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Constructing Mathematical and Spatial-Reasoning Measures 

for Engineering Students 

Abstract  

Engineering students sometimes encounter difficulties in classes due to their ability to understand 

and interpret mathematical and visual representations of a problem.  This paper describes tools to 

assess students’ abilities in four different constructs.  The two mathematical constructs are:  

M1.  Compare and contrast mathematical operations and  

M2.  Express engineering- and physics- based principles mathematically.  

The two spatial-reasoning constructs are:  

S1.  Rotate and transform geometric objects in three-dimensional space and  

S2.  Translate two-dimensional images to three-dimensional images and vice-versa when 

representing visually engineering- or physics-based principles.  

Examples are provided for each construct and assessment methods are also presented.  
 

Background and Motivation 

The purpose of this paper is to introduce mathematical and spatial-reasoning constructs that are 

keys to academic success in engineering. The term, “construct”, is defined as a latent, 

unobservable trait, such as an ability or skill that directs how students select or generate answers to 

test items.
1
 Several constructs or latent traits have been identified as important in engineering 

education. The authors illustrate how test items can be designed given various classroom 

assessment goals (e.g., course examinations, homework assignments) for two sets of constructs 

that can result in reliable and valid scores. Specifically, two mathematical constructs and two 

spatial-reasoning constructs are the focus of this paper. The mathematical constructs represent 

students’ abilities to: (M1) compare and contrast mathematical operations (e.g., differentiation, 

integration, interpolation); and (M2) express engineering- and physics-based principles 

mathematically. 

Likewise, two spatial-reasoning constructs are of interest. These constructs represent students’ 

strategies to: (S1) rotate and transform geometric objects in three-dimensional space; and (S2) 

translate two-dimensional images to three-dimensional images and vice versa when representing 

visually engineering- or physics-based principles (e.g., acceleration, equilibrium, force). 

Each mathematical and spatial-reasoning measure individually has received attention in the 

literature because of its importance in defining academic success in engineering. Devon, Engel, 

and Turner
2
 determined that the students’ ability to rotate and transform geometric objects in three-

dimensional space is predictive of graduation and retention in engineering programs. Similarly, 

knowing how forces are represented visually in diagrams commonly employed in statics and 
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thermodynamic courses is a skill that successful engineering students have. However, many 

college students have difficulty understanding how physics-based principles are represented 

visually. As a result, the types of problems assigned in courses like statics and thermodynamics 

that utilize these visual representations may be one reason these classes are perceived as 

challenging
3,4

 and are sometimes called stumbling block courses. 

The challenge students encounter in engineering courses is escalated by the fact that no ability or 

skill acts in isolation. Research from cognitive psychology
5,6,7

 provides ample evidence that 

constructs must be coordinated or integrated if students are to reach levels of competence or 

proficiency within their domain. Therefore, in this paper, the researchers advocate for designing 

classroom measures that represent construct sets required to solve problems effectively in areas of 

specialization such as statics and thermodynamics. 

The researchers also introduce psychometric questions to be addressed in the study concerning the 

reliability and validity of scores for the measures. These questions pertain to both dimensionality 

(i.e., how many constructs predict the response patterns for any given test) as well as how the 

scores are assigned for that test. Even for the well-known multiple-choice items, scores can be 

assigned in a variety of ways. For example, they can be scored dichotomously (i.e., correct versus 

incorrect) or polytomously (e.g., correct, partially correct, incorrect). Further, some of these 

multiple-choice items are constructed as testlets.
8 
Testlets are groups of items that are dependent 

on the same stem or sets of tasks that must be solved within one problem space.
9
 A reading 

comprehension passage followed by a set of multiple-choice items is a testlet. Determining the 

reliability and validity of testlet scores requires psychometric considerations that differ from those 

needed to analyze the data for a series of multiple-choice items that are independent and do not 

refer to a common stem or stimulus..  

