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Validation of a Measure of Design Framing Agency 

Abstract 

In this research paper, we investigate the structure and validity of survey data related to students’ 

framing agency. In order to promote increased opportunities for students to engage in and learn 

to frame design problems that are innovative and empathetic, there is a need for instruments that 

can provide information about student progress and the quality of learning experiences. This is a 

complex problem because, compared to problem solving, design problem framing is less studied 

and harder to predict due to the higher levels of student agency involved. To address this issue, 

we developed a survey to measure framing agency, which is defined as opportunities to frame 

and reframe design problems and learn in the process. This study extends past research which 

focused on the construct of framing agency and developing an instrument to measure it following 

best practices in survey design, including using exploratory factor analysis of pilot data, which 

recovered six factors related to shared and individual consequentiality, problem structure and 

constrainedness, and learning. However, as a pilot, the sample limited generalizability; the 

current study addresses this limitation. We used a national cohort that included multiple 

engineering disciplines (biomedical, mechanical, chemical, electrical, computer, aerospace), 

types of formal design projects (e.g., first-year, design-spine, senior capstone) and institution 

types, including private religious; Hispanic-serving; public land-grant; and research flagship 

institutions (N=449). We report sample characteristics and used confirmatory factor analysis 

(CFA) to provide validity evidence, reporting the chi-square and standardized root mean square 

residual as estimates of fit. We report Cronbach’s alpha as a measure of internal consistency.  

We found that overall, the CFA aligned with the prior exploratory results, in this case, recovering 

four factors, measured on a seven-point scale: shared consequentiality (the extent to which the 

student identifies that their understanding of the problem changed as result of a teammate’s 

decision, M = 6.15; SD = 1.13); learning as consequentiality (the extent to which the student 

identifies learning as the result of decisions, M = 5.88; SD = 0.98); constrainedness (the extent to 

which the student reports the ability to make decisions despite design constraints, M = 4.95; SD 

= 1.49); and shared tentativeness (the extent to which the student identifies uncertainty about the 

problem and solution, M = 4.02; SD = 1.76). This suggests the survey can provide valid data for 

instructional decisions and further research into how students learn to frame engineering design 

problems and what role framing plays in their professional formation.  

Introduction and Research Purpose 

Developing the ability to design solutions to problems is key for engineering students learning to 

be professionals [1]. Many design experiences happen in the first-year and senior year courses, 

though increasingly they are being incorporated into courses along the entire program [2]–[4]. 

Instructors must make many decisions when developing design challenges, not all of which are 

clear. For instance, in senior capstone design, faculty commonly contend with ABET 

requirements, ethics, project management, appropriate scope, appropriate technical content, and 

team dynamics [5]–[7]. With all of these challenges, it is not surprising that design education 

does not always result in students learning to direct design practices, especially related to design 

problem framing and innovation [5]. 



In order to promote increased opportunities for students to engage in and learn to frame design 

problems and solve them in ways that are innovative and empathetic, there is a need for 

instruments that can provide information about student experiences related to design learning 

experiences. This is a complex problem because, compared to problem solving, design problem 

framing is less studied and harder to measure [8]. To address this issue, we developed a survey to 

measure framing agency, which is defined as opportunities to frame and reframe design 

problems in ways that are consequential, and to learn in the process [9], [10]. Past work suggests 

such a survey can, despite the comparative limited progress on measuring of problem framing, 

provide efficient and meaningful information about student perceptions of their roles as 

designers in relation to specific design learning experiences [11], [12]. In the current study, we 

aimed to investigate the validity of data from such a measure for making instructional decisions 

or contributing to research progress on problem framing. Using a national cohort of students in 

engineering design courses, we answer the following research question: 

• Do the items in the Framing Agency Survey align to subconstructs of shared and 

individual consequentiality, problem structure and constrainedness, and learning?  

Theoretical Framework 

We ground the survey constructs in an understanding of the role that framing agency plays in the 

design process and established constructs that provide insight into agency. We consider the ways 

that agency can be individual or shared between designers and others, how designers remain 

open to many ways to frame and solve problems, how they make decisions because of and 

despite constraints, how consequential those decisions are, and how they learn in this process. 

Shared Framing Agency 

Designers have agency, in that they are empowered to make decisions related not only to the 

designed solution, but about the problem itself [13]. Framing agency is agency related to the 

focus or frame of the decisions about how to define and bound the problem [14]. Framing agency 

can be shared in several ways. Designers might consider the input of stakeholders, collaborators, 

or even material constraints. This takes multiple forms, including disagreeing, collaborating, and 

considering other viewpoints [15]. For instance, designers may come together with differing 

ideas about design solutions and discuss together the implications of each design until they either 

choose one of those solutions or develop a new solution that considers the different perspectives.  

