
2006-938: CREATING WEB BASED APPLICATIONS FOR INSTRUMENT DATA
TRANSFER USING VISUAL STUDIO.NET

David Hergert, Miami University

© American Society for Engineering Education, 2006

P
age 11.371.1

Creating Web Based Applications for Instrument Data Transfer Using Visual

Studio.NET

This paper discusses various techniques that allow the user to create applications that read from a

data acquisition card and transfer the data over the web to an application like Microsoft Excel or

Access. The techniques that are described in the paper use the Basic component of Visual

Studio.NET. The code described in this paper could be used in a Basic programming course or

an instrumentation based lab.

As part of the paper, a simple DLL is described that allows the user to read from a port.

Transferring data over the web comparisons are made between Visual Basic 6.0 and Visual

Studio.NET.

Visual Basic 6.0 vs. Visual Studio.NET

In the 1990s the author wrote a series of I/O routines in Visual Basic 6 that read data from

temperature and pressure transducers on an HVAC trainer, routed the data over a TCP/IP

connection, and displayed the data in Excel at a satellite campus. This paper is based on the his

experience when attempting to switch from Visual Basic 6 to Visual Studio.NET. Programs with

I/O routines written in Visual Basic 6 were fairly difficult to implement in Visual Studio.NET.

For example, many DLLs that accessed I/O ports no longer worked, programming an RS-232

interface was different, DDE data exchange to Excel not longer existed, and TCP/IP data

transmission programming had changed. This paper describes various methods to accomplish all

four tasks using Visual Studio.NET. For those new to Visual Studio.NET, the O’Brien
1
 book

listed in the bibliography provides a good introduction.

This paper is divided into three separate parts, namely, retrieving data from the instrument,

sending the data over TCP/IP to a client, and routing the data from the client into Excel.

Part I: Retrieving Instrument Data

This section will cover three methods to receive data from an instrument, namely through an RS-

232 Port, an I/O port, or using DAQmx (the driver for National Instrument cards).

Retrieving Instrument Data from an RS-232 Port

Neither Visual Basic 6.0 nor Visual Studio.NET has the ability to read or write data to I/O ports.

To compound this problem, many of the DLLs written for Visual Basic 6.0 to access files no

longer work with .NET. However Microsoft has provided a DLL that will allow the programmer

to read either from a serial or parallel port. The DLL is called Interop.MSComctLib.DLL and is

available from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=075318ca-e4f1-4846-912c-

b4ed37a1578b&DisplayLang=en

There is also a sample Basic.NET program called “How To-Using the Comm Port” at this site.

Although the example provided is intended for use on a modem, it can be easily modified to

work on a serial instrument as well. The function m_CommPort.Open is used to configure an

P
age 11.371.2

RS-232 port. An example that sets the port for 600 baud, 7 data bits, no parity, 2 stop bits, and a

13 character buffer would be:

m_CommPort.Open(1, 600, 7, Rs232.DataParity.Parity_None, _

 Rs232.DataStopBit.StopBit_2, 13)

To write a character to the port use the “m_CommPort.Write” function. An example that writes

the character D to the port would be:

m_CommPort.Write("D")

The m_CommPort.Read() function assumes that bytes are being read. An examples that would

read 13 bytes would be:

m_CommPort.Read(13)

Finally m_CommPort.Close()is used to close the RS-232 port.

Retrieving Instrument Data from an I/O Port

There are a few utilities offered over the web that allow users to access I/O ports in Visual

Studio.NET. One DLL that works particularly well is IONET from SSNET. It can be

downloaded from:

http://ourworld.compuserve.com/homepages/richard_grier/ionet.htm

To use this DLL, first download and unzip it from the web site, then create a Visual Basic.NET

program and add IONET.DLL as a reference. Ionet1.ReadAddress can then be used to refer to a

port address, and Ionet1.ReadIO.ToString can be used to read the port into a string. An example

that reads the printer port into a text box is shown below:

Ionet1.ReadAddress = &H379

TextBox1.Text = Ionet1.ReadIO.ToString

Retrieving Instrument Data from a National Instrument Card

National Instruments provides a utility to provide access to their I/O cards using NI DAQmx.

