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Data-Mining an Online Homework System 
 

Abstract 

 

Online homework systems are becoming increasingly popular since (when they work) 

they are convenient for both faculty and students. Systems that rely on mechanical 

grading are naturally best adapted to more mechanical types of problems, raising issues 

of whether an increasing reliance on such systems will privilege the assessment of 

procedural knowledge over the assessment of conceptual knowledge. However, online 

systems naturally and efficiently capture large amounts of data about student work and 

data-mining techniques can be applied to evaluate conceptual understanding as well as 

procedural understanding, even though the prompts are all procedural. In this paper, we 

discuss how to use detailed analysis of procedural results captured by a locally designed 

online homework system (tuned for the purpose of assessing conceptual understanding) 

to recognize conceptual growth in classes in mathematics and the likelihood of successful 

transfer of this understanding to later engineering classes. Patterns that demonstrate 

students are wrestling with new concepts and techniques for disentangling correlations in 

different subjects caused by successful transfer from correlations caused by general skills 

are developed. While the analysis is based on our local system, the general approach and 

tools can be applied to other systems as long as they allow multiple attempts and retain 

information about unsuccessful attempts prior to the final submission. 

 

Introduction 

 

Online homework is becoming a common tool in college mathematics courses, as well as 

other science and engineering courses. One product, WebAssign, has a list of over 300 

U.S. Colleges and Universities using their system
1
, and most publishers now offer online 

homework systems as an option with many of their texts. The popularity of online 

homework systems is easy to understand. For the faculty, an online homework system 

reduces the amount of effort spent on grading and can also reduce management issues 

relating to collecting, recording, and returning student papers. For the students, online 

homework systems allow them to work on their own schedule and receive immediate 

feedback on what they have done correctly and incorrectly. In addition, some systems 

allow students multiple attempts and extra practice compared to courses with traditional 

homework only. Given the practical advantages, the shift to online homework seems very 

likely to continue. Therefore, it is important to study how this shift may alter instruction 

and learning, and how teachers can best assess student learning in an online world. 

 

Using an online homework system can influence the types of assignments that are made. 

Online homework problems must be of a format that can be graded by machine. This can 

lead to more procedurally oriented problems that have well-defined answers and for 

which systems can be easily generate multiple variations by simply adjusting the 

numbers. More conceptual problems are more likely to require open-ended solutions and 

are usually much more difficult to implement with such systems. Thus the shift to more 

online homework raises the possibility that it will be accompanied by a shift toward more P
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emphasis on procedural work and a decrease in emphasis on understanding the concepts 

being taught. 

 

While the shift to online homework raises questions about the range of problems that will 

be assigned, it also provides new opportunities for understanding student learning. A 

natural feature of online systems is that one can track in a database how students interact 

with the system (though many systems store only limited information). Applying data-

mining techniques to analyze this information offers the possibility of developing a better 

understanding of how our students are learning. In addition, student work becomes easier 

to track over time, allowing for longitudinal research into how success in one class 

correlates (or fails to correlate) with success in later classes. Of course, correlation is not 

causation. This is a particularly tricky issue when looking at student performance where it 

is likely that correlations result not from transfer of knowledge between different classes, 

but from the fact that a bright student is likely to do well in all his or her classes. But, 

since most students take service courses in mathematics specifically to prepare for later 

courses, understanding whether and how they transfer their learning is important. 

 

An issue to be considered in such data-mining is the level of granularity of the results 

obtained. By level of granularity, we mean whether one is detecting if specific 

individuals are gaining conceptual understanding or whether we can just say that 

approximately some percentage of the class is gaining such understanding, without 

necessarily identifying which students were in that group. Homework assessments have 

traditionally been used to determine the understanding of each individual student, as have 

many other assessments. On the other hand, some standardized assessments, such as the 

NAEP
2
 and TIMSS

3
 data, have been designed to assess how states or even countries are 

doing. It is not initially obvious what level of granularity data-mining might provide, nor 

what level would best serve the needs of the instructor. Since data is collected for each 

student, one might hope for answers at the level of the individual student. However, the 

statistical analysis we will need to recognize conceptual growth from procedural data 

may require more data than we will have for individual students. This may not be a 

weakness of the analysis. Service courses for engineers are often taught in large lectures, 

and an instructor facing a class of 250 may be better served by knowing that most of the 

students are understanding topic A while relatively few understand topic B than by 

having 250 separate profiles covering each individual. 

