
Convolution for Engineers, Technologists, Scientists, and Other �on-PhDs

Wm. Hugh Blanton, East Tennessee State University

ABSTRACT

One of the more important and one of the least understood principles in electronic engineering

technology is convolution. The convolution integral provides a convenient mathematical

equation that expresses the output of an linear time invariant system based on an arbitrary

signal, x(t), and the system's impulse response, h(t). Because the interpretation takes some

effort, most instructors take advantage of the linear transformation into the frequency domain

where convolution becomes simply multiplication, eg. Laplace and Fourier transforms. After

performing the analysis in the frequency domain, the results are transformed back to the time

domain. Regrettably, the students lose the sense that mathematical statements have meaning.

This paper examines several MATLAB examples that can be used to vividly present the

concepts involved with the convolution integral in less mathematically frightening, more

normal terms to the engineering technology and other scientific students that prefer relatable

applications rather than mathematical theory.

keywords: convolution and MATLAB

I�TRODUCTIO�

For a continuous, linear, and time-invariant (LTI) system with an impulse response h(t), the

response function, y(t), to an input function, x(t), is determined by a convolution integral. This

convolution relation, denoted as y(t) = x(t) ⊗ h(t), is

)1()()(τττ dthxy −= ∫
∞

∞−

where τ is a dummy integration variable. Convolution is commutative such that

)2()()()(thtxty ⊗=

implying

)3(.)()()()()(ττττττ dhtxdthxty ∫∫
∞

∞−

∞

∞−
−=−=

The interpretation of the convolution integral is not intuitive. Engineering students are taught to

solve the convolution integral using semigraphical methods while engineering technology

students use transform methods like the Laplace transform [1].

Transform methods like the Laplace and Fourier transforms convert signals in the time domain to

signals in the frequency domain. Typically, the transformations have a one-to-one

correspondence with the original function. Because of this one-to-one correspondence, the time

domain functions and the frequency domain functions generated by the Laplace and Fourier

transforms are simply tabulated in widely available math tables.

One of the properties associated with the transformation from the time domain into the frequency

domain is that convolution in the time domain becomes multiplication in the frequency domain.

Likewise convolution in the frequency domain becomes multiplication in the time domain.

Many engineering technology students have used the Laplace transform to convert from the time

domain to the frequency domain where they do their analysis and then convert their solution

back into the time domain.

Semigraphical Methods

Semigraphical methods typically break the convolution integral into distinct graphical sections.

For example, consider a system with and impulse response, h(t), that is a 1 unit high and 1 unit

wide and an input function, x(t), that is 1 unit high and 1 unit wide as shown in Figure 1.

1. The first graphical step is to determine h(-τ) which simply involves folding

h(τ) about the vertical axis as shown in Figure 2. Note t is replaced by a

dummy variable, τ.

2. The function h(t- τ) slides from t = -∞ to t = 0 without intersecting x(τ),

Figure 3.

3. Letting h(t-τ) slide from t = 0 to t = 1, h(t-τ) and x(t) will intersect at an

increasing rate, Figure 4.

The convolution integrals yields

4. Letting h(t-τ) slide from t = 1 to t = 2, h(t-τ) and x(t) will intersect, but at a

decreasing rate, Figure 5.

)5(2)1(111
1

1

1

1
ttd

tt
−=−−==×

−−∫ ττ

5. Sliding h(t-τ) past t = 2 yields no more intersections, Figure 6.

)4(11
00

td
tt

==×∫ ττ

The mathematical solution to the convolution of the two functions h(t) and x(t) for this particular

example is:

)6(

20

212

10

00

)()()()()(











>

<<−

<<

<

=−=⊗= ∫
∞

∞−

t

tt

tt

t

dthxthtxty τττ

The output, y(t), is shown graphically in Figure 7.