Shared agency can be impacted by power dynamics, such as the relationship between student and 

instructor. Because they have experienced low agency in other classes [16], students commonly 

expect to have low agency design learning experiences. This can shape how they engage in a 

design project, contributing to the overall challenges instructors face in supporting students to 

develop professional engineering practices.  

Constrainedness  

Constraint is endemic to engineering design problems [17]. Design problems are not fully 

constrained, but constraints arise from the sociotechnical context [18]. Overly constrained design 

problems that limit the designer’s ability to make decisions would therefore reduce their agency 



[19]. On the other hand, unconstrained design projects are not authentic, as context provides 

inherent constrains, and provokes greater creativity [20].  

We borrow a term—opportunity structure—from sociology to characterize the possible decision 

space and the consequentiality of those decisions [21] in order to provide an understanding of the 

possible frames that designers might take up. However, in the context of learning, student 

perceptions of their ability to make decisions impact their understanding of the constrainedness 

of the problem [22]. This means that studying students’ perceptions of constraints is a vital part 

of understanding how newcomer designers contend with the opportunity structure of design 

problems.  

Tentativeness 

Because design problems are ill-structured [23]—meaning that they have many possible 

solutions and paths towards those solutions—the design problem and solution co-evolve [24]. 

Designers thus remain tentative in their design work [25]. Navigating the dynamic relationship 

between problem and solution [24], they may explore many possible solutions and solution paths 

[26]. Thus, they remain tentative in their assessment of the problem and report less certainty in 

their solutions before committing to a particular design solution. In this way, designers exercise 

their framing agency as they evaluate the implications of various framings and solutions for 

stakeholders and systems.  

Consequentiality and Learning 

Humans may make many decisions, but our experience tells us that not all decisions as 

consequential. In the context of designing, we consider the ways in which a decision might be 

consequential—to the framing or reframing of the problem, and to the designer’s learning about 

the problem. Framing problems supports sense of ownership over the problem itself [27]. The 

problem definition process, including bounding the problem, involves deliberate choices made 

by the designer based on their own goals and perspectives, making those choices not only 

consequential to the solution, but to the problem itself [25]. The process of gathering information 

to understand or address the problem makes those decisions consequential to learning as well 

[28]. In this way, designers also choose what to learn at the same time that they decide how to 

frame and then solve the problem.  

Methods 

Prior studies report on the development of the Framing Agency Survey[11], [12], including 

initial qualitative studies to characterize framing agency as a distinct construct, as well as typical 

survey development procedures, such as literature review to ground the subconstructs in theory, 

expert evaluation of items, pilot testing and quality assurance, and exploratory factor analysis of 

data collected in multiple settings.  

Although commonly heard, no survey or test may be determined to be “valid”; rather validity is a 

contextualized argument about whether the data from an instrument provide valid information 

for a particular usage[29]. Thus, when stakes are higher, such as in the case of using data to 

make decisions that can negatively impact a person’s growth or progress, the requirement for a 



validity argument should be correspondingly high [29]. Our survey is likely to be used in future 

research to investigate questions about the role that framing agency plays in the professional 

formation of engineers; in addition, it could also be used to inform minor changes to curricula. 

While not as stringent as high stakes measures, the requirements for a validity argument  

necessitate more evidence than prior studies provide. 

The current study therefore extends past work by conducting confirmatory factor analysis with a 

larger, national cohort to contribute to validity work. 

Instrument  

The survey consisted of 19 questions on seven-point Likert scales. Based on the results of the 

EFA [11], they fall into six sub-constructs: Individual Consequentiality, Shared 

Consequentiality, Learning as Consequentiality, Constrainedness, and Shared Tentativeness. The 

items in each factor are found in table 1.  

 

Table 1: Established latent factors and items in each factor 

Latent Factor Item Item Label 

Individual Consequentiality:  

(α = 0.85) 

The extent to which an individual 

reports that the problem changed, 

or their understanding changed as 

a result of decisions made 

individually meaning that the 

decisions were consequential. 

How responsible or not responsible have you 

felt: [for making decisions personally?] 

A1 

How responsible or not responsible have you 

felt: [for coming up with your own ways to make 

progress on the design project?] 

A2 

How responsible or not responsible have you 

felt: [for the outcomes of the design project?] 

A3 

Considering the decision you described, how 

important or unimportant was: [the decision?] 

A4 

Considering the decision you described, how 

important or unimportant was: [the impact of that 

decision on your design process?] 

A5 

Shared Consequentiality: 

(α = 0.77) 

The extent to which an individual 

reports that the problem changed, 

or their understanding changed as 

a result of decisions made by the 

team, meaning that the decisions 

were consequential. 

Considering the decision you described, how 

important or unimportant was: [the decision?] 

