Computer Projects Designed to Enhance Student’s
Learning Experience with Public-Key Cryptography

Abstract

Cryptography plays a fundamental role in safeguarding today’s information infrastructure.
Public-key cryptography is a cryptographic approach utilized by many cryptographic algorithms
and cryptosystems. In contrast to symmetric key systems, it eliminates the need to share a key
secretly. This distinguishing characteristic makes it a widely and successfully used technology
around the world. It is the foundation for public-key infrastructure (PKI) and Internet standards
such as Transport Layer Security (TLS) and Pretty Good Privacy (PGP). A thorough
understanding of public-key cryptography is indispensable to not only engineering and science
students, but also engineering technology students in the general fields of computing,
networking, communications and information technology.

This paper describes an approach to teaching public-key cryptography to electrical and computer
engineering technology students utilizing three computer projects designed to provide hands-on
experience with public-key cryptography. These projects introduce students JAVA Biglnteger
class and its built-in methods and open source cryptography libraries such as crypto++ allowing
students develop public-key cryptographic applications. Instead of using a small modulus for
solely instructional demonstration, these projects allow student’s natural curiosity to be
stimulated and result in a deeper understanding of real world applications. To date, feedback
from students has been very positive.

Introduction

With the increasing dependence of industry, businesses, education and society on computing and
digital communications, the need for providing security through effective and efficient
cryptographic algorithms has became more important than ever. Cryptography is the science of
using mathematics to encrypt and decrypt data. Besides its traditional role of ensuring
confidentiality, it has been utilized to ensure integrity, authentication, and non-repudiation which
are the basic requirements in today’s information systems or data communications. It is
imperative to teach cryptography to students in the general areas of computing, information,
networking and data communications. Recently, educators have also confirmed the importance
of teaching encryption basics to general students .

Public-key cryptography is one of the major topics in our computer security course. Thought
students seem to be very interested in this topic, teaching public-key cryptography is somewhat
challenging since understanding the theory requires a high level of mathematical knowledge and
skills. This particularly presents a challenge to engineering technology students. This paper
shares our experience of teaching engineering technology students public-key cryptography. The
paper is organized as follows. First, it briefly introduces the public-key cryptography basics and
describes our approach to teach public-key cryptography. Then, it describes the computer
projects we developed to enhance the student’s learning experience. Finally, it illustrates the

T°G0£°ST abed

sample projects accomplished by students in our computer security class taught last year, and
presents our conclusion.

Basic Concepts and Teaching Approach

Prior to teaching public-key cryptography, the authors introduce basic security requirements
within the context of application to application communications over the Internet. Four security
requirements concepts of confidentiality, integrity, authentication and non-repudiation are
introduced to students. In addition, concrete examples are used so that students are aware that
each ensures one aspect of information security---authentication is the process of confirming or
establishing something (or someone) as authentic, confidentiality ensures privacy so that no one
else except the intended receiver can read the message. Integrity ensures the receiver that the
received message has not been altered in any way from the original and non-repudiation is a
mechanism to prove that the sender really sent this message. Upon the completion of this
learning module, students should be able to identify and comprehend these requirements.

We start to teach students cryptography with a traditional cryptography (i.e., one-time pad,
Caesar cipher and Wheatstone-Playfair cipher” etc.,) where both the sender and receiver of a
message know and use the same secret key; the sender uses the secret key to encrypt the
message, and the receiver uses the same secret key to decrypt the message. This method is also
known as secret key or symmetric cryptography. Students are guided to discuss how to use
cryptographic schemes to achieve the security requirements mentioned above and identify the
problem of how to communicate the secret key in an open environment such as Internet
applications and E-business. A packet sniffer (i.e., Wireshark®) is utilized to demonstrate that
confidentiality can be compromised if messages are exchanged without encryption. This
naturally leads to the discussion of an asymmetric cryptography and its applications. The theory
of public-key algorithms is beyond the scope the course. Consequently, only a brief outline of
the operation of public-key algorithms will be given. The emphasis is to show students that it
works, and involve them in developing public-key cryptosystem applications.

As a relatively new cryptographic approach, public-key cryptography’s distinguishing
characteristic is the use of a pair of keys including a secret private key and a published public-
key which, unlike the symmetric key algorithms, does not require a secure initial exchange of
secret key between the sender and receiver. The RSA cryptosystem, named after its inventors R.
Rivest, A. Shamir, and L. Adleman, is the most widely used public-key cryptosystem. RSA
cryptosystem is used as an example to teach public-key cryptography.

