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Contextualizing Calculus with Everyday Examples to Enhance
Conceptual Learning

Abstract

Many engineering students in Sweden have difficulty passing the initial mathematics courses.
Teachers complain that students are ill- prepared in pre-calculus and even the best students can
only solve standard problems using standard procedures. The aim of teaching in mathematics at
university is to develop deep understanding of the subject and to produce conceptually trained
students who can then creatively solve unforeseen problems. But how should we educate such
students’ We hypothesize that the root of the problem lies in decontextualized abstract teaching.
The approach adopted in this study is to introduce contextualized teaching of mathematics
through concrete examples and to focus students’ attention on the role of definitions in
mathematics in order to scaffold their development of conceptual understanding. The general idea
is to start from the most concrete, everyday examples and work towards more abstract
mathematics. By everyday examples, we mean those that can instantly be understood by the
students with reference solely to their life experience. Each new concept in the course is
introduced verbally, numerically, graphically, and algebraically when applicable. Everyday
examples are introduced in the verbal phase of the sequence. Application examples are also used
to boost the students’ motivation. Quantitative data were gathered from both a diagnostic test and
the exam, and qualitative data come from a student questionnaire. The exam results show that the
students in the intervention group succeeded better than the control groups. They also became
more motivated and had a better grasp of abstract thinking in mathematics.

Introduction

Many students entering engineering education in Sweden do not show proficiency in abstract
conceptual understanding in mathematics.1 Diagnostic tests administered at the beginning of
engineering programs at a mid-sized Swedish University have shown declining results during the
last decade, a trend shared with other western countries. This substantially lowers the pass rates
and overall grades in mathematical courses and creates problems in the subsequent courses in
science and technology. Furthermore, it causes attrition and considerably delays graduation for
many students with consequences for the individual and society at large.

Students may be unprepared for abstract thinking in mathematics for several reasons. One of
them could be the simplified procedural teaching from earlier education. Many mathematics

P
age 26.401.2



books from senior high school are designed in a way that stresses procedural solving of
mathematical problems without paying enough attention to conceptual understanding. Students
are thus taught to follow algorithms to solve similar problems. When the procedures learned are
not suitable for solving the problem at hand, students are lost.

Students’ understanding of mathematical definitions is also often deficient. The role of
mathematical definition in the acquisition of conceptual understanding is not given sufficient
focus. Definitions are mainly presented as something separate from both procedural and
conceptual understanding.

For the conceptually oriented student, each new aspect of a mathematical concept – definition,
procedure, graphical representation, examples – adds a new layer to a deeper understanding. This
is not the case for the procedurally oriented student, who memorizes procedures to pass the
exams. Each new aspect introduced in mathematics is thus perceived as a further burden on the
memory.

A closer look into senior high school books shows that, although the students have been exposed
to most of what is taught in the first calculus course at university, they still show little
understanding of the abstract conceptual mathematics and find it problematic.

First-year students in engineering education have had a winning learning strategy in earlier
mathematical courses in high school, mimicking algebraic examples, often without realizing the
limitations of the procedures.2 This winning learning strategy makes many students initially
reluctant to adopt the offered approach to conceptual learning, for example, understanding
definitions in mathematics, their role in the construction of mathematical theories, and how they
can be used in concrete engineering applications. The literature as well as our experience tells us
that most students are less focused when definitions are presented initially in the lectures.3

The major aim of university mathematics is to enable the students to develop abstract conceptual
understanding that allows them to solve unforeseen problems in science and engineering and to
create a meta-knowledge of how to develop as a self-learner. Students’ initial unpreparedness in
calculus means that a substantial portion of the first calculus course is devoted to focusing
students’ attention on how abstract concepts are developed.

The design of the course

The first calculus course, Analysis in One Variable, is designed as a general course given to all
approximately 1500 engineering students in the first year. It consists of 21 lectures, 14 tutorials
and four seminars. Students are additionally offered optional supplemental instruction and
workshops in mathematics four days a week. The content of the course consists of limits,
continuity, differentiation, integrals, series, differential equations, and Taylor expansions.

