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DampedBeams: A Versitile MATLAB Script for Animation of a 

Variety of Beam Vibration Problems 
 

Abstract 

 

The authors report development of a single piece of software that animates responses of an 

elastic beam with external viscous damping and four different sets of support conditions.  The 

motion can be unforced, stimulated by initial deflection, or when externally forced by several 

combinations of temporal and spatial forms for the forcing function.  Several examples are 

presented. 

 

Introduction 

 

Beams are fundamental building blocks of structures and machine assemblies, hence 

understanding of their lateral vibration is key to understanding the dynamics of those systems.  

Free and forced vibration of beams may be analyzed by employing eigenfunction expansions and 

solving the problem in normal coordinates which are the time dependent coefficients of the 

generalized Fourier expansion in the eigenfunctions.
1,2

   The purpose of this paper is to create an 

awareness of this and other available software for the animation of beam vibration.  The software 

reported here is designed to animate both free and forced vibration of beams with a variety of 

boundary conditions and forcing functions, and is intended for a second course in vibrations. 

 

There is a considerable body of literature dealing with the visualization of partial differential 

equation solutions.  A detailed bibliography on visualization of partial differential solutions is 

available at http://www.eng.uwyo.edu/classes/matlabanimate.  Reports of animation to 

enhance understanding of vibration principles have been in the papers of Gramoll and his 

colleagues, including axial vibration of an elastic bar.
3,4

  The first report of animation employing 

MATLAB handle graphics was by Watkins et al.
5
   Animation of the beam lateral vibration  

using MATLAB was first reported in 2001.
6
  An alternative to writing scripts in MATLAB or 

some other programming language is to use a commercial finite element program as reported by 

Barker.
7
   The application of the handle graphics to animate a wide variety of partial differential 

equation problems is illustrated in reference.
8
  

 

Why MATLAB
TM

? 

 

MATLAB is perhaps the most widely used general-purpose scientific and engineering software 

package used in engineering education and engineering practice.  It is thus appropriate to 

develop software for the purpose given here in that computing environment. The reasons to 

choose MATLAB over other numeric and symbolic computing environments are 

 MATLAB is a compact computing environment with simple syntax and array computing; 

 It incorporates powerful 2-D and 3-D graphics; 

 It is portable and readily available; 

 There exist intrinsic robust ODE solution routines available for initial value problems, 

 A student edition is available; 

 Authors have positive past experiences with other applications. 
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Visualization Strategies 

 

There are several ways to present dynamic beam deflection which will be denoted here as y(x,t). 

They are: 

 Plots of y(x,ti) as a function of x for selected values of t (freeze frame), 

 Plots of y(xj,t) as a function of t for selected values of x (measured values of y(x,t) at 

various locations xj), 

 A plot of y(x,t) as a function of x and t in three dimensions, 

 Using animation to plot and erase y(x,t) versus x  for a series of closely spaced values of 

t such that a movie of y(x,t) is attained. 

 

Problems Considered 

 

Consider the Bernoulli-Euler elastic beam of length L, bending stiffness EI and mass per unit 

length ȝ with a load A0 f(x) g(t) as illustrated in Figure 1.  The constant A0 will have different 

units depending on the selections of f(x) and g(t). 

  

   

 

 

 

 

 

 

 

 

 

 

Figure 1. A Segment of a Bernoulli-Euler Beam 

 

The developed software considers four commonly encountered sets of boundary conditions: 

 

1. Pinned-Pinned (Simply Supported), 

2. Clamped-Free (Cantilever), 

3. Clamped-Pinned, 

4. Clamped-Clamped. 

 

These are the conditions which exclude rigid body motion of the beam.  The software will solve 

both the forced and unforced problem.  Either there will be no forcing function or the spatial 

distribution, when present will take on one of two possible forms: 

 

1. Point load at x = a (f(x) = į(x - a)), 

2. Uniform load in space (f(x) = 1). 

 

When the forcing function is present the temporal portion of the forcing function g(t) will take on 

one of three possible forms: 

EI, ȝ 

A0f(x)g(t) 

y(x,t) 

x 
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1. No forcing function present, initial deflection alone (g(t) = 0), 

2. A unit impulse at t = 0 (g(t) = į(t)), 
3. A unit step at t = 0 (g(t) = u(t)), 

4. A cosine function of radian frequency Ȧ (g(t) = cos Ȧt). 

 

For the cosine forcing function the interest here is only in the steady-state sinusoidal response.  

When there is no external forcing function the initial deflection of the beam may be specified in 

two ways: 

 

1. A concentrated load deflection curve, 

2. Modal expansion coefficients. 

 

The analysis for the general problem is carried out in Appendix A and in all cases examined five 

modes are used in calculating the responses.  Graphical results are presented in four ways 

corresponding directly to the four visualization strategies discussed earlier: 

 

1. A plot of the response of several points along the beam as a function of time, 

2. A plot of the beam deflection as a function of x for several values of time, 

3. A 3-D plot of the response as a function of time and location, 

4. An animation of the beam response as a function of location for many closely 

spaced values of time. 