In the following sections, the investigators present items that represent each of the constructs of 

interest. The importance of these constructs within the coursework for engineering majors is 

described in the context of programs of study at one large university. Finally, a description of how 

the study of dimensionality and score assignment can lead to various reliability and validity 

analysis strategies is provided. Closing sections address statistical considerations and future 

directions in test and task development to study the academic development of students enrolled in 

undergraduate engineering programs. 

 

Mathematical Test Items: Examples M1 and M2 

The use of mathematics in solving and communicating engineering analysis can be an obstacle for 

some students.  In describing the use of mathematics in engineering, we have distinguished 

between two different constructs, listed above as: 

(M1) compare and contrast mathematical applications relevant to solving varied problems in 

engineering;  
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(M2) understand how the engineering quantities (e.g. force, work, power, and flow rate) are 

described by the mathematical representations (e.g. integration, differentiation, or 

interpolation) presented in statics, dynamics, thermodynamics, and fluid mechanics. 

Although these two constructs are similar, we have listed them separately to better define the 

particular usage of mathematics that a student finds challenging.  The following two examples will 

better define these constructs. 

Construct (M1) refers to an understanding of the mathematical equations and solution methods 

without relating it to a physical quantity such as force, pressure, or power.  An example of this type 

of problem is: 

________________________________________________________________________ 

M1.7.  The function y = f(x) is shown on the graph.  Circle all statements below that are true:   

  a. 
1 2

dy dy

dx dx
>      

  b. 
1 2

dy dy

dx dx
<  

  c.   location 1 is an inflection point 

  d. 

2

2

1

0
d y

dx
>  

  e. 

2

2

1

0
d y

dx
<  

________________________________________________________________________ 

Figure 1.  Example of Construct (M1). 

 

 

To answer this question, a student must have an understanding of derivatives but there is no 

relation to physical quantities.  Problems of this type can also be presented using different 

variables, say (y,T) instead of (x,y).  Although the problem still uses variables with no physical 

interpretation, some students will find the second problem to be much more difficult because 

textbooks and instructors in calculus classes use (x,y) in most if not all problems.  This finding 

might lead us to change the variable names throughout a calculus course and not always use (x,y).   

 

 

y

x

•     1 

•

2 

P
age 15.313.4



The second use of mathematics tested is Construct (M2) that applies a physical meaning to the 

variables in the equation.  An example of Construct (M2) is shown below.  A second example can 

be found later in the paper as Figure 6.   

________________________________________________________________________ 
M2.1.  If h represents the height of water in a tank and t represents time, what does the following 
equation tell you about the height of the water in the tank? 

5−=
dt

dh

    

a.   The height of the water is negative. 
b.  The height of the water does not change with time. 
c.  The height of the water is increasing with time. 
d.  The height of the water is decreasing with time. 
e.  Insufficient information given to answer the question. 

________________________________________________________________________ 

Figure 2.  Example of Construct (M2). 

 

 

This question has added a physical meaning to each variable and asks for a physical interpretation 

of the differential equation.  To answer this question requires several skills: understanding the 

definition of a derivative, using variables (t,h) instead of (x,y), and relating this equation to a 

physical process.  For an unsteady problem such as this, the physical process cannot be easily 

communicated using a figure drawn on paper.  Students must be able to mentally visualize a 

“movie” to understand the problem.  Similar complications occur for three-dimensional problems 

that are shown as a two-dimensional representation. 

 

Spatial-Reasoning Test Items: Examples S1 and S2 

Two spatial-reasoning constructs are important in engineering education: 

(S1) rotate and transform geometric objects in three-dimensional space; and  

(S2) translate two-dimensional images to three-dimensional images and vice versa when 

representing visually engineering- or physics-based principles (e.g., acceleration, equilibrium, 

force). 

Construct (S1) involves the ability to rotate and transform geometric objects in three-dimensional 

space. Similar to the Construct (M1) in mathematics, this spatial reasoning can be perceived as a 

general one that does not include reference to specific engineering- or physics-based principles. 