During the course, students are recommended not to use any devices or aids, like calculators,
computers, or formula collections which they are not allowed to use during exams. Apart from
the three interventions: everyday examples, the joint construction of definitions, and motivating
application examples, the lectures are given in traditional fashion. The examination itself is
centrally designed and administered to all first-year students. The course literature consists of a
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Swedish book, Analys i en variable, by Persson and Böiers and Calculus: A complete course by
Adams and Essex.

Aim of the study

The overarching aim of the study is to scaffold engineering students’ development of conceptual
understanding in the first calculus course. This is done by offering a secure and friendly learning
environment where students are invited to actively contribute to the knowledge-building process.
To achieve this aim, students have to be able to connect abstract mathematical concepts to their
experience, understand the role of mathematical definitions in preparing them for solving
unforeseen problems, and develop insight into the limits of a definition. Additionally, application
examples, from computer science in this case, will be used to strengthen the ties between
mathematics and their future professional field, thus making learning of mathematics an enjoyable
and motivating experience and at the same time boosting the students’ self-confidence.

The interventions

During the academic year 2012-2013, an intervention was introduced in the first calculus courses
for 160 engineering students in Computer Science. The main hypothesis in the study is that many
of the problems that students encounter in learning abstract conceptual mathematics are due to the
fact that it has mainly been presented to them in an abstract, context-free manner. Abstract
conceptual thinking is the product of learning sought for, but it is not necessarily the way to bring
about conceptual understanding. To develop deep abstract conceptual thinking in mathematics,
students have to experience contextualized mathematics by relating it to their own experience and
connecting it to the concrete instances from which it has been abstracted.

To achieve this end, concrete everyday examples have been constructed for each concept in the
calculus course. Everyday examples are examples that do not require more than the student’s life
experience to be understood. These everyday examples were introduced at the beginning of each
lecture and all the numerical, graphical, and algebraic explanations used during the lectures were
related to them, as were the definitions. During the lectures, students were invited, after a while,
to suggest definitions that captured the general aspects of the examples. This was followed by
open deliberations where the teacher made the consequences of students’ suggestions clear to
them.

Students’ suggested definitions often introduced unnecessary restrictions, like derivations for
defining a local maximum. The discussion ended when the scientific definition was reached. The
role of definitions in mathematics was thus made clear by experience, and their importance for
solving problems was appreciated.

When appropriate, examples of how mathematical concepts may be used in software design
applications were demonstrated. It was made clear to the students that these were only
demonstrations of the connection between mathematics and programming, their future profession,
without any obligation for them to instantly understand them. Not all of the students were
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expected to grasp these examples, bearing in mind the initial differences in their programming
proficiency. Their use was still found stimulating.

Rationale for the study – The context of mathematics in engineering education

Designing engineering education with mathematics and physics in the first two years of the
program is not a law of nature.4 It can hardly be argued that abstract mathematics is taught in the
initial stages of programs for pedagogical reasons. Rather, such a design reflects a Tayloristic
view of industrial production transferred to education where context-free bits and pieces are
dispensed by specialists to be assembled to a coherent whole in the end.5 Most engineering
teachers claim that they need to build on a ”solid” mathematics and science base. Pedagogically
motivated design would have integrated mathematics with applications subjects to partly
out-design motivation and contextualization problems.

Much of the research in mathematics in engineering education takes for granted the traditional
design of engineering education with mathematics courses in the first year. The aim of the
research is then to alleviate learning problems created by the traditional design itself and the
alienation of mathematics from the application fields. There is a substantial difference between
teaching mathematics to future mathematicians and to engineering students.6 Alternative designs
like problem-based and some project-based learning integrate mathematics with engineering
subjects to provide a context for mathematics.7

The quality of teaching has little correlation with students’ learning outcome in mathematics. It is
amazing that almost no difference can be noted in the passing rates of the students regardless of
the teaching proficiency of the teacher. There is a case where almost eighty percent of the
students left the lecture hall after the third lecture of eighteen, never to return. No difference in
their passing rate was observed here either. They took responsibility for their own learning by
joining other lectures on site and online. There is, therefore, a need to study the different informal
strategies that students adopt to manage their knowledge building in mathematics, like
peer-learning, online lectures and graphics software available for free on the Web today.

