGS is a newer 3D
standard that provides a better environment for constructing interactive 3D programs. Finally,
entry level UNIX workstations would provide significantly more computational power for
animation and interactive 3D graphics programs than the 80286 based PCs in use at the time. The
equipment provided by this NSF/ILI project made the change to PHIGS in a UNIX/C environment
possible.

 PHIGS provides a powerful environment for developing interactive 3D graphics programs. Some
of the strong points of the PHIGS environment include:

 - Graphical models are defined and stored in "structures" containing graphical
primitives, primitive attributes, modelling transformations, etc. Animation of a
model is then easily accomplished by editing a structure and changing the modelling
transformations.

 - Viewing a graphical model or collection of models is separate from the modelling

process. One or more views, based on such things as the position of an observer in
world coordinates, which direction is up, etc., can be specified and saved in the
workstation state table. A "fly by" sequence of views of a graphical model is then
easily accomplished by redefining the view.

 - A collection of logical input devices including PICK, LOCATOR, CHOICE, STRING and
VALUATOR are available. While not perfect, these logical devices can be used and
programmed in a portable way. In particular, it is not necessary to go outside of
PHIGS and use an underlying window system to get input such as locations, values
selected by a graphical slider and choices from pop-up menus. This is a significant
advantage, since teaching the details of programming in a windowing environment
such as the X-Window System would take too much time in a one semester course on
computer graphics.

 - PHIGS (at least in it's newer form, PHIGS+) provides good support for rendering 3D
primitives together with lighting and shading.

While PHIGS is a powerful graphics programming environment, it is not easy for beginning

graphics programmers to use. Some of the difficulties for beginning graphics programmers come
from the flexibility of PHIGS and resulting complications. Several situations in which this is
troublesome are specifying views, initializing input devices and specifying colors. In these
cases, some simple higher level utilities can isolate the beginning graphics programmer from a
mass of details, and help focus on the graphical concepts.

P
age 1.113.3

1996 ASEE Annual Conference Proceedings

2.1 VIEWING

The PHIGS transformation pipeline involves five coordinate systems as shown below:

Modelling Stage Viewing Stage Workstation Transformation

Modelling -> World -> View -> Normalized -> Device
Coordinates Coordinates Reference Projection Coordinates

Coordinates Coordinates

At the modelling stage, objects are constructed in any convenient coordinate system
(modelling coordinates) and mapped to a common world coordinate system using a composite
modelling transformation. This stage constructs the scene that can then be viewed in different
ways from different positions. The viewing stage maps the scene to a coordinate system centered
at the point the observer is looking at (the View Reference Point) and ultimately maps the scene
to all or part of the 3D unit cube known as Normalized Projection Coordinates (NPC). The mapping
is made in such a way that a parallel projection of the NPC unit cube parallel to the z-axis will
produce the desired view. One or more views of scenes can be constructed in NPC in this way. The
workstation transformation is an aspect ratio preserving transformation that can be thought of
as copying all or part of NPC to the display surface. Typically, the workstation transformation
can be left with its default value which ultimately produces a parallel projection of the NPC unit
cube onto a square window on the workstation display.

P
age 1.113.4

1996 ASEE Annual Conference Proceedings

A "view" in PHIGS is constructed using three PHIGS functions:

peval_view_ori_matrix3(const Ppoint3 *vrp,
const Pvec3 *vpn,
const Pvec3 *vup,
Pint *error_ind,
Pmatrix3 matrix)

This constructs the view orientation matrix that maps World Coordinates to View
Reference Coordinates. The programmer must specify the View Reference Point (the
point where the observer is looking), the View Up Vector (which direction is up for
the observer) and the View Plane Normal (a vector perpendicular to the virtual
viewing screen).

peval_view_map_matrix3(const Pview_map3 *mapping,
Pint *error_ind,
Pmatrix3 matrix)

This constructs the view mapping matrix that maps View Reference Coordinates to
Normalized Projection Coordinates. The programmer must specify front and back
clipping planes, a "window" on the virtual viewing screen, parallel or perspective
projection and the region in Normalized Projection Coordinates that the specified
region in View Reference Coordinates will be mapped to.

pset_view_rep3(Pint wsid,
Pint view_index,
const Pview_rep3 *rep)

This records the view orientation matrix and view mapping matrix together with
clipping information in the workstation state table. The programmer must specify a
clipping region in Normalized Projection Coordinates and flags to indicate which of
the clipping boundaries are to be used.

