
Session 2793

Creating Artificial Neural Network Modules For Use In Rapid Application
Development

Garrett S. Harris a, Bruce E. Segee a, Vincent M. Allen b
a University of Maine at Orono / b Modicon Corporation

Abstract

eural networks and fuzzy logic have emerged as useful tools for the calibration of arrays
of thin film gas sensors. Properly choosing network parameters is essential to achieve
acceptable network performance. Often, choosing said parameters involves a time

consuming search of many possible candidate networks. When the neural network code is
incorporated with in an application with other code, such as for data capture, presentation, and
hardware control, interdependencies often form between code segments. Enhancements,
modifications, and fixes to the code lead to an extensive and time-consuming rewrite of many
parts of the software. Thus, the need arises for neural network software modules that can be
easily incorporated in application software but whose interface is well defined and whose
implementation is entirely separate from the functionality it provides. By providing debugged
and proven software modules encapsulating neural network functionality that can be simply
inserted into any application, the entire software system can be modularized. These modules can
be reused easily, and changing the neural network operating parameters no longer involves a
complete software rewrite or even a recompile. By following the guidelines of rapid application
development techniques, and using emerging technologies such as ActiveX and OLE, these
modules can be easily developed.

Introduction

Artificial neural networks (ANNs) have emerged as useful tools in a number of areas including
but not limited to gas sensor array calibration [Bajaria, 1996]. Artificial neural networks are so
named because they employ a large number of simple processing elements and are able to
"learn" appropriate behavior based on training data. The training data usually consists of data
gathered under known conditions. The training process consists of adjusting network parameters
to reduce the difference between the actual network output and the desired output for that data.
In a gas sensing application, arrays of thin film gas sensing platforms are normally used. These
devices usually have responses to a wide variety of gases, target as well as interferents. While the
sensors are responsive to the majority of the gases presented to them, individual sensors respond
differently to different gases. By combining the sensors into an array configuration,
combinations of sensors can reliably detect specific gases. Artificial neural networks can learn to
approximate the actual gas concentrations based on training from data gathered under laboratory
conditions for known concentrations of mixtures of gases.

N

P
age 5.180.1

An unfortunate side effect of using neural networks is the complexity the associated code adds to
the overall application. Neural networks are complex tools that require complicated
mathematical routines. Often the neural network code makes up the majority of the application,
and consumes most of the programmer’s time both writing and debugging. Simply changing
network parameters can require a time consuming rewrite of the code.

It would be much more useful and worthwhile to create a modularized control that effectively
"wraps up" the neural network functionality and provides a software "drop in" object. Thus, the
neural network code could be written and tested once, and used anytime a programmer needed
the provided functionality. This approach would save programmers time and effectively money,
which would otherwise be spent "reinventing the wheel" [Harris, 1999].

Thin film chemiresistive gas sensors

Recent advances in thin film chemiresistive semiconductors have fueled the development of gas
sensors for the detection of many different target gases [Bajaria, 1996]. A rendition of a thin film
chemiresistive sensor is shown in Figure 1. These sensors are capable of detecting gasses at very
low concentrations, quickly return to a baseline after exposure, and have a broad range of
concentrations to which they are sensitive. The nature of the sensors makes them very sensitive,
but non-selective. By combining several different sensors into an array, the overall array
response can be made unique for any mixture of gases, even though all of the individual sensor
elements may respond to all of the gases in the mixture, and indeed, individual sensors may
respond the same to different gases. Since each individual sensor reacts to a gas differently, the
aggregate response is therefore different for each gas. The mathematical modeling of these arrays
is very complex, due to their decidedly nonlinear nature; also analyzing the data requires
arbitrary multidimensional nonlinear mappings between the sensor response and the actual gas
concentration. Thus, determining the relationship between sensor response and gas concentration
would be difficult if not impossible. One of the most promising methods of dealing with these
shortcomings is Artificial Neural Networks.