De-contextualized teaching in mathematics

The strength of mathematics is its abstraction and its ability to be applied to different situations in
science and engineering. However, the intended learning outcome in mathematics is mastering
abstract concepts, not necessarily the learning process leading to this objective. Making
abstractions is easier to understand when students know which concrete instances abstractions
come from. They have thus seen the induction process.

Constructing concrete everyday examples is a way of providing the students with the instances
that frame the process of understanding the definitions.

It takes quite an effort to come up with adequate everyday examples. Application examples are
much easier to give but harder to understand. They raise the demands on the students to make the
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leap from one unknown mathematical concept to a yet unknown abstract concept in the
application subject. In contrast, everyday examples frame the abstract mathematical concept in
terms of everyday experience, thus making it easier for the student to use a known concept to
understand the unknown one.

However, similar views of de-contextualized procedural teaching based on different kinds of DTP
format (definition, theorem, proof) as an instruction model for developing conceptual
understanding, as expressed by Wu8 and Baker, Czarocha and Prabhu9, have been criticized with
reference to interpretations of research such as those expressed in the ”National Council of
Teachers of Mathematics. USA (NCTM) Standards” by Brown, Seidelmann, and Zimmermann.10

Pragmatic researchers like Lave have also found no evidence that such a transfer from procedural
learning to conceptual understanding occurs.11

In traditional teaching, it is often seen as necessary to first acquire procedural knowledge in order
to develop conceptual understanding.12 ”Teaching for” procedural knowledge would simply mean
presenting to the students readymade definitions, notations and procedures without at the same
time presenting concrete examples to frame a ”deeper” understanding of the concepts
involved.

Contextualized learning

”Teaching for” conceptual understanding, on the other hand, would connect the theory to concrete
problems, thus scaffolding students in extracting the abstract structures from the problem at hand.
Involving students in reasoning requires connections to their prior knowledge and
experience.9

The use of the word ”example” requires some clarification. What do we really mean by
”example”? There are at least three kinds of examples:

a) Context-free examples

b) Application examples

c) Everyday examples.

The first category is often abstract examples using mathematical symbols to show how a
definition could be used. These kinds of examples have no connection to experience, application,
or the real world.

The second category, application examples, contains examples taken from future technical
applications that the students are hopefully going to meet in subsequent courses. They are very
good examples for motivating the student for coming uses of mathematical knowledge. The
problem with examples of this kind is that the students, by definition, knows nothing about the
subject they have not yet encountered. Introducing such examples means introducing an extra
cognitive burden. Instead of only trying to understand the mathematical concept, students have to
struggle to understand the application example, whether it be programming, chemistry, or
physics. The usual reaction of the students here is, ”Do we have to learn this application example
for the exam too?”
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What is focused on in this paper is the third category, the use of everyday examples. They differ
from the abstract examples of the first category because they are concrete and from the
application examples of the second category because they do not introduce any cognitively new
material. Their objective is to use something already known to understand something new.

Many studies show that the transfer of mathematics acquired in procedural settings to application
subjects is not achieved to the extent to which it is expected.13,14 Engineering faculty report that
students to a great extent fail to recognize and apply the mathematics they are supposed to know
in subsequent engineering subjects. ”The students would hardly recognize a vector if it flew
through the room”. Vectors do not, of course, fly through rooms, but it was a drastic way for one
engineering teacher to express his frustration.