The Getting Started Guide NI-DAQmx for USB Devices
2
stated in the bibliography gives a

description of how to use a USB data acquisition card with Visual Studio.NET. This reference is

available from National Instrument’s website at www.ni.com. All DAQ cards from National

Instruments come with a driver card. An example of Visual Basic.Net code that reads input from

a port is below:

 myTask = New Task("aiTask")

 myTask.AIChannels.CreateVoltageChannel("Dev1/ai0", "", _

 CType(-1, AITerminalConfiguration), -10.0, _

 10.0, AIVoltageUnits.Volts)

P
age 11.371.3

 myTask.Control(TaskAction.Verify)

 reader = New AnalogMultiChannelReader(myTask.Stream)

 TextBox1.Text = ToString(reader.ReadSingleSample(0))

In this example, the AIChannels.CreateVoltageChannel function configures the I/O device for

board #1, analog input channel 0, and a range of -10 to 10 volts. The ReadSingleSample function

reads in a single value to a text box. The example shown above was implemented on an NI USB-

6008 card.

Part II: Sending Data Over TCP/IP

TCP/IP is a well known protocol for sending data between a server and a client. The basic

communication structure for client/server communication is shown below:.

Typical TCP/IO Functions:

Client Side Server Side

(get IP address and port)

 Listen

Connect → Accept

Write Request → Read Request

Read Response ← Write Response

Close Close

First the server is put in listen mode. A client attempts a connection to the server and the server

accepts the client. Next the client sends a request to the server. The server reads the request and

sends a response back to the client.

Implementing client/server communication in Visual Studio.Net is fairly straightforward. First

System.Net.Sockets and System.IO must be imported on both the server and client as shown

below:

Imports System.Net.Sockets

Imports System.IO

Server Programming:

Create a listener using the TcpListener method:

Dim Listener As New TcpListener(7000)

Place the program in listen status with the function:

 Listener.Start()

Next an attempt is made to accept a connection from a client, receive a request, and send data.

P
age 11.371.4

 Try

 Dim DataClient As TcpClient = Listener.AcceptTcpClient()

 Dim Stream As NetworkStream = DataClient.GetStream()

 Dim ReadData As New BinaryReader(Stream)

 Dim WriteData As New BinaryWriter(Stream)

 Dim x As Integer

 Dim ClientRead As String

 ‘receive a request from client

 ClientRead = ReadData.ReadString

 If ClientRead = "Send" Then

 ‘Write instrument data located in text box to client

 WriteData.Write(TextBox1.Text.ToString)

 End If

If the connection is successful, this code will write one string of instrument data from the server

to the client whenever the string “Send” is received from the client.

Client Programming:

On the client side, the IP address and port number of the server must be known. We have already

chose 7000 as the port number in the server. If the client is being implemented on the same

computer as the server, the loopback address 127.0.0.1 can be used. Otherwise the IP address of

the server must be entered in Client.Connect.

 Dim Client As New TcpClient

 Try

 ‘Connect with loopback address and port 7000

 Client.Connect(("127.0.0.1"), 7000)

 Dim Stream As NetworkStream = Client.GetStream()

 Dim ReadData As New BinaryReader(Stream)

 Dim WriteData As New BinaryWriter(Stream)

 Dim Astring As String

‘Send the string “Send” as a request to server.

WriteData.Write("Send")

‘Read response from server into Astring

 Astring = ReadData.ReadString()

 ‘Place data in text box

 TextBox1.Text = Astring

 ‘Close Client

 Client.Close()

 Catch ex As Exception

P
age 11.371.5

 End Try

The complete server code that reads from a port is shown in Figure 2. Included in the figure is a

timer that spaces the readings into one minute intervals.

Figure 2 Server Code

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Ionet1.ReadAddress = &H379

 End Sub

TextBox1.Text = Ionet1.ReadIO.ToString

 Dim Listener As New TcpListener(7000)

 Listener.Start()

 Try

 Dim DataClient As TcpClient = Listener.AcceptTcpClient()

 Dim Stream As NetworkStream = DataClient.GetStream()

 Dim ReadData As New BinaryReader(Stream)

 Dim WriteData As New BinaryWriter(Stream)

 Dim x As Integer

 Dim ClientRead As String

 Dim LoopTime As TimeSpan

 Dim InitialTime As Date

 Dim waitspan As TimeSpan = TimeSpan.FromSeconds(60)

 'receive a request from client

 ClientRead = ReadData.ReadString

 For x = 1 To 5

 If ClientRead = "Send" Then

 WriteData.Write(TextBox1.Text.ToString)

 End If

 InitialTime = DateTime.Now

 Do

 LoopTime = DateTime.Now.Subtract(InitialTime)

 Loop Until LoopTime.Ticks > waitspan.Ticks

 Next

 DataClient.Close()

 Listener.Stop()

 Catch err As Exception

 TextBox1.Text = "Error"

 End Try

 End Sub

P
age 11.371.6

Part III: Routing Data to Excel

In VB 6 and earlier, Dynamic Data Exchange (DDE) provided a simple yet powerful method of

transferring data from a VB program to an Excel Spreadsheet. DDE is no longer supported in

Visual Studio.NET, and little information is available on how to replace it.