Figure 1. Thin Film Chemiresistive Sensor

Artificial Neural Networks

Artificial Neural Networks (ANNs) are systems capable of generating a non-linear mapping from
one large set of variables (e.g., sensor response) to another (e.g., gas concentration). ANNs are
adaptive, in that their mappings are effectively "learned" from a set of training data. The

P
age 5.180.2

conceptual idea behind these mappings is depicted in Figure 2. The neurons mathematically map
one or more inputs to one or more outputs. To develop an ANN for detecting a target gas, one
would use the training data with known concentrations through the network to adjust the network
parameters, and then test the system using a set of data collected, but not used for training. ANNs
are also capable of generating an output for an unknown or unencountered input by generalizing
the response from the training data.

Figure 2. Conceptual Design of an ANN

ANN functionality has been and can be applied to a wide variety of system control tasks. While
it is possible to efficiently implement ANN functionality in software, the effort required is still
an issue. Thus, if a software module were designed to allow an ANN to simply be added to
another project without having to write or even understand the complex code associated with it,
considerable time and money would be saved.

Rapid application development techniques

Perhaps the greatest advance of this decade in software engineering has been the introduction of
rapid application development techniques, most notably being the idea of software modules that
can be easily reused and combined to make whole, fully functional programs. While the idea of
modularity isn’t new, it has only recently been realized with the introduction of Microsoft
Windows and ActiveX. This allows developers to create the aforementioned modules, and
simply drop them into any application. Because the modules are entirely self-contained, they can
be reused with a variety of applications. This allows a complex piece of code, such as a neural
network, to be written, debugged, and proven once and then reused multiple times with ease.
When developers wish to write applications, they simply need to write the code that "glues" the
modules together. This has the net effect of considerably reducing development time as well as
reducing the number of errors encountered.

Overview of software design

Computers have evolved tremendously since the days of punch cards and vacuum tubes. Today’s
PCs can outperform mainframes of decades ago with many clock cycles to spare. Software
engineering has kept pace with these advancements. From the early days of assembly language
programming to today’s custom controls, as computers get faster software engineering
techniques become more and more advanced.

P
age 5.180.3

The early years

At the start of the computer era, the only tool for programming was assembly language.
Essentially one step up from machine code, assembly is a platform specific language that is
"assembled" into byte code and is subsequently executed on the processor. In the early years,
every time a new application was desired, a programmer would sit down and code an entire
application in assembly. Applications had to be written specifically for the computer they were
run on, and if different applications with some similar features were desired, then those features
would essentially need to be written twice. Assembly also provided the least amount of
abstraction of the system that was being programmed. While this allowed programmers greater
control of the underlying system, it meant that each and every operation had to be encoded
instruction by instruction.

While assembly language may have seemed a much better alternative to programming actual
byte code in the past, today’s tools have far surpassed assembly’s limited feature set. As
computers became more powerful, more robust development environments replaced assembly
language.

C is for reusable libraries

In the early 70’s, the programming language known as C was developed at Bell Labs [Pheatt,
1996]. Considered to be one of the most important software development tools of the time, C
brought a host of new features to programmers, making their job much easier. One of the greatest
advantages of the language from a software engineering standpoint was the idea of reusable
libraries. These allowed programmers to code functions once and subsequently include them as
libraries wherever they were needed. This was the first step down the long road to the idea of
reusable code modules that we know today. C also had a robust set of built in control structures,
data types, and built in functions. This considerably reduced the amount of overhead
programming that was required, allowing software engineers to concentrate on the applications
that they were writing.

C turned out to be so popular that it was later formalized as ANSI Standard C, and is supported
across multiple platforms. However, even with all of the niceties that C brought, there were still
quite a few difficulties. While it was possible to create reusable libraries, all too often when other
programmers went to use library subroutines, they often found them either too specific for their
current application, or so general that they were difficult to understand. There was still the need
for a software development tool that could provide the modularity Rapid Application
Development (RAD) called for.