These functions use parameters constructed from the following data types:

/* enumerated types for projection */
/* types and clipping flags */

typedef enum {
PTYPE_PARAL,
PTYPE_PERSPECT

} Pproj_type;

P
age 1.113.5

1996 ASEE Annual Conference Proceedings

typedef enum {
PIND_NO_CLIP,
PIND_CLIP

} Pclip_ind;

P
age 1.113.6

1996 ASEE Annual Conference Proceedings

/* limit structures for describing */
/* 2D and 3D "boxes" */

typedef struct {
Pfloat x_min;
Pfloat x_max;
Pfloat y_min;
Pfloat y_max;

} Plimit;

typedef struct {
Pfloat x_min;
Pfloat x_max;
Pfloat y_min;
Pfloat y_max;
Pfloat z_min;
Pfloat z_max;

} Plimit3;

/* 3D point and vector structures */
typedef struct {

Pfloat x;
Pfloat y;
Pfloat z;

} Ppoint3;

typedef struct {
Pfloat delta_x;
Pfloat delta_y;
Pfloat delta_z;

} Pvec3;

/* 4X4 matrix type for transformations */
typedef Pfloat Pmatrix3[4][4];

/* special structures for */
/* peval_view_map_matrix3 and pset_view_rep3 */

typedef struct {
Plimit win;
Plimit3 proj_vp;
Pproj_type proj_type;
Ppoint3 proj_ref_point;

P
age 1.113.7

1996 ASEE Annual Conference Proceedings

Pfloat view_plane;
Pfloat back_plane;
Pfloat front_plane;

} Pview_map3;

P
age 1.113.8

1996 ASEE Annual Conference Proceedings

typedef struct {
Pmatrix3 ori_matrix;
Pmatrix3 map_matrix;
Plimit3 clip_limit;
Pclip_ind xy_clip;
Pclip_ind back_clip;
Pclip_ind front_clip;

} Pview_rep3;

While this is a very flexible way to specify views and the programmer has control over all aspects
of the view, this is more flexibility than is typically needed. Beginning graphics programmers
tend to get lost in the details of providing useful values for all of the fields of all of the
structures used.

For most graphics programs this is more flexibility than is needed. A somewhat higher
level easier to use routine with less flexibility saves the beginning PHIGS programmer a lot of
time. In most cases, one would like to specify the view more concisely. That is, it is much more
natural to specify basic information about the observer, type of projection and where the
projected scene is to appear. The other parameters required by the above PHIGS functions can then
either be calculated from the specified information, or provided with usable default values.
This is easily accomplished by constructing a simple utility routine such as:

void BuildView(Pint wsid,
Pint view_index,
Ppoint3 vrp,
Ppoint3 cop,
Pvec3 vuv,
Pfloat view_angle,
Pproj_type projection_type,
Plimit3 NPC_viewport);

The first two input parameters are the workstation ID and view_index being set. In addition,
information about the observer is provided by the parameters vrp, cop and vuv specifying the View
Reference Point, View Up Vector, and the Center of Projection (the position of the observer). The
view_angle parameter specifies the angle subtended by the virtual screen from the point of view
of the observer. The virtual screen is assumed to be square and centered around the View
Reference Point. The projection_type parameter selects a parallel or perspective projection.
Finally, the NPC_viewport selects where the transformed scene will appear in Normalized
Projection Coordinates.

The BuildView function described above is quite simple to use for beginning graphics

P
age 1.113.9

1996 ASEE Annual Conference Proceedings

programmers. In addition it makes it very easy to carry out common operations. A "fly by"
animation sequence can be easily accomplished merely by repeatedly calling BuildView passing in
different Center of Projection points along the observer's path and updating the workstation.
Similarly, zooming in/out can be accomplished by changing the view_angle. The virtual observer
can look at different positions merely by changing the View Reference Point.

P
age 1.113.10

1996 ASEE Annual Conference Proceedings

2.2 INPUT DEVICES

Similar difficulties arise when dealing with the logical input devices. While all of the
devices can be used quite easily in their default states, some must be initialized to be used in a
meaningful way. For example, in order to be useful, the pop-up choice device must be initialized
with a list of character strings representing menu choices. To be really useful, pop-up
valuators need to have minimum and maximum values and labels specified appropriately. Finally,
in-order to use different prompt and echo types such as rubber-band lines, rubber-band boxes and
cross-hair cursors with a locator device, it too must be initialized.

Unfortunately, initializing the input devices is often quite cumbersome. The device must
first be set to request mode, initialized and then set to the desired mode (sample, request or
event). The most troublesome part of this is the initialization itself. The first problem one
encounters is that the position of the input device must be specified in device coordinates. The
particular device coordinates used in an implementation can vary, so it is typically necessary
first to use an inquire function to find out the range of device coordinates. The initialization
functions have some reasonably straightforward parameters, followed by a data record that
contains many of the low level details for the initialization. These data records can be very
elaborate. For example, the data record for initializing the locator is a C struct that takes
more than a page to list. This structure uses other structures that take another page to list. It
is very difficult to work through these structures and initialize the device from scratch without
a detailed knowledge of PHIGS.