As illustrated in Figure 1, public-key algorithms use a pair of keys. One key is used for
encryption and the other is used for decryption. The keys are chosen so that if one is used to
encrypt a message the other must be used to decrypt and vice versa. They are chosen in such a
way that even if an attacker knows one of them, finding the other is computationally infeasible
due to the intractability of the integer factorization problem. The general idea of ensuring
confidentiality is to use a public-key, which can be made available to the public or distributed in
an open environment, to encrypt the message, and the cipher text can only be decrypted by the
corresponding private key.

2'S0£°ST abed

Plaintext O’I Ciphertext Plaintext ‘:
b - > E 2 »

Sender Encrypt Decrypt Recipient

Differant keys are used to
encrypt and decrypt message

L N

Recipient’s Recipient’s
Public Private
Key Key

Figure 1: Illustration of Public-key Encryption and Decryption*
Students have always been curious to this feature. At this point, we use an instructional example,

as listed in Table 1, to involve students into a public-key cryptosystem including key generation,
encryption and decryption.

Table 1: Public-key Algorithm

Step Description Example
Step 1 | Randomly select two prime numbers, denoted by P and Q ie., P=11, Q=17
Step 2 | Compute the modulus M=P*Q, M is made publicly available M=11*17=187
Step 3 | Compute the Euler totient as T= (P-1)* (Q-1) T=(11-1)*(17-1)=160
Step 4 | Randomly select a public-key, e, such that e=13
(1) e<T;

(2) e and T are relative prime numbers

Step 5 | Find a “matched” private key d such that ed — 1 can be evenly | d =37

divided by T (13*37-1=480, 480/160=3)
Step 6 | To encrypt a plaintext, N, raise it to the eth power modulo M c=10"mod 187 =164
Step 7 | To decrypt a cipher text, C, raise C to the dth power modulo M N =164>" mod 187=10
Step 8 | What happens if the same key is used to decrypt the cipher text? | N' =164" mod 187=109
Step 9 | Encryption with private key 7" mod 187=28
Step 10 | Decryption with public key 28 mod 187=7

Step 11 | What happens if the same key is used to decrypt the cipher text? | 283 mod 187=129

Steps 1 through 5 outline the key generation process. Steps 6 through 8 illustrate encryption
process with public-key and decryption process with private-key or public-key. Steps 9 through
11 demonstrate encryption with private key and decryption with public-key or private key.

€'G0e'GT abed

For encryption process, the cipher text, ¢, is obtained by N°* mod M where N is the numerical
plaintext and mod denotes modulo operation, while for decryption process, the plaintext is

recovered by ¢! mod M . These exercises show students how RSA works and verify that ONLY
the other key can be used to decrypt the cipher text.

Computer Projects to Enhance Student’s Learning Experience

Three computer project assignments have been created to enhance student’s learning experience.
The first one is to have students understand which key to use for confidentiality and digital
signature, respectively. The second project is to implement a public-key cryptosystem with
modulus length of 768 or 1024 bits. The third project is to developed public-key cryptosystem
applications using open source library crypto++.

Project 1: Which Key to Use?

Once students complete the exercise illustrated in Table 1. We teach them the principle of digital
signature®, the electrical world’s counterpart to a handwriting signature. It always occurs to us
that students need exercises to gain hands-on experience with which key and whose key should
be used for confidentiality or digital signature. Pendegraft’ has developed an inexpensive device
to show it to students and confirmed that it is a common confusion to students at this point. In
our laboratory class, the instructor creates a private key, public-key for a student upon his or her
request, or students can generate their own public-keys and private keys by themselves. Each
student’s public-key is published on the blackboard. A letter is converted to an integer number
by its alphabet order. Each student needs to team with at least another one to practice using his or
her private key and his or her partner’s public-key to achieve confidentiality or perform digital
signature.

By using the partner’s public-key, each student practices encrypting and sending cipher text to
the partner. Meanwhile, each student also practices decrypting the received cipher text using his
own private key. Every cipher text with the key used for encryption is published on the
blackboard.

The rest of this project is to let every student simply encrypt his or her own name using his or her
own private key. This exercise basically shows them a simplified (without hashing) “digital
signature” technique. By performing this exercise, students understand authentication, integrity
and non-repudiation can be achieved by using digital signature, and understand the logic behind
digital signature---- the private key is secretly kept by its owner only, and the signature is
verifiable since the matched public-key can be published.

It may take a while for students to be skillful enough to pick up the right key (whose key and
which key) for confidentiality or digital signature. Once they have practiced a few rounds, it
seems that they all understand the concepts quite well.