C++: like C, only better

Perhaps the next software engineering advance of note is the introduction of C++. In the early
80’s, C++ was introduced as an extension to the C language that provided some additional
features [Stroustrup, 1994]. One of the most important new features was the idea of classes.
Classes were designed with Object Oriented Programming (OOP) in mind. Essentially a library

P
age 5.180.4

of functions and the data types that said functions supported, classes could simply be included
into any project that their functionality was desired. Classes took the idea of reusable libraries
one step further by adding the data types into the class definition. With the advent of classes, the
idea of reusable software modules that were already coded and could simply be added into a
project was becoming more and more of a reality. C++ also introduced the idea of constructors
and destructors. These were routines in the class that described how to create an instance of it.
They allowed classes to be dynamically allocated and destroyed, as needed.

C++ was specifically designed to provide a basic form of software reusability. The idea of
classes that could be used, reused, and shared allowed programmers to work more efficiently in
teams. Likewise, one programmer didn’t need to know how another programmer’s code worked,
as long as he had a basic idea of the classes interface. Unfortunately, this was the Achilles heel of
classes. Because of the non-standard interface, classes written by one programmer were often
harder for another programmer to use. Getting a basic idea of the classes’ interface could actually
take another programmer longer than writing their own class. This led to programmers writing
their own classes specifically for their own application, nullifying the effectiveness of the idea
behind classes. Also, while C/C++ was more widely used than other software engineering tools,
a few other environments, such as Pascal, were becoming popular. Classes were written in and
specifically for C++, but it wasn’t possible to import a class into Pascal, or even ANSI C.

Classes were a step in the right direction, but by being unable to provide a standard interface
programmers were still faced with the need to figure out how someone else’s class functioned
before they could use it. As classes got very complex, programmers spent more time figuring out
the interface to the class than it would have taken them to write their own class. Additionally, it
would have been beneficial if classes could be reused outside of C++. Thus, a tool was needed to
modularize software components, but also needed to provide a standard interface and be used
across multiple development tools.

The coming of OLE

In 1991, Microsoft made available to developers a new technology that it called OLE, or Object
Linking and Embedding [Brockschmidt, 1996]. OLE was initially designed to facilitate the easier
creation of compound documents. An example of a compound document is a Word document
that contains some graphics and an Excel spreadsheet. The idea of OLE extended beyond just
Microsoft products, allowing any application conforming to the OLE specification to share
objects with other OLE applications. The document in which an object was placed retained the
information about the format and the native data used to create the object. If the object needed to
be edited, a simple double click placed the data in the original editor.

The designers of OLE soon realized that they were on to something far greater than compound
documents. They had actually designed a specific instance of reusable modules. So, in 1993
Microsoft released a completely redesigned OLE, known as OLE 2.0 [Brockschmidt, 1996].
OLE 2.0 retained and improved on the idea of compound documents, but boasted a completely
redesigned infrastructure to support component software. This infrastructure is known as the
Component Object Model, or simply COM. COM provides the resolutions to the difficulties
encountered with other solutions to the lack of reusable objects. The scaffolding to support

P
age 5.180.5

reusable software components is provided by COM, and therefore OLE, which moved from a
specific technology to an extensible systems object technology with an architecture that
accommodates new and existing designs.

OLE and COM also provide the means for a standard interface into components and objects.
These objects are entirely self contained, and can be used and reused numerous times. Borrowing
from the dynamic creation of classes in C++, OLE and COM objects can be dynamically created
and destroyed as software needs them and their associated functionality. OLE calls for object to
have properties and methods. Properties are attributes of the object that can be changed or set.
Methods are the functions that the object provides. Even programs such as Microsoft Word and
Excel expose properties and methods that can be used in other applications through OLE. Using
Microsoft Excel as an example, the name of the current sheet would be a property that could be
set, and selecting a column of cells would be a method that could be called.