In order to become proficient solvers of non-routine problems, students must be exposed to, and
practice, non-routine problem solving. There is no automatic transfer from extensive drills of
routine algorithms alone to developing proficiency in solving unforeseen problems in the
world.15

Most students can follow procedures and algorithms, based on memory, to solve known problems.
However, if translation between different mathematical expressions is required or if they are
asked whether a given number is the correct answer to an equation, they hardly know what to
answer. Engelbrecht et al. conclude that such behavior indicates a poor understanding of the
abstract concepts involved.16

Procedural and conceptual understanding

The debate between conceptual and procedural knowledge among mathematics educators has
been ongoing for at least three decades now.17 The definition of these constructs given by Hiebert
and Lefevre 1986 is still widely used.18 ”Conceptual knowledge is rich in relationships. It can be
thought of as a connected web of knowledge, a network in which the linking relationships are
prominent as the discrete pieces of information”. ”Procedural knowledge is constituted by two
components, one made up by step-by-step procedures for mathematical problems solving, and
one related to the symbolic representations used in such procedures, including a familiarity with
the symbols used to represent ideas and an awareness of the syntactic rules for writing symbols in
an acceptable form”.

Both procedural and conceptual knowledge may be deep or superficial and each of them may
support the other.19 A student with developed conceptual knowledge has the ability to understand
mathematical concepts and apply them correctly to a variety of situations. She can also translate
these concepts between verbal statements and their equivalent mathematical expressions and
”see” mathematical representations with her ”inner eye”.15

Although attempts have been made to develop conceptual understanding among university
students, the traditional procedure-oriented teaching to solve standard problems by fostering
procedural learning widely prevails.20 Faculty are, nonetheless, still looking for students’
conceptual understanding. There is, therefore, a need for more research on efficient teaching
methods to develop students’ conceptual understanding.
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Due to the fact that research findings have difficulty reaching teaching situations, research
methods involving a joint commitment from both faculty and educators should be considered.
These joint efforts are also needed to understand the discrepancies between adopted teaching
approaches and students’ learning.

Studies conducted in Sweden and South Africa show that when teaching is designed to promote
conceptual learning, students perform well even in the procedural domain.16 The argument that
we have to sacrifice something in the traditional teaching to focus on conceptual issues has little
support in current research.

Chappell and Killpatrick have investigated 305 college-level calculus students in two groups.21

The larger group had the ”traditional” DTP format and in the smaller group conceptual learning
was sought by providing verbal explanation, graphical representation, and extension to new
situations, all of which were illustrated by examples.

The group in the conceptual teaching setting performed significantly better than the procedural
group on procedural tasks although the instructors only demonstrated the basic use of each
procedure.

Chappell and Killpatrick’s conclusion is best summarized in their own words: ”[The] results
challenge the belief that focusing instruction on the development and understanding of calculus
concepts requires sacrificing, to some extent, the development of the student’s ability to perform
computations”.17

Similar studies by Simpson and Zakaria found that conceptually-oriented students use linking
words, like ”then” and ”because” to explain their solutions.22 This indicates that they are
confident about the solution and, unlike procedurally oriented students, do not resort to external
authority to justify their solution.23 Conceptually oriented students make different use of diagrams
and numerical reasoning even if they sometimes struggle to use algebraic reasoning. Qualitative
analysis shows that concept-based learning can more easily be extended to new situations.24

It is, however, important to remember that the distinction between conceptual and procedural
learning is problematic since they are not always easily separated from each other.16 It has been
found in empirical studies that the concept orientation in solving problems is part of the solution
rather than of the problem itself. Conceptual and procedural knowledge in mathematics may
sometimes be problematic and ”highly complex” both in regard to the meaning of the constructs
themselves and their use in teaching and learning outcomes.

However, if both teaching and examination of university mathematics is geared towards
procedural knowledge, then the students cannot be blamed for not developing the conceptual
knowledge hoped for.2

The pragmatic approach to building abstract concepts in mathematics

De-contextualized mathematics teaching that does not connect mathematical concepts to students’
experience forces the majority of them to use memory to store readymade solution algorithms,
thus adopting a surface approach in order to cope with examinations.25 In line with these findings,
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Mitchelmore and White conclude that learning abstract concepts in a context-free setting usually
yields ”concepts [that] are poorly understood, easily forgotten and rarely applicable”.26

In the pragmatic view of meaning, understanding language propositions is only achieved in the
light of the learners’ experience (see Wittgenstein §317).27 Giving concrete examples before
constructing a definition and performing some calculations provides a link between students’
experience and the abstract concepts at hand. Consequently, not providing concrete examples to
contextualize concepts denies students the opportunity of making connections between the
abstract mathematical concepts and their own experience.