¥'G0€'GT abed

Project 2: Implementing a 768 or 1024-Bit Public-Key Cryptosystem

This computer project requires students develop a JAVA program for a 768 or 1024- bit modulus
public-key cryptosystem. They are required to:

(1) Implement the key generation algorithm, i.e., steps 1 through 5 as illustrated in Table 1;

(2) Accept a plain message from the key board and print it out;

(3) Convert the message into integer numbers at the student’s choice and print the numbers
out;

(4) Encrypt the numbers from (3) using the public-key generated in (1) and print the result
out;

(5) Decrypt the cipher text from (4) using the private key and print the decrypted message
out;

(6) Compare results from (5) and (2).

Without using any existing resources, it will be very challenging for engineering technology
students to complete this weekly project. However, Java offers a class named BigInteger® which
provides immutable arbitrary-precision integers. All operations behave as if Biglntegers were
represented in two's-complement notation (like Java's primitive integer types). Biglnteger
provides analogues to all of Java's primitive integer operators, and all relevant methods from
java.lang.Math. Additionally, BigInteger provides operations for modular arithmetic, GCD
calculation, primality testing, prime generation, bit manipulation, and a few other miscellaneous
operations. JAVA Biglnteger class together with its built-in methods makes the implementation
of RSA public-key algorithms fairly straightforward and fast. The following examples and
demos are introduced to students so that they can utilize these resources to complete the project.

To generate a random prime number p, it simply needs to add the following codes
SecureRandom randomNumber = new SecureRandom();

Biglnteger p = new Biglnteger(modulusbits / 2, 100, randomNumber)

where modulusbits are the number of bits for the modulus. It can be either 768 or 1024,
depending on the student’s choice.

Biglnteger class has built-in methods including add, subtract, multiply and divide. Given the two
random number p, q and theModulus, the calculation of the modulus can be done by:

theModulus = p.multiply(q)
and the Euler Totient can be calculated by
EulerTotient= p.subtract(p.ONE).multiply(q.subtract(q.ONE))

A public-key can be randomly generated by the method introduced above and the following
conditions have to be tested prior to acceptance:

theModulus.compareTo(publicKey) == 1
publicKey.gcd(EulerTotient)==

G'G0E'GT abed

Note that the first statement ensures the public-key selected is less than the modulus and the
second statement ensures the selected public-key and Euler Totient are relatively prime numbers.

Once a public-key has been found, the next step is to find the corresponding private key which
can be obtained by the following code:

privateKey = publicKey.modInverse(EulerTotient)

which basically finds a Biglnteger privateKey such that (privateKey*publicKey) mod
(EulerTotient) = 1.

Most of our students have basic JAVA programming experience, once they are familiar with the
statements above; they are capable to complete the programming assignment. A sample work is
shown in next section.

Project 3: Application of Crypto++

Crypto++ Library’ authored by Wei Dai (http://weidai.com), is a free C++ class library of
cryptographic schemes. Currently the library contains most of the symmetric cryptographic
algorithms (i.e., AES and other block ciphers) and asymmetric cryptographic schemes such as
RSA, DSA and key exchange protocols’. The library is a powerful and elegant tool for
performing complex cryptography. It uses advanced C++ features such as templates, multiple
inheritance, and exceptions to achieve that power and elegance. For people who are familiar with
C++, the library will appear intuitive and easy to use. Others may need to view it as a learning
opportunity.

Sufficient information regarding how to use the library is available online. There are four sources
of documentation for Crypto++. They are the source code, the Crypto++ Usenet group, the
Crypto++ FAQ, and the Crypto++ Wiki'™. In addition, a user guide and help file authored by
Dennis Bider is also available’.

In the laboratory class, students are guided to use these recourses. Students need to download the
open source code from cryptopp.com, and build a static library and the instructors show them
how to incorporate the library into the Microsoft Visual C++ (MSVC) integrated development
environment (IDE) ®. To integrate crypto++ library into MSVC IDE, the compiled library should
be moved to the location of the header and source files, and then the location of the header files,
source files, and libraries should be added to the VC++ Environment, and finally the location of
the header files, source files, and libraries should be added to MSVC Project.

The sample project (called Cryptest) provided with the source code package demonstrates both
symmetric and public-key library functions. After reviewing those demonstrations, students are
asked to modify the source codes and build a digital signature application including key
generation process, encryption, signing a document and then verify the document.

9'G0E'GT abed

Student’s Project Samples

We observed that students were very interested in these exercises. These three projects ranging
from concept demonstration to practical application development meet the diverse needs of
students and have them gain hands-on experience with mathematically challenging
cryptography. This experience is helpful to the later study of public-key infrastructure topic as
well.