Several examples should clarify what the software accomplishes. 

 

Example 1. 

 

In this case consider a pinned-pinned (simply supported) beam that is forced by a point load at  

x = 0.3L.  The load has a temporal step form so this falls under Case 3 as discussed in Appendix 

A. The damping ratio in the first mode is ȗ1 = 0.2.  The response at the quarter points along the 

beam is shown in Figure 2.  Note that irregularities in the response curves are due to the 

participation of higher modes. 
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Figure 2.  Temporal Responses of the Pinned-Pinned Beam Forced by a Point Load at 

 x = 0.3L that is a Step in Time. 

 

For this problem eleven selected animation frames from the first quarter cycle (first mode) of 

motion are shown in Figure 3. 
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Figure 3. Eleven Selected Animation Frames for the Response of the Pinned-Pinned 

Beam Forced by a Point Load that is a Step in Time.  

 

Illustrated in Figure 4 is a 3-D plot of the response.  Note that as time gets large the deflection 

approaches the static deflection curve for a point load at x = 0.3L . 
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Figure 4. 3-D Plot of Response of the Pinned-pinned Beam Forced by a Point Load at 

    a = 0.3L that is a Step in Time.  

 

Example 2 

 

Consider the case of a cantilever (clamped-free) beam forced by a uniform load that is an 

impulse in time so this is Case 2 as developed in Appendix A.  This would be the case of a 

sudden blast from an acoustic wave.  The damping ratio in the first mode is assumed to be ȗ1 = 

0.01.  The response at the quarter points of the beam is shown in Figure 5.  The irregularities in 

the response curves are, as before, due to participation of higher order modes. 
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Figure 5. Cantilever Beam Responses for Uniform in Space and Impulsive in Time  

   Applied Force.  The First Mode Damping Ratio is ȗ1 = 0.01. 
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Eleven frames from the first half of the first natural period from the beam animation are 

illustrated in Figure 6. 
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Figure 6.  Eleven Selected Animation Frames for the Response of a Cantilever Beam  

    Forced by a Uniform Load that is an Impulse in Time. The First Mode  

    Damping Ratio is ȗ1 = 0.01. 

 
Figure 7.  3-D Plot of Response of a Cantilever Beam Forced by a Uniform Load that is  

    an Impulse in Time.  The First Mode Damping Ratio is ȗ1 = 0.01. 

 

Conclusion 

 

The authors have presented an account of a MATLAB script which graphically illustrates 

dynamic beam problems with a variety of boundary conditions and stimuli to excite the motions.  P
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This should be of use to those teaching a second course vibrations or one in structural dynamics. 

The script can be employed to illustrate points in the classroom but to be useful in homework 

exercises will probably require redesign of homework.  Since the code length is in excess of 550 

lines it is not included in the text of the paper but it and other MATLAB vibration codes for 

beams and strings complete with an index can be found, free of charge, at the website: 

 

  http://www.eng.uwyo.edu/classes/matlabanimate 

 

The authors’ attempt to animate the solution to problems with two spatial variables and time 

(membranes, plates and shells) revealed that time to render the 3-D images in MATLAB is 

excessive and these problems await a new generation of hardware and software. These problems 

can be animated by making a MATLAB movie off-line.  
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Appendix A 

 

With the usual assumptions of a prismatic beam, small angles, plane sections remaining plane 

and an elastic material the governing equation of motion is
1
 

)t(g)x(fA
t

y
ȝ

t

y
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y
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 ෕
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Here EI is the bending stiffness, ȝ the mass per unit length and c the viscous damping 

coefficient.  Note that the forcing function is of the separable type or a product of a spatial 

function f(x) and a temporal function g(t).  With various possibilities, the constant A0 will have 

different units for different combinations of the spatial and temporal forcing functions.  For a 

cosine forcing function the interest here is only in the steady-state sinusoidal response.  For the 

unforced, undamped problem the eigenfunctions for the pinned-pinned support condition are 

 1,2,...i              xȕsin2)x(ĳ ii ==        (2) 

and for the other three sets of boundary conditions are 

 1,2,...i            )xȕsinxȕ(sinhĮxȕcosxȕcosh)x(ĳ iiiiii =-+-=    (3) 

Eigenvalues ȕiL for all the boundary conditions have been tabulated by Young and Felgar
9
 and 

by Bishop and Johnson
10

 and are reproduced in Table 1. 

 

Table 1 

The First Five Eigenvalues  ȕiL for Various Boundary Conditions 

 

    

Pinned-

Pinned 

 

Clamped-

Free 

 

Clamped-

Pinned 

 

Clamped-

Clamped 

1 ʌ 1.87510 3.92660 4.73004 

2 2ʌ 4.69409 7.06858 7.85320 

3 3ʌ 7.85476 10.2102 10.9956 

4 4ʌ 10.9955 13.3518 14.1732 

5 5ʌ 14.1372 16.4934 17.2788 

 

The constants Įi in the eigenfunctions are tabulated in Table 2. 