There is no evidence that those students who have not experienced at least a partial induction and
contextualization with concrete instances anchored in their prior experience will be able to
connect abstract concepts and problems in the world easily. The divide between the context-free
teaching of mathematics and the proposed approach of contextualization through everyday
examples can be captured in the dichotomy of abstract-isolated and abstract-connected.

In the abstract-isolated setting, the teacher relies on giving the definitions and proceeding by
giving examples containing context-free symbols and equations. On the other hand, the pragmatic
approach inherent in the abstract-connected concept starts from contextualized concrete
examples. These examples connect the abstract mathematical concepts to the learners’
experiences, thus turning inert mathematical abstractions into living concepts and giving them
faces that are easier to understand and remember.28

A further aspect central to the pragmatic approach is that everyday examples are introduced at the
beginning of the lecture before anything else. A problem is presented and the mathematical
concept is introduced as an efficient way of solving or describing the problem. Concrete everyday
examples in this perspective are viewed as constitutive of the mathematical concept. It is in this
light that the student understands the implications of the mathematical definition. Any kind of
examples listed above can also be given at the end of the lecture as illustrative examples.
Assigning the latter role to examples is proper to other kinds of pedagogical approaches.

Abstract concepts and concrete instances

The context-free setting in mathematics relies mainly on a double pre-supposition: that abstract
concepts are best learned in abstract settings and that the use of mathematical concepts in
applications is based on a deductive process that connects isolated abstract concepts to
phenomena in the world. There is little evidence in the research that this is how the students go
about learning abstract mathematical concepts. Nor are abstract mathematical concepts and
phenomena in the world connected deductively.29

If the connection between abstract mathematical concepts and phenomena in the world is not
made deductively, how then is it achieved?

The pragmatic answer is by analogy to family resemblance. This concept itself is best explained
by an analogy. Not all members of a family are completely alike. Children resemble their parents
in some respects but not others. Some of the children have the same eyes, a second the same
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mouth, and a third the same body posture. The family resemblance is made by discerning these
particularities.24

According to the same logic, knowing that the shortest way to fly from Stockholm, Sweden, to
New York is to fly over Greenland (near the North Pole), as an example of Lagrange multipliers
(maximum and minimum), makes it easier to see connections to technical applications by
discerning the similarities in the analogous examples.

The NCTM principles for enhancing conceptual learning are in line with the pragmatic view of
building mathematical knowledge. Teaching for conceptual learning follows a sequence, when
appropriate, from concrete to abstract: verbally, numerically, graphically, and algebraically. The
initial verbal phase is an opportunity to connect to the learners’ experience, which makes it easier
to refer back to it at later phases. The whole sequence retraces the concept from its more specific
to its most general phase: concrete to abstract.

What numerically, graphically, and algebraically mean is clear to mathematicians; what is meant
by verbally is not always obvious. One way of clarifying it is by connecting to the students’
experience in the verbal phase by using everyday examples.

The following are some examples of everyday examples used in the intervention:

1. Derivative: How fast does Usain Bolt run at a specific point in his 100-meter race?

2. The number e: Interest rate on interest. How much money do you get at the end of the year
if you withdraw and deposit an amount of money, including its interest, more and more
often during a year? Knowing this leads to a definition of the number e.

3. Local and global maximum: Marie waters her pumpkin with x liters a day. The pumpkin’s
growth is dependent on x (no water or infinite water will kill the pumpkin). There should be
an optimal value. How can we formulate this optimal value?

4. Limits: A car starts from zero speed at time zero and accelerates at time 20 seconds to 50
kilometers/hour and drives thereafter at a constant speed. What happens to the average
speed as time goes on? Does it have a limit? Will the average ever be 50 kilometers/hour?