ActiveX Controls and "glue"

ActiveX controls are objects based on COM yet provide services substantially different than
OLE. While OLE uses COM to provide high-level application services, ActiveX provides a
slimmed down infrastructure that is optimized for size and speed. Additionally, ActiveX allows
controls to be embedded in web pages, thus their need to be small and fast. ActiveX controls
have a fifty to seventy percent reduction in size, and support several Internet innovations
[Microsoft, 1996]. Despite these differences, ActiveX controls evolved from OLE controls, and
are components that can be added to a project to reuse packaged functionality that someone else
designed. ActiveX controls can be used in many programming languages, including all Microsoft
programming and database languages, such as Visual Basic, Visual C++, FoxPro, and even
Fortran.

ActiveX controls have many features that make them very suitable for the design of reusable
software objects. The objects are said to be functionality oriented, meaning that the concern lies
more with the function of the object than how to implement it or interface with it. Since all
ActiveX controls have a standard interface, there is no need for the programmer to know the
details of the control’s implementation. By dropping it into the desired project, the programmer
has access to all of the methods and properties the control provides. Thus, the programmer need
only be concerned with the functionality of the module.

ActiveX modules also allow multiple interfaces. This allows the module to be accessible in many
different environments. For example, a neural network control could be "dropped" into a Visual
Basic project, or it could be used in conjunction with Microsoft Excel. This is due in part to the
multiple interfaces the programmer has given the module. Providing multiple interfaces to an
object allows that object to be used in a much wider variety of situations.

With the advent of ActiveX, the tools are in place for the design of reusable software modules.
These modules all conform to a standard interface, work across multiple development
environments, and can easily be shared amongst programmers. Thousands of ActiveX controls
are available today, ranging from a timer control to a full-featured word processor. To take

P
age 5.180.6

advantage of these controls, one simply needs to write the "glue" that holds the application
together. This is most easily accomplished in Visual Basic. ActiveX controls are simply
"dropped" onto a form. These controls include the aforementioned, as well standard buttons, text
boxes, etc. The programmer then simply writes a small portion of code that ties or "glues" the
whole project together. This includes tasks such as taking data from one control and passing it to
another, and presenting said data. Thus, in a relatively short amount of time complex
applications can be developed.

Development of an Artificial Neural Network Control

Using the aforementioned techniques, it was desired to design a neural network control that
could simply be dropped in to any project where its functionality was desired. By choosing an
ActiveX implementation, the control would be easily integrated into Visual Basic code, cutting
software design time considerably. Implementing multiple interfaces allows the control to be
used both in a programming environment, as well as Microsoft Excel, which is the native format
of the gas sensor data that is received.

The control was designed and debugged in Visual C++, by a programmer with extensive
experience in both C++ and neural networks. By choosing to implement the ANN as a control
however, programmers with little or no experience with ANNs can use their functionality in the
software that they develop. This was the driving force behind designing the ANN as a control.
Not only that, but the code is entirely reusable in a variety of situations. This is due to the lack of
front end on the control. The ANN control as designed has no facilities for data presentation. It
merely returns the raw data and relies on the programmer to "glue" the control together with
some manner of a data presentation control or program. This was done purposefully, allowing
the control maximum effectiveness in a variety of programming tasks. By allowing individual
programmers to determine the front end, the control is fully universal and not specific to one
application.

As previously mentioned, ActiveX controls interface to other objects with properties and
methods. The ANN control has numerous properties for things such as learning rate,
generalization, and other operating parameters for the ANN. After setting the network operating
parameters to the desired values, one can simply call methods like TrainNetwork, TestNetwork,
GetTestError, and the like to have the ANN operate on the given data. Excel is available as an
object to VB programmers, and its functionality was incorporated in the ANN control to provide
data storage functionality in an environment that is easily viewable and portable. The data is
stored in Microsoft Excel format, allowing the data to be easily viewed afterwards outside of the
application.

