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ABSTRACT 

 

One of the more important and one of the least understood principles in electronic engineering 

technology is convolution. The convolution integral provides a convenient mathematical 

equation that expresses the output of an linear time invariant system based on an arbitrary 

signal, x(t), and the system's impulse response, h(t).  Because the interpretation takes some 

effort, most instructors take advantage of the linear transformation into the frequency domain 

where convolution becomes simply multiplication, eg. Laplace and Fourier transforms.  After 

performing the analysis in the frequency domain, the results are transformed back to the time 

domain.  Regrettably, the students lose the sense that mathematical statements have meaning.  

This paper examines several MATLAB examples that can be used to vividly present the 

concepts involved with the convolution integral in less mathematically frightening, more 

normal terms to the engineering technology and other scientific students that prefer relatable 

applications rather than mathematical theory. 
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I�TRODUCTIO� 

 

For a continuous, linear, and time-invariant (LTI) system with an impulse response h(t), the 

response function, y(t), to an input function, x(t), is determined by a convolution integral. This 

convolution relation, denoted as y(t) = x(t) ⊗ h(t), is 

 

    )1()()( τττ dthxy −= ∫
∞

∞−
 

 

where τ is a dummy integration variable.  Convolution is commutative such that 
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The interpretation of the convolution integral is not intuitive.  Engineering students are taught to 

solve the convolution integral using semigraphical methods while engineering technology 

students use transform methods like the Laplace transform [1].   

 

 



Transform methods like the Laplace and Fourier transforms convert signals in the time domain to 

signals in the frequency domain.  Typically, the transformations have a one-to-one 

correspondence with the original function.  Because of this one-to-one correspondence, the time 

domain functions and the frequency domain functions generated by the Laplace and Fourier 

transforms are simply tabulated in widely available math tables. 

 

One of the properties associated with the transformation from the time domain into the frequency 

domain is that convolution in the time domain becomes multiplication in the frequency domain.  

Likewise convolution in the frequency domain becomes multiplication in the time domain.  

Many engineering technology students have used the Laplace transform to convert from the time 

domain to the frequency domain where they do their analysis and then convert their solution 

back into the time domain.  

 

 

Semigraphical Methods 

 

Semigraphical methods typically break the convolution integral into distinct graphical sections.  

For example, consider a system with and impulse response, h(t), that is a 1 unit high and 1 unit 

wide and an input function, x(t), that is 1 unit high and 1 unit wide as shown in Figure 1. 

 

1. The first graphical step is to determine h(-τ) which simply involves folding 

h(τ) about the vertical axis as shown in  Figure 2.  Note t is replaced by a 

dummy variable, τ. 
 

2. The function h(t- τ) slides from t = -∞  to t = 0 without intersecting x(τ), 

Figure 3. 

 

3. Letting h(t-τ) slide from  t = 0 to t = 1, h(t-τ) and x(t) will intersect at an 

increasing rate, Figure 4.   

 

The convolution integrals yields 

 

 

 

 

4. Letting h(t-τ) slide from  t = 1 to t = 2, h(t-τ) and x(t) will intersect, but at a 

decreasing rate, Figure 5. 
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5. Sliding h(t-τ) past t = 2 yields no more intersections, Figure 6. 
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The mathematical solution to the convolution of the two functions h(t) and x(t) for this particular 

example is: 

 

  )6(

20

212

10

00

)()()()()(











>

<<−

<<

<

=−=⊗= ∫
∞

∞−

t

tt

tt

t

dthxthtxty τττ  

 

 

The output, y(t), is shown graphically in Figure 7. 

 

Figure 7 shows that y(t) is zero from −∞ < t < 0.  That is, neither signal intersects the other.  For 

0 < t < 1, there is more intersecting area until t = 1 is reached where the two signals overlay 

each other and the bounded area is maximum.  From 1 < t < 2, the limits of integration start 

decreasing, and the bounded area decreases.   

 

 

The Joy of Convolution 

 

There is little joy realized when doing the semigraphical method of convolution.  The student has 

to carefully observe when the transitions in the signals cause the limits of integration to change.  

In the previous simple example, the integration changes four times ( -∞ < t < 0, 0 < t < 1, 1 < t 

< 2, and -∞ < t ≤ 0 ) with two actual changes in the limits of integration.  As signals become 

more complex, there are more transitions and more possibilities for the students to lose their 

way. 