 

Table 2 

The constants Įi in the Eigenfunctions 

 

      BCs 

       i 

 

Clamped-

Free 

 

Clamped-

Pinned 

 

Clamped-

Clamped 

1 0.7340955 1.0007773 0.9825022 

2 1.0184664 1.0000014 1.0007773 

3 0.9992245 1.0000000 0.9999665 

4 1.0000336 1.0000000 1.0000015 

5 0.9999986 1.0000000 0.9999999 

 

The relation between the eigenvalues and the radian undamped natural frequencies is 

 1,2,...i             
ȝ

EI

L

)Lȕ(
Ȧ

2

2

i

i ==       (4) 

The eigenfunctions for a given set of boundary conditions form a complete orthogonal set and 

are normalized such that 

          BCs 

        i 
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 Ldx )x(ĳ
L   

0   

2
i =෾          (5) 

The damping can be specified in terms of the first mode damping ratio ȗ1 defined as 

 
1

1 ȝȦ2

c
ȗ =           (6) 

and it can be shown that the damping ratios in the higher modes are given by 

 2,3,...i                
Ȧ
Ȧ

ȗȗ
i

1
1i ==        (7) 

This implies that the damping ratios for the higher modes decrease with increasing i.  This may 

not be the most realistic damping model but is one that allows the use of the well-known 

tabulated undamped eigenfunctions for expansions of the responses.  An expansion of the spatial 

portion of the forcing function, f(x), is given in terms of the orthogonal beam functions as 

 )x(ĳf )x(f
1i

ii෤
෱

=

=          (8) 

where the expansion coefficients are given by 

 1,2,...i     dx)x(ĳf(x)  
L

1
f

L   

0   ii == ෾        (9) 

This integral may be evaluated numerically to great accuracy employing the trapezoidal rule.  

The solution to (1) can be given by a similar expansion 

 )x(ĳ)t(q )t,x(y i

1i

i෤
෱

=

=          (10) 

Since the )x(ĳi  are the eigenfunctions for the unforced and undamped problem we can show 

that 

 1,2,...i     )x(ĳȕ
xd

)x(ĳd
i

4
i4

i
4

==        (11) 

If (9) and (10) are substituted into (1) using relation (11) the result is a set of uncoupled ordinary 

differential equations in the normal coordinates or 

 1,2,...1        )t(gfAqȝqcqȕEI i0ii
4
i ==++        (12) 

Division through by ȝ and noting the definitions of (4), (6) and (7) the result is a set of ordinary 

differential equations in the modal coordinates or 

 1,2,...i     )t(g
ȝ

fA
qȦqȦȗ2q

i0

i
2
iiiii ==++       (13) 

For the forcing functions considered, this equation can be easily solved analytically and 

substituted into (10) to give the desired solution.  In all cases five eigenfunctions were used in 

the calculation of the response. 

 

Case 1-Initial Deflection, No Forcing 

 

In this case the right hand side of (13) is zero and all that is needed is the initial deflection shape 

y(x,0) so (10) becomes P
age 14.400.10



 )x(ĳ)0(q )0,x(y
1i

ii෤
෱

=

=         (14) 

where the qi(0) are given by 

 1,2,...i    dx)x(ĳy(x,0)
L

1
)0(q

L   

0   ii == ෾       (15) 

This integral has been evaluated for many common forms for y(x,0) or it may be evaluated to 

great accuracy by numerical integration using the trapezoidal rule.  With the qi(0) known the 

solution to (13) is 

    )]tȦsin
ȗ1

ȗ
tȦcos(e)[x(ĳ)0(q )t,x(y di2

i

i

di
tȦȗ

i

1i

i
ii

-
+=

-
෱

=

෤    (16) 

where 

 2
iidi ȗ1ȦȦ =          (17) 

 

Case 2-Impulse in Time 

 

In this case g(t) = į(t) and the solution to equation (13) is 

 1,2,...i    tȦsine
ȝ

fA
)t(q di

tȦȗi0

i
ii ==

-
      (18) 

And the response is given by substitution of (18) into (10) 

 

Case 3-Step in Time 

 

In this case g(t) is the unit step function u(t)and the solution to equation (13) is  

 1,2,...i)]     tȦsin
ȗ1

ȗ
tȦcos(e1[

ȝȦ
fA

)t(q di2
i

i

di
tȦȗ

2
i

i0

i
ii =

-
+-=

-
  (19) 

and as before substitution into (10) yields the response of the beam. 

 

Case 4-Cosine in Time (Steady-State Response) 

 

In this case g(t) = cos Ȧt and the steady-state solution to equation (13) given by the phasor 

method is 

 1,2,...i        ))Ȧj(HtȦcos(|)Ȧj(H|
ȝȦ

fA
)t(q ii2

i

i0

i =ෳ+=     (20) 

where 

 1,2,...i        
)Ȧ

Ȧ(ȗ2j)Ȧ
Ȧ(1

1
)Ȧj(H

i
i

2

i

i =
+-

=      (21) 

and j is the imaginary unit.  The solution to the complete problem is now given by expression 

(10) with substitution of (20) and (21). 
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