B1 

Considering the decision you described, how 

important or unimportant was: [the impact of that 

decision on your design process?] 

B2 

 
 

  
 



Latent Factor Item Item Label 

Learning as Consequentiality: 

(α = 0.78)  

The extent to which an individual 

reports that their understanding 

changed because of decisions 

made individually or by the team, 

meaning that the decisions were 

consequential 

How much or little have you learned as a result 

of: [decisions about the design problem you 

personally made?] 

C1 

How much or little have you learned as a result 

of: [decisions about the design problem a 

teammate made?] 

C2 

Constrainedness: 

(α = 0.79) 

The extent to which an individual 

reports having opportunity to 

make decisions about the problem 

despite having design 

requirements or constraints. 

Considering these constraints, how free or 

restricted: [have you felt when making decisions 

yourself?] 

D1 

Considering these constraints, how free or 

restricted: [have your teammates seemed when 

making decisions?] 

D2 

How free or limiting does the design problem 

seem to be? 

D3 

Shared Tentativeness: 

(α = 0.81) 

The extent to which an individual 

reports team certainty about the 

design problem and solution. 

How certain or uncertain do you feel that: [your 

design project has a single right solution?]* 

E1 

How certain or uncertain do you feel that: [you 

have to solve the problem as given to you?]* 

E2 

How certain or uncertain do you feel that: [you 

have to just develop what was asked of you?]* 

E3 

 How certain or uncertain do you feel that: [you 

know the optimal solution?]  

E4 

Individual Tentativeness: 

(α = 0.56) 

The extent to which an individual 

reports individual certainty about 

the design problem and solution. 

How certain or uncertain do you feel that: [you 

understand the design problem?] 

X1 

Considering your design project, did you have 

many or few: [opportunities to make decisions as 

a team related you your design project?] 

X2 

* Reversed item 

 

We ultimately removed the individual tentativeness factor for having a Cronbach alpha lower 

than the generally acceptable value of 0.6 used in education literature [30], and so it does not 

appear in subsequent analysis.  

We dummy-coded all responses to have the most negative response translating into a 1 and the 

most positive into a 7 (with the exception of the three negatively coded items). We had a percent 

missing information of 10.6% (N=41) and so choose to employ listwise deletion [31], [32] for 

any observation missing any item across all five factors.  



Data Collection and Analysis 

We collected data over the course of two semesters in design-focused courses at four universities 

(including Hispanic-serving, public land grant, small private, and research flagship institutions) 

across the United States (N=23, N= 77, N=11, and N=271). Design courses included first-year, 

design-spine, and senior capstone set in biomedical, mechanical, chemical, electrical, computer 

and aerospace engineering programs. Students completed the survey in their courses for nominal 

points at the end or near-end of their design work. Instructors agreed to include the survey to 

jointly contribute to research and to gain information about how their design courses supported 

framing agency.  

We used CFA, an extension of structural equation modeling that is theory-driven, in that it tests 

conjectured relationships between and among variables [33]. In the results, we report both the 

preliminary tests and CFA results.   

Results 

We began by calculating descriptive statistics for each item (Table 2). While the items show non-

normal distribution, we assume that the responses are not ordinal and should be treated as 

continuous. However, the maximal likelihood estimator is robust to skewness less than two and 

kurtosis less than seven [34], suggesting that our results will be robust despite the non-normality. 

 

Table 2: Descriptive statistics by item 

Item n Mean SD Skew Kurtosis 

A1 378 5.87 1 -1.63 4.88 

A2 377 5.98 1 -1.79 6.01 

A3 378 6.04 0.97 -1.71 5.47 

A4 365 6.07 0.96 -1.26 2.82 

A5 363 6.07 1.03 -1.43 3.24 

B1 362 6.13 1.14 -2.14 5.98 

B2 359 6.18 1.13 -2.04 5.32 

C1 373 5.92 0.88 -1.32 4.89 

C2 373 5.84 1.07 -2.01 6.63 

D1 371 4.89 1.51 -0.57 -0.6 

D2 369 4.92 1.47 -0.6 -0.55 

D3 373 5.03 1.5 -0.63 -0.41 

E1 375 4.9 1.76 -0.41 -0.89 

E2 374 3.46 1.6 0.48 -0.43 

E3 375 3.77 1.66 0.25 -0.81 

 



We initially conducted a model containing the five factors and all planned items. However one 

item (E4) had inadmissible negative variance [35], and so we removed it and respecified the 

model.  

We examined goodness of fit indices, comparing a one-factor model to the theoretically-derived 

five-factor model. The fit indices are found in table 3. A significant χ2 indicates that a test 

statistic larger than the one found would be found if we reject the model. However, the χ2 test is 

inflated by non-normal data [36]. Due to our highly skewed data, we would expect a high χ2 and 

thus a significant result. For this reason, we consider other goodness of fit indices. 