The development of software utilizing the control is very simple to develop and deploy. This is
not only due to the reusable, modular nature of the control, but when coupled with the RAD
features of Visual Basic (VB), development times are slashed. Once one has determined the
function of the software, one creates a form or forms in VB. Forms are essentially "containers"
that hold controls and other objects. After the creation of the forms, the next step is to usually
drop all of the desired controls onto the form. Examples of these are buttons, text boxes, simple
graphics, serial communication, etc. After all of the controls are dropped onto the form, the

P
age 5.180.7

programmer can proceed to write the code that ties the controls together. This is furthered
hastened by VB presenting the programmer with comprehensive lists of all the properties and
methods that can be used for each control. Finally, after these few short steps, the debug process
can begin. After a normally short debug period, the code can be compiled into an executable, and
then packaged and deployed. Packaging and deploying involves generating a series of cabinet, or
archived files containing the executable and those controls associated with it. Also generated is
an installation program that not only installs the main program but also any needed controls onto
the user’s computer.

Example VB Form

Shown in Figure 3 is a sample Visual Basic form utilizing the ANN control. This particular
application was designed for training the neural network weights. The form is essentially
"blank" to start with, and all of the objects seen above were placed on the form by the developer.
All of the buttons and text boxes are themselves ActiveX controls, while the form serves as a
container for them. The ANN has already been placed on the form, as seen above the arrow. All
that is required to bring the ANN functionality to this program was merely placing the icon
representing the control onto this form. After placing the control, all of its associated properties
and methods are available to the software developer. For example, the text box "Network File"
has a property called text, which refers to the text it displays. Clicking the "Load Network File"
invokes the click method of the button. This in turn gets the text property from the "Network
File" box, and calls Excel to load the file. This is all accomplished in a few simple lines of code,
demonstrating the ease of use of programming with components.

P
age 5.180.8

Figure 3. Example Visual Basic Form

To further examine the simplicity that the control provides, Figure 4 below shows the code
required to initialize and use a Radial Basis Function (RBF) neural network. The first step is to
drop the control onto the form, as in Figure 3 above. Then the object RBF1 is available to the
programmer. The first line loads an Excel file containing the training and testing data. The next
four lines set parameters required by the network for training and operation. The second to last
line is the actual training and the last line invokes the method of the control that tests the data.
The output is written to a standard Excel spreadsheet file, which can then be opened and
manipulated in anyway the user sees fit.

RBF1.DataFilename = "C:\example.xls"
RBF1.Epochs = 1000
RBF1.LearningRate = .3
RBF1.MSETarget = .1
RBF1.Variance=2
RBF1.TrainNetwork
RBF1.TestNetwork

Figure 4. Visual Basic Code Fragment

P
age 5.180.9

Conclusion

Software engineering

Since the dawn of the computer era, application development techniques have evolved to keep
pace with the cutting edge technology. The trend in software engineering techniques is akin to
the trend of house building techniques in modern America. In the early days, when it was desired
to build a house, one would go in the forest and cut down trees and then saw and plane them into
the desired length and thickness. Next, one would forge nails to hold the boards together.
Perhaps one would then go and select each stone for the chimney. This is not unlike the first days
of software engineering when programmers coded in assembly. As time progressed, sawmills
popped up that would cut the trees to standard lengths and plane them to standard thicknesses.
Also, standard size nails were forged. Now, when it was desired to build a house, one could buy
standard size boards and cut them to desired length and buy nails to put them together with. This
is similar to the process of code design with C/C++. Programmers had reusable libraries that
could be used in their code, but like the boards had to be tailored to their specific application. In
modern times, it is possible to buy sections of houses already built, and join them together in any
manner desired. A whole house can be made literally room by room, with a minimal amount of
construction required. All the homebuilder needs to do is join the ready-made modules together.
This is completely reflected in the design nature of ActiveX controls. Previously written
components are joined together with minimal amounts of code.