Implications for mathematics teaching and learning

Most text books in calculus do not systematically use concrete examples to initiate abstract
concepts, thus providing little scaffolding for the self-learner. Many teachers report that not even
the most advanced students in mathematics are able to execute computations solely based on the
definitions in the book, if they pay any attention to them at all.3 A definition as a rule can be
interpreted and used in many different ways. The rules of the definition do not include
descriptions of how they should be used. As a rule, a definition is of little use to the novice
because she does not understand its implications. The way in which mathematical rules should be
used is part of what is shown in the traditional teaching of mathematics (see Wittgenstein
§139).27
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If the reader agrees with the above argumentation, then the most important part of teaching
mathematics will be to contextualize the abstract mathematical concepts, for instance, by
providing experience-based everyday examples. Everyday examples serve, therefore, as a
preliminary bridge upon which the initial understanding of the abstract concepts rests. They are
also concrete instances that provide meaning to the abstract definitions. Abstraction, according to
the Web encyclopedia, is ”the process of formulating generalized ideas or concepts by extracting
common qualities from specific examples” (see
http://www.thefreedictionary.com/abstraction).

”Abstracting is an activity by which we become aware of similarities . . . among our experiences.
Classifying means collecting together our experiences on the basis of these similarities. An
abstraction is some kind of lasting change, the result of abstracting, which enables us to recognize
new experiences as having the similarities of an already formed class . . . ”.30

Thus, teaching mathematics without contextualizing from time to time, by providing concrete
examples from which abstractions have been made, for example, compels students to adopt a
surface approach to learning and to use memory to store definitions and procedural algorithms.
There is no evidence that this approach to learning automatically leads to the conceptual
understanding hoped for.21

Not only do the concrete examples scaffold the students’ development of conceptual
understanding, they also provide a concrete context for the abstract mathematical concepts. This
contextual understanding together with the examples is, hypothetically, also an image that helps
recognize future situations where the concept can be used. In a study by Chappell and Killpatrick,
a student expresses it in the following way: ”Knowing where the formula comes from not only
helps you understand what it accomplishes, but also helps you remember it.21 I know what to do
when the problem comes up and recognize what steps have to be taken”.

Characteristics of everyday examples

Introducing new mathematical concepts in a sequence that proceeds from concrete to abstract
(verbally, numerically, visually, and algebraically) helps the student grasp the abstract meaning of
the concept.

However, creating these everyday examples is not a trivial endeavor. Part of this project has,
therefore, been devoted to developing a database with everyday examples for every concept in a
One Variable Calculus course and making it available to the teachers.

According to the same pragmatic logic argued for in this paper, it is expected that, if a teacher
sees ten everyday examples of mathematics, she is more likely to be prepared to come up with
one of her own.

Everyday examples cannot logically be deduced from definitions: the family relationship is seen
at once, analogically. They cannot be right or wrong, or only good or bad examples, which is far
from the deductive traditions of mathematics and makes them risky.

If the process of building abstract concepts in mathematics is similar to the construction of
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abstract concepts in other domains, like native language, then a clear conclusion is that students’
difficulties in grasping mathematical abstractions and being able to apply them properly are
mainly due to the abstract teaching they have been exposed to. Defining abstract concepts before
they have any experience to build on leaves the student with no other alternative than to rely on
memory. Deep conceptual understanding of abstract propositions, definitions, on the other hand,
is only possible through experience.24

Methods

The study was conducted in the first major course in mathematics, Calculus in One Variable,
offered during the first semester of the computer science program. There were 160 students
initially in the program. The method is both quantitative and qualitative. The quantitative data are
from the results of both an initial diagnostic test administered at the beginning of the program and
the exam results at the end of the course. It should be noted that the centrally designed and
administered examination itself is not specially designed to test conceptual knowledge per
se.