 

Of course, students must do a few of the simple examples to realize the methodology for the 

more complex problems. Nevertheless, the mathematical process of convolution quite often 

overwhelms the technological realities.  One method that pumps some joy into the convolution 

process is the use of convolution applets [2].  Applets are programs written in Java [3].  Since 

Java is a programming language, the applications are limitless.  Nevertheless, applets are 

typically small embedded applications in a webpage.  They are small because they are typically 

transferred over the internet.   

 

 

Quick and Dirty 

 

My classes have found that using MATLAB [4] to perform convolution is more informative than 

either the convolution integral or the convolution applets.  The advantage of MATLAB is the 

ease with which students can program the application and the graphical capabilities that the 

programs allow.  The MATLAB program that demonstrates the convolution of Figure 1 is shown 

in Program 1 and Figure 8.  Program 2 and Program 3 show a couple of MATLAB-based 

convolution examples that are solved as homework problems.  There MATLAB representations 

are shown Figures 9 and Figure 10, respectively.  The convolutions for Program 2 and Program 3 

are calculated in Appendix A. 



Conclusions 

 

The Java applet and MATLAB application programs each vividly represent the same 

technological realities as the convolution integral, however, in less mathematically frightening, 

more graphically acceptable terms for the average engineering, engineering technology, science, 

and other non-Ph.D students.  Although many engineering technology curriculums mask 

convolution by transferring the solution of problems into the frequency domain, a working 

knowledge of convolution is important in several disciplines within engineering and engineering 

technology such as digital signal processing and medical imaging.  Convolution can be learned 

and is really useful, and it doesn't require a Ph.D. in mathematics.  Using MATLAB, it has never 

been easier to experiment with convolution.  
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  Figure 1. 
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  Figure 2. 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

  Figure 3. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

  Figure 4. 
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  Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

  Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 7 
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tint=0; 

tfinal=10; 

tstep=.01; 

t=tint:tstep:tfinal; 

x=1*((t>=0)&(t<=1)); 

subplot(3,1,1), plot(t,x) 

axis([0 4 0 2]) 

h=1*((t>=0)&(t<=1)); 

subplot(3,1,2),plot(t,h) 

axis([0 4 0 2]) 

t2=2*tint:tstep:2*tfinal; 

y=conv(x,h)*tstep; 

subplot(3,1,3),plot(t2,y) 

axis([0 4 0 2]) 

 

  Program 1 
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  Figure 8 
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tint=0; 

tfinal=10; 

tstep=.01; 

t=tint:tstep:tfinal; 

x=t.*((t>0)&(t<1)); 

subplot(3,1,1), plot(t,x) 

axis([0 5 0 1.5]) 

grid on 

h= 1*((t>=0)&(t<=3)); 

subplot(3,1,2), plot(t,h) 

axis([0 5 0 1.5]) 

grid on 

t2=2*tint:tstep:2*tfinal; 

y=conv(x,h)*tstep; 

subplot(3,1,3),plot(t2,y) 

axis([0 5 0 1.5]) 

grid on 

 

 

 

  Program 2 
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  Figure 9 
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tint=-3; 

tfinal=10; 

tstep=.01; 

t=tint:tstep:tfinal; 

x=(exp(t).*((t>-1)&(t<0)) + exp(-t).*((t>0)&(t<1))); 

subplot(3,1,1), plot(t,x) 

axis([-3 5 0 2]) 

grid on 

h=2*((t>=0)&(t<=3)); 

subplot(3,1,2), plot(t,h) 

axis([-3 5 0 3]) 

grid on 

t2=2*tint:tstep:2*tfinal; 

y=conv(x,h)*tstep; 

subplot(3,1,3),plot(t2,y) 

axis([-3 5 0 3]) 

grid on 

 

 

 

  Program 3 
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  Figure 10 

 

 

 

 



APPE�DIX A 

Convolution Examples 

 

 

Program 2 
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For  -∞ < t < 0,  
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For  0 < t < 1 

 

22

2

0

2

0

t
dty

t
t

=== ∫
τ

ττ)(
 

 

For  1 < t < 2 
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For  2 < t < 3 
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For  3 < t,   
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Program 3. 
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For  -∞ < t < -1,  
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For  -1 < t < 0 
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For   0 < t < 1 
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For   1 < t < 2 
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For   2 < t < 3 
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For   3 < t < 4 
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For   4 < t  
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