While much of the complexity may be justified on the basis of flexibility (for example, the
rubber-band box for the locator may be hollow or solid with different fill colors and patterns)
this flexibility comes at a cost and is much more than is needed for an introductory graphics
class. A higher level routine such as:

void InitLocatorDevice3(Pint wsid,
Pint device,
Pop_mode mode,
Pint loc_pet,
Pint view_ind,
Ppoint3 init_pos)

can be provided by the instructor. This allows the student to specify the crucial information
needed to initialize the locator and uses reasonable defaults for the other values needed. Here
wsid is the workstation ID, device specifies the device number to use (typically 1). The input
mode, request, sample or event as well as the prompt and echo type (rubber-band line, cross-hair,
etc.) are specified. Finally, the initial position for the locator is specified by the 3D world
coordinate point init_pos and the viewing transformation that should be used when PHIGS

P
age 1.113.11

1996 ASEE Annual Conference Proceedings

transforms it to the display surface.

Similar routines have been implemented and used for the other input devices. These
routines allow the beginning graphics programmer to easily get graphical input for interactive
3D graphics programs.

2.3 COLORS

As a final example of complexity in PHIGS that can be easily avoided with simple utility
routines, consider the problem of setting colors in PHIGS. PHIGS allows colors to be specified
using an index into a color table, or by specifying components in one of several color spaces,
rgb, hls, etc. This leads to approximately a page of C structures to work through to specify a
color. The resulting code directly using the PHIGS types is not actually that cumbersome. For
example, the statements below set the interior color for subsequent fill area primitives:

 Pgcolor color;

 color.colr_type = PCOLR_RGB;
 color.colr_value.colr_rep.rgb.red = 0.5;
 color.colr_value.colr_rep.rgb.green = 0.5;
 color.colr_value.colr_rep.rgb.blue = 0.5;
 pset_int_colr(&color);

However, it is convenient to hide some of these details in a higher level routine to construct a
Pgcolor structure in a specific color space, such as RGB.

3.0 EFFECT OF PROJECT ON GRAPHICS COURSE

With a collection of utility routines to hide some of the low level details of PHIGS, PHIGS
becomes an excellent environment for teaching the 3D aspects of an introductory computer
graphics course. In order to get a good understanding of the basic concepts in computer graphics
it is still necessary to do some introductory exercises using the most basic graphics primitive,
PutPixel. Currently three introductory programming exercises are given. In these exercises the
student fills in values in a 2D frame buffer that is displayed by an X-Windows/Motif program
provided by the instructor. These exercises are assigned very early in the course as the
corresponding 2D graphics concepts are introduced.

 Introductory 2D Programming exercises:

 1. Draw a fractal, eg. the Mandelbrot set. This gives the student some initial
experience with mapping points from the 2D plane to the corresponding row and column

P
age 1.113.12

1996 ASEE Annual Conference Proceedings

in a simulated raster display.

 2. Implement some basic 2D primitives, such as lines and circles using Bresenham's
algorithms and draw a picture using them on the simulated raster display.

 3. Implement the basic 2D transformations and use them together with the 2D primitives
from #2 to produce a simple animation.

At this point the students are generally ready for PHIGS. As PHIGS and 3D graphics concepts are
being introduced, several very simple PHIGS exercises are assigned to gain some initial
familiarity with PHIGS. Eventually, as the corresponding concepts are covered in class, more
involved examples and exercises are given. Finally, the students design and implement a larger
interactive 3D graphics program in groups of two or three students.

 PHIGS Programming exercises:

 4. Using PHIGS 2D primitives, draw a picture.

 5. Draw four simultaneous views (top, front, side and oblique) of a 3D wire frame
aircraft.

 6. Implement a menu driven program to interact with a simple scene consisting of an
object over a grid. Operations include rotating the object about axes parallel to
the x, y or z axis using valuators, zooming in or out using a valuator and changing
the view reference point and center of projection using the locator device.

 7. Design and implement an 3D graphics program allowing the user to interact with
objects in a scene. Solid objects are rendered as solids using lighting and shading.
The particular project is chosen by the group of students, with instructor
suggestions and approval.

The projects chosen, designed and implemented by the students have been quite varied and many of
them have had excellent results. Some of the student projects done during the last two years
include:

 - Display a lighted/shaded view of a mountainous region. Allow the user to change the
point of view. Change the position of the sun according to the time of day. Display
names of lakes when the user picks a lake with the pointer.

 - Simulate the Tacoma Narrows bridge collapse. Allow the user to fly over the bridge
along various paths.

P
age 1.113.13

1996 ASEE Annual Conference Proceedings

 - Program the motions of an acrobat. (The acrobat model is not physically based, but

by careful selection of motions fairly realistic looking movement can be
generated.) The acrobat's path is determined by selecting several points through
which the acrobat will pass. Various motions such as squat, tuck, rotate and twist
can be specified as occurring at or between points.