Yet, the literature documents clearly
2 
that students who solve problems well in engineering have 

strong general spatial-reasoning strategies. 
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An example of Construct (S1) is shown below in Figure 3.  This figure was used with permission 

from a Mental Rotation Test developed by Devon et al.
 2, 10

 A series of 12 rotation questions was 

developed to test the level and improvement of visualization skills in a freshmen design course.  

The researchers found that students’ spatial visualization skills were improved more by using solid 

modeling than wireframe CAD or graphics taught in the traditional way in a freshmen design 

course.   

________________________________________________________________________ 

S1.5  Which figure below is a rotation of the first? 

 
________________________________________________________________________ 

Figure 3.  Example of 3D rotation, Construct (S1). 

 

Construct (S2) requires translation of two-dimensional images to three-dimensional and vice versa 

when solving engineering problems.  This construct includes the interpretation of figures, 

diagrams, and word descriptions that represent engineering- or physics-based principles.  There are 

two different skills that are included in this construct: 

a. Three-view two-dimensional projection drawing to a three-dimensional perspective 

drawing. 

b. Relating different visual and mathematical representations of unseen quantities such as 

velocity, force, pressure, or temperature. 

Engineering includes the analysis and interpretation of unseen quantities such as velocity, force, 

pressure, and temperature.  Engineers often describe unseen quantities visually in graphs and 

figures.  Students sometimes have difficulty in interpreting these graphs and figures, sometimes 

considering both coordinates as spatial coordinates and the plotted curve as a physical line or 

boundary.  When the quantity is plotted using a cross-section of the geometry, the spatial 

visualization also presents a challenge.  Below is an example of the laminar velocity profile in a 

pipe presented in three different ways: using a velocity profile, surface contour, and uniform 

velocity contours.  Each representation includes two different answers.  In each row of answers the 

student needs to decide if the first, the second, or neither of the figures describes the given velocity 

profile.   These types of representations are used in many engineering courses.  But students do not 

often admit that the figure is confusing.  Questions about the figure are often realized when 

students ask questions about problem calculations.  Are students hesitant to admit that the figure is 

confusing?  Or does the student not realize that the confusion is in interpreting the figure? 
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________________________________________________________________________ 

S2.4.  Mark all figures that are a visual representation of  u(r) =1-r
2   
where r is the radial coordinate 

and u is the velocity. 
 

a.              d.   
 

 

 
 

b.               e.  

 

 

c.                f.  
 

 

 

________________________________________________________________________ 

Figure 4.  Example of various representations for Construct (S2). 

Test Design Strategy 

Design plans for all measures can include computer-based administration where response times for 

test completion can be recorded along with interactivity for certain tasks (e.g., manipulation of 

screen images). Currently, the investigators are planning pilot studies using paper administrations 

of the multiple-choice measures to acquire an initial examination of the reliability and validity of 

the scores. However, results from these studies will inform development of a computer-based 

administration tool. These tools can be programmed to produce so-called logfile
11

 data that reveal 

not only the options or responses generated by students, but also, any changes in response, the time 

to complete any task or subtask, and use of notes, drawing, or highlighting to work through a 

problem space. Beyond information that can be scored as correct, partially correct, or incorrect, 

logfile data are important in that they can help instructors determine the sources of students’ 

misconceptions or lack of prerequisite knowledge required to complete tasks successfully.
11,12

 

r 

u 

r 

u 

r 

u 

r r 

r 

u 

P
age 15.313.7



The Importance of the Constructs in Programs of Engineering 

Undergraduate programs in engineering share many characteristics. Usually, a prerequisite 

sequence of calculus, chemistry, and physics courses precedes declaring a major in several 

specializations. At Penn State, all engineering majors take an engineering graphics course in 

freshmen year.  This course requires that students apply and strengthen their spatial-visualization 

skills (Construct S1).  Students planning to pursue most engineering majors will then take a statics 

and a dynamics course in sophomore year.  Most engineering students will also take a course in 

thermodynamics and/or fluid mechanics.  These courses require students to draw and interpret 

visual realizations of non-visual quantities such as force, pressure, velocity, and acceleration.  