Instead of using small modulus for solely instructional demonstration, the second project allows
student’s natural curiosity to be stimulated resulting in a deeper understanding of real world
applications. Since the instructors have provided the necessary information of Biglnteger and its
build-in methods and how to use those methods for public-key cryptography, students are able to
develop public-key cryptosystem applications. Figure 2 is one of the projects completed by
students in the computer security class. In addition to implementing key generation, encryption
and decryption, the students have developed a GUI together with RSA cracking demonstration.

Create Keys rEncode rDecode rCrackRSA |

Modulus Bits: 1024

Step 1: Randomly select two large prime numbers P and Q. Generate P and Q

P: 7G9172509793804045914083139248222559457 71166584401 4691272958547099481 28975956073292878242431 4440685 2482690757904351857 7656209033257 3995080
2B90705089601857

4 |

Qr TOF28931990609807857108982105341 3907 3168763080254 9487831 7980697 14283652710881 3985246332255145580925501 67823411 77931467 0442264072551 2478922
0355691737022810

me

Step 2: Compute the modulus, M=P * 0. Compute modulus

M: |56572568444558545205257343276933142438603072114347759858007121081 796227881967 34449691 7063208131944 2751 3928750986683760324826581 3953 3605687 468
AT104521 6888998 2607 2677030330504 7241 233462749021 0626767 0850663982 20182891 25615310051 088275358007 66929720147495422172046302158494840952943851034
G4930075217224704193960553

Step 3: Computer the Euler totient, T = (P-1)*(Q-1)

Compute Euler Totient

T: |56572562444558545205257343276533142438603072114347759855607121081 796227891967 34449681 7906320813194427513928750986683780324826581 35533665687
AB2A110482162BRB47554543080031 31 8206087 220374225858 344 30521 TR48001 74180227 24155044717 2301 66361 24717 29544722514284 205441 BR2772801 6284240502845
ATTA2EE411530810307 8307367335808

[IINED

Step 4: Randomly choose a public key E < M & ged(E,T) =1 Choose Public Key

E: [13074465430104266379634462173486259909377066524447971671251 741561165481 00744326541255979060095647325106601 3736227 74633422317001311147534372
31159957 99026469549026065094 581372327 446686141725204540323604860388462015177124380558635972324601 615085291 5233657598 259767 29693404 5662979
42321990559340224625496185314873

[l

Step 5: Compute a private key D to satisfy (E*D) mod T=1 Compute Private Key

=2

G040298727TA08T 066561 84 7ES6264018TAEE3E0500986581 1789658950387 50907206187 407BE386301 020627727 25908198201 31001 82898367 5202561 6365023016384559
BETAB1E11 31282230 Fr2737 2543962483397 48543045591 0097 02253086651 33151 065140541 882746544T852412747 24347 220065607 3008373471 5693497995395381611 31
4340995604422201851741 746953

[Tl

Figure 2: A Student’s Project

To date, feedbacks from students regarding computer projects 1 and 2 have been very positive.
Meanwhile, we found that a few students struggled with project 3. This may be due to the lack of
sufficient C++ programming skills or the lack of necessary detailed examples of library

/'S0E°ST abed

functions. Our future work focuses on developing a good set of sample programs using crypto++

library so that students can modify from those example programs and extend to new applications.

Conclusion

Today, public-key cryptography is indispensable to ensure both confidentiality and integrity in
numerous communication, networking and Internet applications. A thorough understanding of
public-key cryptography is essential for engineering and technology professionals. Public-key
cryptography such as RSA is mathematically challenging to engineering technology students, the
concepts and its application can be taught via carefully designed computer projects. Three
computer exercises have been developed to enhance student’s learning experience. Feedback
from students, teaching evaluation and student’s learning outcomes show its effectiveness.

Bibliography

1. A. Temkin, "Teaching Cryptography to Continuing Education Students", IFIP International Federation for
Information Processing. Vol. 237. Fifth World Conference on Information Security Education 2007.

2. Matth Bishop, Introduction to Computer Security, Addison-Wesley, 2005.

WireShark, Online resource, http://www.wireshark.org.

4. Online resource, Public-key Encryption and Digital Signatures, http://msdn.microsoft.com/en-
us/library/aa480610.aspx.

5. N. Pendegraft , “An Inexpensive Device for Teaching Public-key Encryption”, Journal of Information Systems
Education, Vol. 20, No.3, 2009.

6. Java Biglnteger Class, http://java.sun.com/j2se/1.4.2/docs/api/java/math/Biginteger.html.

7. Online resource at http://www.cryptopp.com.

8. G. Lancaster, J. Walton, “Compiling and Integrating Crypto++ into the Microsoft Visual C++ Environment”,
http://www.codeproject.com/KB/tips/CryptoPPIntegration.aspx

9. Crypto++ User Guide, http://www.bitvise.com/users-guide.html.

W

8'G0E'GT abed