The progression of software engineering to reusable components has significantly reduced the
amount of time for developers to go from the initial conception of an idea to a finished product.
Developers have been given the tools they need to quickly produce powerful applications. Not
only has ActiveX technology cut development times, but by providing a standard interface has
allowed software engineers to tightly integrate their modules with those created by others. This
standard interface has played a major part in the success of ActiveX. The standard interface
allows the implementation of the object to be abstracted away from the user. This allows
complex controls to be created, and by adhering to a standard interface, makes the usable by
anyone familiar with the standard.

Development of an ANN control

By implementing a neural network as a control rather than as an entire program, programmers
can easily integrate the code into their project whenever the ANN functionality is desired.
Developing an ANN control in Visual C++ allowed the power of the C language to be used to
develop the control and facilitated the code’s design as a control. While not the only language in
which to write ActiveX controls, C++ provides a host of templates and wizards to speed the
design process. After the control was compiled, it could easily be dropped into any desired
project. The aforementioned ANN control is usually combined with other controls in the VB
development environment to provide presentation of the data. This allows robust applications to
be created in less time, as the ANN control is already debugged and proven. In addition, the
programmer responsible for coding the application need not understand the implementation of
the ANN, as the interface abstracts the implementation away from the user. By allowing multiple
interfaces, the control can be used in variety of situations. In most circumstances, the control is

P
age 5.180.10

dropped onto a VB form as mentioned previously and integrated with other controls that provide
data presentation. However, the control can also be integrated into a Microsoft Excel
spreadsheet. This allows the methods and properties of the control to be accessed from Excel,
essentially providing the functionality of the control right inside the spreadsheet.

Applications for Chemical Sensors

The applications for chemical sensors for this software are virtually limitless. ANNs can be used
in a variety of situations involving calibrating and determining the output of the sensors. Since
the majority of sensors have nonlinear multidimensional mappings from the input to the outputs,
neural networks are perfect candidates for data analysis. Again, by providing a drop-in module
capable of neural network processing, the desired functionality can be easily incorporated in a
variety of applications. Since chemical sensors and neural networks are so well suited for each
other, it only makes sense to have a module that can be easily deployed available for use. By
deploying the ANN software on a PC platform, the processing power, storage space, and
presentation architecture can be fully utilized. PCs provide more than sufficient processing
power to handle the advanced computation required by neural network code. In addition, the PC
platform is also best suited for the presentation and display of the data. That coupled with the
price performance curve of today’s PCs makes them an ideal choice from a monetary standpoint.

In the future, one would expect more of a trend toward the use of Artificial Neural Networks due
in part to their unique processing ability. Within the PC platform, ANNs have found a good mix
of processing power, presentation capability, and price performance. A reusable, modular, plug-
in software object conforming to the Microsoft Component Object Model specification will only
help to further facilitate the use of Artificial Neural Networks in a chemical sensor software
package.

References

[Bajaria, 1996] P. Bajaria, "Calibration of Solid State Gas Sensors Using Cerebellar Model Arithmetic

Computer Artificial NeuralNetworks", UMaine Masters Thesis 1996
[Brockschmidt, 1996] K. Brockschmidt, "What OLE is Really About",

http://msdn.microsoft.com/library/techart/msdn_aboutole.htm, 1996
[Harris, 1999] G. Harris “Neural network programming using rapid application development

techniques”, SPIE Conference Proceedings, 1999
[Pheatt, 1997] C. Pheatt, "A Brief History of C",

http://academic.emporia.edu/pheattch/cs207s96/hand2.htm, 1997
[Microsoft, 1996] Microsoft Corp., "ActiveX FAQ",

http://msdn.microsoft.com/library/backgrnd/html/msdn_faq.htm, 1996
[Stroustrup, 1994] B. Stroustrup, “The Design and Evolution of C++”, Addison Wesley, Reading, MA. 1994

P
age 5.180.11