Often these quantities are visualized using vectors, profiles, or contours overlaid on the physical 

object(s).  Since students have not seen this type of representation in the past, figures with physical 

geometry and non-visual quantities can be confusing.  In addition, many calculus courses are 

taught with only x and y variables and some students have difficulty in applying the calculus 

methods to a new problem where derivatives of locations with time have the physical meaning of 

velocity and acceleration (Construct M2).  Integration might be used in several different ways in 

engineering courses.  In a thermodynamics course, integration of pressure and volume in a piston 

chamber gives work.  In a statics course, students use integration to determine the center of gravity 

for the distributed weight of the object and the center of pressure for the distributed force on an 

object.  If a student has difficulties in solving these problems, we need to identify the source of the 

difficulty.  Is the difficulty in the understanding and solution of calculus (Construct M1), the 

spatial visualization and interpretation of the problem (Constructs S1 and S2), or the conversion of 

a complex problem to an equation form (Construct M2)?  The test strategies described here attempt 

to dissect an engineering problem into these important steps to identify the source of the students’ 

misunderstanding.  Knowing the nature of the students’ misunderstanding or misconception will 

allow for a focused solution to be developed.     

While designing mathematical and spatial-reasoning measures informed by cognitive learning 

theory 
11, 12

 and understanding of multiple domains (e.g., engineering, mathematics, physics) is an 

important goal of classroom assessment practices, knowing how to assign scores reliably and 

validly given selections of responses or construction of them is essential in building a quality 

system of assessment that can provide important instructional information and feedback to 

advisers, students, and teachers. Historically, assignment of scores and address of their reliability 

and validity is a topic studied significantly in a specialization called psychometrics. 
13

 In the next 

section, the authors review various psychometric strategies to assign scores to items or tasks 

represented by constructs M1, M2, S1, and S2. 
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Psychometric Considerations 

Sound measurement of latent variables depends on the reliability and validity of scores
14

. 

Reliability addresses how consistent the scores are over time while validity pertains to how well 

the scores are predicted by the constructs of interest. Two important decisions researchers must 

make to study reliability and validity concerns how many dimensions best represent the scores 

predicted by constructs or latent traits
1
 and how scores are to be assigned given students’ selection 

of options or construction of responses. Many constructs that involve complex reasoning and 

problem solving are multidimensional. As such, special modeling considerations are required to 

study score properties. 

Related directly to assessment of dimensionality is the assignment of scores. Scores can be 

assigned dichotomously or polytomously. When scores are assigned dichotomously, responses are 

just measured in two categories as 1 (correct) or 0 (incorrect).  Polytomous scoring assignment 

involves more than just two score categories (i.e., correct and incorrect). Additionally, there are a 

variety of polytomous-scoring assignments analysts can consider. These range from partial-credit 

scoring
15

 to graded-response scoring
16

 to scoring of response sequences or steps as in the case of 

procedural tasks, like solving for unknown values in algebra problems
17

. For this last category of 

scoring assignment, which requires evaluation of the paths or sequences of steps used by students, 

special psychometric modeling procedures are required to evaluate the conditional dependencies 

among responses. These psychometric modeling procedures usually are presented within a family 

of so-called item bundles, sets, or testlets.
8
 Because both dichotomous and polytomous-scoring 

with and without testlet design strategies are important given the investigators’ program of 

research, they are described with examples in this article. 

 

Example One: Dichotomous Scoring with No Testlet Design Strategy 

The most common of all achievement or aptitude item formats remains the multiple-choice item. 