The exam is divided into three different parts: a) basic knowledge of the course, for those who did
not succeed in the continuous examination in seminars b) some more basic knowledge at the
intermediate level, c) which in some way corresponds to conceptual understanding for those who
can (i) deduce some particularly important theorems and formulas, (ii) generalize and adapt the
methods to fit in new situations, and (iii) solve problems that require complex computations in
several steps.

The qualitative part of the study was conducted by letting the students answer a questionnaire
presented at the end of the last lecture. 148 students present out of 160 in the program filled out
the form.

To make it possible to compare the program with the intervention, using everyday examples, with
the other four control programs, everything in the course has been left unchanged: the design of
the course, the course book and examination are the same for all programs involved. The only
difference is the use of everyday examples, discussions around definitions and application
examples that have been introduced in the computer science program where the intervention took
place.
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Results

Quantitative results

In the table, the results of four programs in the diagnostic test and the examination are compared.
The program where the intervention took place (red square in the graph) had a significantly better
result in the examination although the number of points in the diagnostic test was lower than, or
equal to, those in at least two of the other programs.

The quantitative results in the study show that the intervention program with everyday examples
set in the calculus course had better examination results that the four control groups in this
attempt although slightly more than half the group regularly participated in the lectures. The
proportion of students who successfully passed the examination was 68 percent.

The fact that the difference between the intervention group and the control groups was larger can
be related to the fact that the change in the design of the course was also minimal. The threshold
for introducing changes in the mathematics course was deliberately kept as low as possible to
appeal to traditional teachers as a first step in a change process.

Qualitative results

Of the total 160 students in the program, 148 have filled out the form. They answered 14
questions with five alternatives each on the last lecture in the course.

The majority of the students’ participated in the lectures as well as in the other scheduled course
activities. Participation in the optional supplemental instruction and mathematics workshop, on
the other hand, was very low. More than three-quarters of the group used electronic facilities on
the Web, like Khan-Academy or lectures from MIT.

Very few had systematically been exposed to the use of everyday examples in mathematics during
their earlier senior high school studies. Almost all found the use of everyday examples
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stimulating, and agreed that they have gained a completely new understanding of mathematical
definitions because they were drawn from the examples together with the teacher during lectures.
The following are some citations of students’ appreciations of the interventions in the
course.

Everyday examples:

• I have acquired a thorough knowledge in mathematics in such a way that theorems and
methods can quickly be deduced. Therefore there is no need any longer to remember the
methods.

• Everyday examples direct the focus to abstractions in mathematics

• The use of everyday examples in mathematics has made it more challenging and increased
my motivation.

Application examples:

• I have gained an understanding for why abstraction is important in mathematics and in
working life

• The teacher shows how computer scientists can use mathematics and that motivates me.

• Abstraction and application examples in programming were great.

Construction of definitions:

• My view of abstractions in mathematics has changed. I have picked up a new approach to
problem solving.

• Mathematical definitions open a new field of understanding.

• It was an enriching learning experience to let the students construct mathematical
definitions.

Discussion and conclusions

The use of everyday examples has made it easier for many students to understand abstract
concepts. Students appreciated them greatly and stated that they would appreciate the use of
everyday examples even in the subsequent mathematical courses. Most students found that the
use of everyday examples has also motivated them to work with the course material more than
they did in the past.

The application examples, in programming in this case, were very much appreciated by those
who could write computer code. They could see the connection between mathematics and their
future profession. For those without coding experience, the application examples were presented
to be taken at face value, simply demonstrating the connection without any demands for deep
understanding. It was made clear to them that no instant understanding was required and that it
would in no way affect their grades in the course.
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Discussions about concept definitions were also appreciated and, together with everyday
examples, they were central to the students’ development of abstract understanding. Constructing
concept definitions together presupposes that the students have seen the instances from which the
definitions are drawn: everyday examples. There is also good reason to believe that the students,
like those in the Chappell and Killpatrick study above, will be able to reconstruct the concepts at
will and apply them in the future.17

Ultimately, using everyday examples is a conscious action where affordances for conceptual
understanding are designed into the course and not only left to the student to attain in future once
they have reached mathematical maturity through procedural struggle.
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