In Visual Studio.NET there are two methods for transferring data to and from Excel, ADO.NET

and OLE. ADO.NET requires setting up Excel as a database. Since Excel is not designed to be a

database, this can be quite cumbersome. A simpler method is to use OLE. The Deitel
3
 and

Macdonald
4
 books referenced in the bibliography both describe OLE and ADO.NET in some

detail. The Deitel
3
 book is particularly useful for more information on routing data to Excel using

OLE.

To use OLE, first go to the Solution Explorer and select the COM tab in Add Reference. Add the

Microsoft Excel Object 10.0 Library to the list.

Next set up a new Excel application and make it visible:

 Dim App As New Excel.Application

 App.Visible = True

Next define an workbook and sheet in Excel:

 Dim Doc As Excel.Workbook = App.Workbooks.Add()

 Dim ExcelSheet As Excel.Worksheet = Doc.Sheets(1)

Column headings can be created by:

 ExcelSheet.Range("A1").Value = "Date and Time"

 ExcelSheet.Range("B1").Value = "Reading"

Next the width of column A must be large enough to contain the data and time

 ExcelSheet.Range("A:A").ColumnWidth = 22

The date and time is inserted into A2 with the method:

 ExcelSheet.Range("A2").Value = DateTime.Now

Finally the data is written to cell B2 with the method:

 ExcelSheet.Range("B2”).Value = Astring

The complete client code that reads an instrument string from the server and places data in Excel

with the current date is shown in Figure 3. Included in the figure is a timer that spaces the

readings into one minute intervals.

Figure 3 Client Code

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

P
age 11.371.7

 Dim i As Integer

 Dim Client As New TcpClient

 Dim App As New Excel.Application

 Dim Now As DateTime = DateTime.Now

 App.Visible = True

 Dim Doc As Excel.Workbook = App.Workbooks.Add

 Dim Sheet As Excel.Worksheet = Doc.Sheets(1)

 Sheet.Range("A1").Value = "Date"

 Sheet.Range("B1").Value = "Reading"

 Sheet.Range("A:A").ColumnWidth = 20

 Dim Days As Integer

 Try

 Client.Connect(("127.0.0.1"), 7000)

 Dim Stream As NetworkStream = Client.GetStream()

 Dim w As New BinaryWriter(Stream)

 Dim r As New BinaryReader(Stream)

 Dim LoopTime As TimeSpan

 Dim InitialTime As Date

 Dim Astring As String

 Dim waitspan As TimeSpan = TimeSpan.FromSeconds(60)

 For i = 1 To 5

 w.Write("Send")

 Astring = r.ReadString()

 Sheet.Range("A" & i + 1).Value = DateTime.Now

 Sheet.Range("B" & i + 1).Value = Astring

 InitialTime = DateTime.Now

 Do

 LoopTime = DateTime.Now.Subtract(InitialTime)

 Loop Until LoopTime.Ticks > waitspan.Ticks

 Next

 TextBox1.Text = Astring

 w.Write("Stop")

 Client.Close()

 Catch ex As Exception

 End Try

 End Sub

P
age 11.371.8

The Excel sheet looks like this after five readings spaced one minute apart:

Figure 4. Excel Spreadsheet

The programs shown above could easily be modified to have a continuous stream of data sent to

Excel. FOR loops could enclose WriteData.Write(TextBox1.Text.ToString) and

ExcelSheet.Range("B1").Value = StringValue to allow for multiple rows to be filled in. As an

example the latter function could be coded as:

For x = 1 to 10

 ExcelSheet.Range("B" & i+1).Value = StringValue

Next

This will increment the row each time data is read into Excel.

Conclusions

This paper describes a complete process for reading data from an instrument and routing it to

Excel using DDE and TCP/IP. The methods shown here could be used for laboratory

experiments that use large equipment (such as an HVAC trainer, a wind tunnel, or a heat

exchanger) in a distance education setting. Students can control the equipment and read data at

the remote site. The Visual Basic.NET programs described in this paper are presently being used

P
age 11.371.9

in a thermodynamics class broadcast from Miami University-Hamilton to five community

colleges in the State of Ohio.

Bibliography
O’Brien B, Seaver C, Microsoft Visual Basic.NET Programming Essentials ,pp 290-353 Microsoft, 2004

National Instruments, Getting Started Guide NI-DAQmx for USB Devices, 2005

Deitel, Visual Basic.NET How to Program 2
nd
 Edition, pp. 1097-1135, Prentice Hall, 2002

MacDonald, Microsoft Visual Basic.NET Programmers Cookbook, Microsoft, 2003

P
age 11.371.10