Not only are multiple-choice items easy to administer, but they are also easy to score. Further, their 

scores can be analyzed quickly for reliability and validity; particularly in the instance of 

dichotomous scoring where the item is not part of a testlet. Figure 5 is a multiple-choice item on 

one of the spatial-reasoning measures (i.e., Construct S2) where the selection of the response is 

scored correctly or incorrectly. Further, there is only one item that corresponds to the stem and 

graphical stimulus, so this item is not part of a testlet. 
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________________________________________________________________________ 

S2.1.   A rigid object of mass m attached to a string of  length R rotates  in a circle at constant angular 

speed ω about a pole, as shown. Gravity acts parallel to the axis of rotation, as  indicated. The force 
exerted by the string on the mass is directed along the axis of the string.  

 

 What is the direction of the instantaneous acceleration of mass m? 

a. Ͳz direction 
b. +z direction 
c. Parallel to the string 
d. Radially inward towards the pole 
e. Radially outward from the pole 

________________________________________________________________________ 

Figure 5.  Example of dichotomous question for Construct (S2). 

 

Example Two: Assigning Scores with a Testlet Design Strategy 

By comparison, Figure 6 displays an item for the measurement of physical principles as they are 

represented mathematically (i.e., Construct M2). This item is a testlet. Upon review, the item 

includes a graphical stimulus in the stem similar to that of the spatial reasoning item. However, 

several options treated as separate items that reference the stem may be considered correct. For 

example, the options reference three time points depicted in the graph, thus all statements pertain 

to the same function. At time point 0, both options a and b would be correct responses. However, 

at times points 1 and 2, there is only one correct selection. As such, all other selections, relative to 

each time point, would be false.  Analysis of scores requires careful examination of correct and 

incorrect response patterns. These patterns could be examined for each time point, and then 

statistically, the time point responses are nested within the pattern for the complete item, 

sometimes called the superitem.
17
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________________________________________________________________________ 

M2.8.  The location of a car y(t) is a function of time t as shown in the graph.   

 

Circle all of the statements that are true: 

a.  At t=0 the car is stopped and begins to move.  
b. At t=0 the car is accelerating. 
c. At t=0 the car is traveling at a steady speed. 
d. At t=0 the car is decelerating. 
e. At t=1 the car is accelerating. 
f. At t=1 the car is traveling at a steady speed. 
g. At t=1 the car is decelerating.  
h. At t=2 the car is accelerating. 
i. At t=2 the car is traveling at a steady speed. 
j. At t=2 the car is decelerating. 

________________________________________________________________________ 

Figure 6.  Example of a testlet for Construct (M2). 

 

The Psychometric Evaluation of Dimensionality and Score Assignment 

Typically, classical exploratory and confirmatory factor analytic and Item Response Theory 

methods are used to determine the dimensionality and precision of score assignment.
13,14

  These 

techniques are useful primarily when each distribution represents a single dimension and scores are 

assigned dichotomously. For several of the measures administered in our research (e.g., 

mathematical or spatial reasoning), scores are likely to reflect multidimensionality. For instance, 

Construct (M2) designed to measure understanding of mathematical information includes as much 

scientific content as mathematical information. From a theoretical perspective, therefore, these two 

domain sources of information must be integrated to answer the items correctly. Further, students 

with varying levels of ability may not integrate the sources to similar degree leading to response 

patterns that reflect both lack of mathematical and scientific knowledge, and the lack of knowledge 

by domain may not be similar in magnitude leading to what psychometricians refer to as mixtures. 
18, 19

 Mixture modeling has historically been applied when multidimensionality is assumed.  

Because testlets often require students to process various sources of information during problem-

y

t
0        1                  2  

P
age 15.313.11



solving, many models required to study score patterns for dependent responses also test for 

multidimensionality. In the current program of research, the investigators intend to study the 

benefits of applying various IRT models to establish that the psychometric properties of scores are 

sound for the various mathematical and spatial-reasoning constructs (i.e., M1, M2, S1, S2). In the 

final two sections, directions for future research in statistical planning and item development are 

summarized. 