Figure 7 shows that y(t) is zero from −∞ < t < 0. That is, neither signal intersects the other. For

0 < t < 1, there is more intersecting area until t = 1 is reached where the two signals overlay

each other and the bounded area is maximum. From 1 < t < 2, the limits of integration start

decreasing, and the bounded area decreases.

The Joy of Convolution

There is little joy realized when doing the semigraphical method of convolution. The student has

to carefully observe when the transitions in the signals cause the limits of integration to change.

In the previous simple example, the integration changes four times (-∞ < t < 0, 0 < t < 1, 1 < t

< 2, and -∞ < t ≤ 0) with two actual changes in the limits of integration. As signals become

more complex, there are more transitions and more possibilities for the students to lose their

way.

Of course, students must do a few of the simple examples to realize the methodology for the

more complex problems. Nevertheless, the mathematical process of convolution quite often

overwhelms the technological realities. One method that pumps some joy into the convolution

process is the use of convolution applets [2]. Applets are programs written in Java [3]. Since

Java is a programming language, the applications are limitless. Nevertheless, applets are

typically small embedded applications in a webpage. They are small because they are typically

transferred over the internet.

Quick and Dirty

My classes have found that using MATLAB [4] to perform convolution is more informative than

either the convolution integral or the convolution applets. The advantage of MATLAB is the

ease with which students can program the application and the graphical capabilities that the

programs allow. The MATLAB program that demonstrates the convolution of Figure 1 is shown

in Program 1 and Figure 8. Program 2 and Program 3 show a couple of MATLAB-based

convolution examples that are solved as homework problems. There MATLAB representations

are shown Figures 9 and Figure 10, respectively. The convolutions for Program 2 and Program 3

are calculated in Appendix A.

Conclusions

The Java applet and MATLAB application programs each vividly represent the same

technological realities as the convolution integral, however, in less mathematically frightening,

more graphically acceptable terms for the average engineering, engineering technology, science,

and other non-Ph.D students. Although many engineering technology curriculums mask

convolution by transferring the solution of problems into the frequency domain, a working

knowledge of convolution is important in several disciplines within engineering and engineering

technology such as digital signal processing and medical imaging. Convolution can be learned

and is really useful, and it doesn't require a Ph.D. in mathematics. Using MATLAB, it has never

been easier to experiment with convolution.

References

[1] Goldberg, I., Block, M., and Rojas, R. A Systematic Method for the Analytical Evaluation of Convolution

Integrals. IEEE Transactions on Education, vol. 45, no. 1, February 2002. pp 65-69.

[2] Crutchfield, Stephen. The Joy of Convolution. http://www.jhu.edu/~signals.

[3] Java Applets: Introduction. http://www.echoecho.com/applets.htm

[4] MathWorks, MATLAB & SIMULI-K, Student Version. The MathWorks, Inc. Natick, MA. 2007.

Figures and Tables

 Figure 1.

1 1

1 1

h(t) x(t)

t t

 Figure 2.

 Figure 3.

 Figure 4.

h(τ) h(-τ)

1

1
t

1

-1
t

1

-1

h(t-τ)

t

x(τ)

1

t

1

-1

h(-τ)

t

x(τ) h(t-τ)

1

 Figure 5.

 Figure 6

 Figure 7

-1

h(t-τ)

t

x(τ)

1

1

t t-1

t

x(τ)
h(t-τ) 1

-1 1 2

-1
t

)()()(thtxty ⊗⊗⊗⊗====

1

1 2

τττ dthxty)()()(−= ∫
∞

∞−











>

<<−

<<

<

=

20

212

10

00

)(

t

tt

tt

t

ty

tint=0;

tfinal=10;

tstep=.01;

t=tint:tstep:tfinal;

x=1*((t>=0)&(t<=1));

subplot(3,1,1), plot(t,x)

axis([0 4 0 2])

h=1*((t>=0)&(t<=1));

subplot(3,1,2),plot(t,h)

axis([0 4 0 2])

t2=2*tint:tstep:2*tfinal;

y=conv(x,h)*tstep;

subplot(3,1,3),plot(t2,y)

axis([0 4 0 2])