 

Table 3: Goodness of fit indices comparing a one-factor and a five-factor model 

Fit Index 

One-Factor 

Model 

Five-Factor 

Model 

χ2 695.15 248.65 

P-Value (χ2) <0.001 <0.001 

RMSEA 0.235 0.08 

P-Value (RMSEA) <= 0.05 0 0.054 

SRMR 0.112 0.055 

TLI 0.461 0.91 

CFI 0.581 0.92 

df 35 67 

 

We calculated an RMSEA of 0.08, indicating a reasonable fit, and we failed to reject the 90% 

confidence interval indicating that our model is a close fit to the data [37]. Our model has an 

SRMR value of 0.055, indicating adequate fit to the data [38]. CFI and TLI values are greater 

than 0.9 but less than 0.95, indicating reasonable fit to the data [38]. Table 4 shows the 

individual factor loadings across all the items to consider the impacts of each.  

 

Table 4: Individual factor loadings across items, all factors significant to p < 0.001 

 

Standard 

Estimate 

Standard 

Error z-value R2 

Individual 

Consequentiality 
 0.32 0.24 0.057 

0.66 0.52 3.98 0.436 

0.68 0.52 4.00 0.464 

0.77 0.57 4.05 0.59 

0.73 0.59 4.03 0.526 

Shared 

Consequentiality 
 1.02 0.88 0.782 

0.94 0.07 14.29 0.889 

  



Learning as 

Consequentiality 
 0.81 0.91 0.829 

0.75 0.08 12.95 0.569 

Constrainedness  0.87 0.49 0.239 

0.67 0.17 7.47 0.451 

0.85 0.24 6.67 0.716 

Shared Tentativeness  1.40 0.93 0.867 

0.97 0.04 24.26 0.938 

0.78 0.05 12.92 0.361 

 

We used the reference indicator method of determining factor loadings [39] and consider 

specifically the loadings with all variables standardized [40]. All items are significant and have 

standardized parameter estimates about 0.5, which is usually considered the rule of thumb for 

convergent validity [41].  

There are some correlations between factors (Table 5), particularly between the consequentiality 

factors, which is not entirely unexpected.  

Table 5: Correlation between factors 

  

Standard 

Coefficient 

Standard 

Error 

Z 

Value 

P 

Value 

Individual Consequentiality    

 Shared Consequentiality 0.43 0.046 5.567 <0.001 

 Learning as Consequentiality 0.68 0.04 7.40 <0.001 

 Shared Tentativeness 0.07 0.03 1.01 0.31 

 Constrainedness 0.16 0.05 2.56 0.01 

Shared Consequentiality     

 Learning as Consequentiality 0.50 0.06 7.04 <0.001 

 Shared Tentativeness 0.04 0.07 0.59 0.56 

 Constrainedness 0.12 0.08 2.01 0.04 

Learning as Consequentiality    

 Shared Tentativeness 0.11 0.05 1.58 0.11 

 Constrainedness 0.16 0.07 2.68 0.01 

Shared Tentativeness     

 Constrainedness -0.08 0.08 -1.31 0.19 

 

Based on the results of this analysis we built a model of the relationships between factors and 

items, and between factors, which are presented in Figure 1.  

We considered the potential modification indices that would result in a significant change in the 

χ2 of the model. However, the ones that would result in the largest decrease in the χ2 are not 

theoretically sound and primarily consisted of suggested freely estimated parameters that crossed 

between factors. 



 

 

Thus, the CFA recovered four factors, measured on a seven-point scale:  

• Shared consequentiality. The extent to which the student identifies that their 

understanding of the problem changed as result of a teammate’s decision, M = 6.15; SD = 

1.13;  

• Learning as consequentiality. The extent to which the student identifies learning as the 

result of decisions, M = 5.88; SD = 0.98; 



• Constrainedness. The extent to which the student reports the ability to make decisions 

despite design constraints, M = 4.95; SD = 1.49; and  

• Shared tentativeness. The extent to which the student identifies uncertainty about the 

problem and solution, M = 4.02; SD = 1.76 

Conclusions 

Because the fit indices indicate a close fit to the data, we can conclude that the latent factors 

reasonably predict the items in the survey. This largely affirms the results of the previous EFA, 

indicating that the Framing Agency Survey provides data that are valid for uses like instructional 

refinement and further studies into the role that framing agency plays in the professional 

formation of engineers. However, such studies will require a larger dataset, as well as analysis 

examining the structure of the survey that includes measures of relevant constructs, such as 

engineering identity, engineering self-efficacy, and persistence intentions. Our ongoing research 

aims to develop full structural models that include demographic covariates to permit 

investigation of varied impacts on privileged and minoritized students. 
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