 

Statistical Planning Considerations 

Establishing the dimensionality and precision of score assignment for the four constructs of 

interest is essential for statistical planning. Currently, our research team is focusing on three inter-

related projects. The first is a planned statistical experiment to determine the degree to which 

apprenticeship opportunities with Engineering Design Principles increases scores on the measures. 

If the scores are not reliable and valid as outcomes, then test of intervention efficacy and estimates 

of effect size are not possible.
18

 Further, planning of statistical experiments requires careful 

consideration of how many independent and dependent variables are to be included in any model 

that is tested. The address of dimensionality informs directly the frequency of scores to be included 

in a statistical model. 

Reliable and valid scores of the measures are also to complement survey research initiatives. 

Currently, the researchers are studying how attitudes and levels of engagement are related to 

academic performance.  Studies in academic development 
5,11

 demonstrate that it is not only 

important to look at achievement-type variables such as reading comprehension, mathematical 

reasoning, and problem solving, but also, understanding of affect-type variables like interest and 

motivation provides opportunity to identify experiences that are optimal learning opportunities for 

students. 

Finally, accreditation is important in programs of engineering.  Reports that document steps taken 

to improve curriculum development, advising, and teaching effectiveness need to rely on data, 

which highlight the strengths of the program and identify areas where improvement can be made.  

Test scores that reflect the key constructs in Engineering courses, such as those described in this 

article, which are reliable and valid add to the quality of any systematic evaluation. 

 

Future Research Directions on Test Development 

There are many current developments in the program of assessment research described in this 

article. In addition to administering measures using a computer tool, plans include the design items 

that allow students to construct or to generate their responses. Figure 7 presents an example of an 

item where students are afforded more opportunity to interact with the stimuli. Specifically, this 

constructed-response testlet requires that students draw to demonstrate their knowledge of 

derivatives and integrals for a task that is sampled to represent Construct (M1). With advances in 
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computer programming, and as mentioned previously, students’ generated responses can be 

captured not only as images, but also, any changes or revision they make when constructing their 

responses as well as the time it takes for them to complete each task can be recorded by the 

computer system.  While analysis of constructed responses can introduce complexities when 

examining both the dimensionality and precision of scores, there are advantages. One advantage in 

particular, and unlike that observed in many multiple-choice responses, is that guessing is reduced. 

This approach can be extended to Constructs of type M2. For example Figure 7 tasks could be to 

“draw something that shows qualitatively the acceleration at time t=10 sec” and ‘to draw 

something that shows qualitatively the distance traveled during the time interval from 5 to 10 

seconds.”   Further, the opportunity to follow the processing of students as they construct their 

responses may provide important insights as to misconceptions they have. These misconceptions 

may be difficult to detect when relying solely on multiple-choice formats. 

________________________________________________________________________ 

M1.6.    In the figures below we plot the speed of a car, V, vs. time, t.  
 

 

 

 

 

 

 

 (a)  On the left figure draw something on the plot that shows qualitatively what is the derivative of 
V with respect to t at the time t=10 s. 

(b)  On the right figure draw something on the plot that shows qualitatively what is the integral of V 
over time from 5 to 10 seconds 

________________________________________________________________________ 

Figure 7.  Example of open answer question for Construct (M1). 

 

 

Conclusions and Significance 

Reliable and valid test scores are needed for domain-specific measures in engineering to not only 

profile patterns of strength and weakness for students enrolled in various programs, but also to test 

instructional interventions that may facilitate academic progress. This presentation introduces test 

design strategies and data-analytic considerations in the study of the psychometric evaluation of 

scores of two mathematical and two spatial-reasoning constructs considered key to academic 

success in engineering. 

Figure for  M1.6a 

time (s) 

speed, V  
(m/s) 

5 10 150
0

10 
Figure for M1.6b 

time (s) 

speed, V 
(m/s) 

5 10 150
0

10 
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