 Program 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

 Figure 8

()

















<<
−−

<<

<<

=

elsewhere

)(

0

32
2

21

21
2

1

10
2

2

2

t
t

t

t
t

ty

tint=0;

tfinal=10;

tstep=.01;

t=tint:tstep:tfinal;

x=t.*((t>0)&(t<1));

subplot(3,1,1), plot(t,x)

axis([0 5 0 1.5])

grid on

h= 1*((t>=0)&(t<=3));

subplot(3,1,2), plot(t,h)

axis([0 5 0 1.5])

grid on

t2=2*tint:tstep:2*tfinal;

y=conv(x,h)*tstep;

subplot(3,1,3),plot(t2,y)

axis([0 5 0 1.5])

grid on

 Program 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

 Figure 9

()

()
()

()()















<<−

<<−−

<<−

<<−−

<<−

=

−−

−−

−

−−

−

elsewhere

)(

0

432

32224

2114

10224

012

13

31

1

1

1

tee

tee

te

tee

 t -ee

ty

t

t

t

t

tint=-3;

tfinal=10;

tstep=.01;

t=tint:tstep:tfinal;

x=(exp(t).*((t>-1)&(t<0)) + exp(-t).*((t>0)&(t<1)));

subplot(3,1,1), plot(t,x)

axis([-3 5 0 2])

grid on

h=2*((t>=0)&(t<=3));

subplot(3,1,2), plot(t,h)

axis([-3 5 0 3])

grid on

t2=2*tint:tstep:2*tfinal;

y=conv(x,h)*tstep;

subplot(3,1,3),plot(t2,y)

axis([-3 5 0 3])

grid on

 Program 3

-3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3 4 5
0

1

2

3

-3 -2 -1 0 1 2 3 4 5
0

1

2

3

 Figure 10

APPE�DIX A

Convolution Examples

Program 2

∫
∞

∞−

−= τττ dthxty)()()(

For -∞ < t < 0,

 0=)(ty

For 0 < t < 1

22

2

0

2

0

t
dty

t
t

=== ∫
τ

ττ)(

For 1 < t < 2

()
2

1

2

12

2

2
2

1

22

1

=
−

=== ∫
τ

ττ dty)(

For 2 < t < 3

()
2

21

2

2
1

2

21

2

−−
===

−
−∫

t
dty

t
t

τ
ττ)(

For 3 < t,

0=)(ty

Program 3.

∫
∞

∞−
−= τττ dthxty)()()(

For -∞ < t < -1,

 0=)(ty

For -1 < t < 0

()1
1

1

222
−

−−

−=== ∫ eeedety t
t

t
ττ τ)(

−−−−1 1

h(t)

For 0 < t < 1

() ()
1

1010

0

0

1

0

1 0

224

222

222

−−

−−−−

−

−−

−

−−=

−−=+−−=






 −=+= ∫ ∫

ee

eeeeee

eededety

t

tt

t
t

ττττ ττ)(

For 1 < t < 2

() ()
()11

10110

1

0

0

1

0

1

1

0

1444

2222

222

−−

−−−

−

−−

−

−=−=

−=+−−=






 −=+= ∫ ∫

ee

eeeee

eededety ττττ ττ)(

For 2 < t < 3

()() ()()
()31

310130

1

0

0

3

0

3

1

0

224

222

222

−−

−−−−

−

−−

−

−−=

−−=+−−=






 −=+= ∫ ∫

t

tt

t
t

ee

eeeeee

eededety ττττ ττ)(

For 3 < t < 4

()() ()() ()()131331

1

3

1

3

222

22

−−−−−−−−

−

−

−

−

−=−=+−=






−== ∫

eeeeee

edety

ttt

t
t

ττ τ)(

For 4 < t

0=)(ty