 - Model the interior of a building. Allow the user to walk through the building, look
in various directions, open doors and turn lights on/off by pressing a light switch
on a wall.

4.0 EFFECT OF PROJECT ON IMAGE PROCESSING COURSE

Prior to this project, the image processing course was restricted to very small (128 X 128)
gray-scale images since they were the largest that could be efficiently dealt with on an 80286
class PC with only 1 Meg of RAM. Even with such small images using Fourier Transforms to
demonstrate frequency domain processing took several minutes for each operation.

The equipment provided by the project changed this significantly. The class now routinely
deals with a variety of image sizes from 128x128 through 1024x1024 and occasionally larger. Some
of the images now used include the images from the Voyager missions, distributed on CD by the
National Space Sciences Data Center. Additional images include remote sensing images, a large
chest x-ray and images of students scanned in locally. The computational power available on the
workstations has opened up a world of possibilities.

Some software has been developed to support the image processing course on the
workstations. The software includes a simple image viewer, MImage, that supports zooming to see
the effect of processing algorithms on individual pixels, pixel value read-back for debugging
and analysis purposes, and a histogram display. A second program FFTDemo displays four images
simultaneously: an original image, its 2D Fourier transform, a filtered version of its 2D Fourier
transform and the inverse transform of the filtered version. The students are required to
implement the 2D FFT using 1D FFTs and implement various standard filters: ideal high pass and low
pass, Butterworth high pass and low pass and notch filters. When the student has implemented
these portions, the FFTDemo program allows the student to experiment with the filters on
different images, interactively selecting the filter and cutoff frequency.

A more comprehensive image processing workbench that will allow the student to
interactively control various parameters to their algorithms and display before and after
results simultaneously is being developed.

5.0 OTHER USES IN DEPARTMENT

P
age 1.113.14

1996 ASEE Annual Conference Proceedings

The equipment purchased by this project provided the first access to UNIX systems for

courses in our department. Consequently, in addition to using the workstations for the graphics
and image processing courses, they have also been used by our department in the following ways:

 - The Systems Programming course was run on the workstations for the last two years.

 - A topics course on X/Motif programming was offered during the spring semester of the
1994-95 academic year.

 - Several groups of students have done projects on the workstations for their Math
Models class.

 - Some work on a faculty and student project with the Intense Pulsed Neutron Source of
Argonne National Laboratory was done on the workstations.

The five workstations have been able to meet these additional needs within our department
for several reasons. First, since they are connected to the campus network, they are accessible
from virtually anywhere. Consequently, students not requiring graphics could work on their
programs remotely. Also, LINUX has been installed on several PCs in the department. While the
LINUX PCs do not have an implementation of PHIGS available, they do make excellent X-Terminals
and expand the number of X capable machines.

6.0 CONCLUSIONS

While PHIGS is a powerful and sometimes complex 3D graphics programming system, its use in
an introductory graphics class is practical given some higher level convenience routines to hide
distracting lower level details. The use of PHIGS allows the student to construct more exciting
graphics programs than would be possible using a lower level system.

Overall, this project has been very beneficial. It has allowed us to update the computer
graphics and image processing courses. By facilitating the construction of more exciting
graphics programs and the use of larger data sets and more significant images it has stimulated
student interest. The PHIGS utilities and image processing "workbench" are freely available via
anonymous FTP from dmikk.mscs.uwstout.edu.

7.0 ACKNOWLEDGEMENT

The author gratefully acknowledges the support of following organizations and programs:

The National Science Foundation provided funding for the purchase of five UNIX

P
age 1.113.15

1996 ASEE Annual Conference Proceedings

workstations through Instrumentation and Laboratory Improvement Grant No.
DUE-9351943.
Digital Equipment Corporation provided PHIGS and other software through the College
Software Library Grant program.

The University of Wisconsin - Stout provided matching funds and the academic
environment in which the work was performed.

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the above named organizations.

[1] Computer Graphics-Programmer's Hierarchical Interactive Graphics System (PHIGS)
Functional Description, ANSI X3.144-1988, American National Standards Institute,
New York, 1988

[2] Computer Graphics: Principles and Practice, 2nd Ed., J. Foley, A. van Dam, S.
Feiner, J. Hughes, Addison-Wesley, 1990

DENNIS MIKKELSON is a professor in the Department of Mathematics, Statistics and Computer
Science at the University of Wisconsin-Stout. He has also been involved in developing software
for visualizing neutron diffraction data at the Intense Pulsed Neutron Source Division of
Argonne National Laboratory. His interests include scientific visualization, computer graphics
and image processing.

P
age 1.113.16