 

With these ideas in mind, the goals of the research reported in this paper are the 

following. Create an online homework system addressing procedural problems that tracks 

student usage carefully. Apply data-mining techniques to the data collected by the system 

to answer the following questions  

1. Can conceptual learning be identified from analysis of student responses to 

procedural problems? 

2. Can transfer of learning between classes be identified from analysis of online 

homework data? 

3. At what level of granularity can these questions be answered? 

 

The Online System 

P
age 12.440.3



 

We developed an online system used at our school (a large Midwestern university) in 

Trigonometry, Calculus 2, Elementary Differential Equations, and which is currently 

being extended to College Algebra. These classes are taught in a lecture-recitation format 

with large lectures of 150-300 students. A slight variation of the system (omitting the 

two-stage grading) has been implemented in the Electrical Engineering department’s 

Linear Systems class. This online system has a number of features that affect student 

usage. Not all these features are necessary to support our later analysis. The key issues 

are that students are allowed multiple different problem sets on each assignment (rather 

than one problem set being revised repeatedly until perfected) and that the system records 

unsuccessful as well as successful work. Of course, it should be stated that many people 

beyond the authors aided in the development of the system. 

 

Each student gets an individual problem set. Problem statements remain the same but the 

coefficients will change for each student. Note that changing coefficients can sometimes 

change the procedures needed to solve the problem. For example, changing coefficients 

may change an integral from a form best handled by trigonometric substitution to one 

best handled by integration by parts. 

 

Problems are procedural, but answers may be requested as numbers, formulas, or graphs. 

Formulas are typically evaluated at 4 points and are marked correct if they agree with the 

true answer at all points. In selected problems (particularly in college algebra), pattern-

matching algorithms are used instead to determine if the answer is in a specified format. 

Graphs are produced by students using an applet which is then queried by the system to 

determine the key features of the student graph for grading. 

 

Once a student logs into the system and has a problem set generated, the student keeps 

that problem set until he or she has submitted their answers for final grading. The student 

is free to print out the problems to work at some other time, returning later to input the 

answers. Students can also save work they have input without having it graded until later.  

 

Grading takes place in two stages. The first time a student submits work for grading, her 

or she is told if each answer is correct or incorrect. If there are no errors, the paper is 

marked fully correct and a final grade recorded immediately. Otherwise, the student has a 

chance to correct any errors (the system doesn’t permit students to “correct” right 

answers). The second time work is submitted for grading, students are told if each answer 

is correct or incorrect, what the correct answer is and are given a link to see how to work 

any problems that were incorrect (with the specific numbers of the incorrect problem). 

The final grade for that problem set is recorded at this time. Using two-stage grading has 

both pedagogical and practical advantages. Pedagogically, it encourages students to 

examine their work to find errors, and provides feedback during the learning process 

instead of just at the end. Practically, the two-stage grading gives students a chance to fix 

typographical errors, which increases their happiness with the system. 

 

Students may work multiple problem sets for each assignment. Once a problem set is 

completed, the student may log in again and get a new problem set (with similar 
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problems but new coefficients). The student receives the highest grade they achieve over 

all problem sets on a particular assignment. Note that students don’t keep correct answers 

for the new problem set. So if a student has 2 out of 3 problems right on the first problem 

set, they have to get 3 out of 3 on the second problem set to improve their grade, not just 

1 out of 1. 

 

Problem sets are usually designed to take approximately 20-30 minutes to complete, 

since that appears to maximize student effort and learning (long enough for the students 

to master the material but not so long the students get frustrated and refuse to try again if 

their scores are low). This typically means 3-5 problems in calculus and differential 

equations, with sometimes more problems in precalculus classes. Problem sets are due at 

midnight on specified days. Problem sets are still available after the due date and some 

students work problem sets for practice before each exam. 

 

The system automatically records the students’ problems, saved work, initial answers, 

final answers, time of all accesses of the system, ip-addresses of all accesses of the 

system, and whether they checked the help page for problems they missed. 

 

Analysis 

 

Since the system was first developed in Trigonometry, we have the most data in that 

course (a key consideration for a data-mining project). So we will focus our analysis on 

Trigonometry. The first question is whether it is possible to detect conceptual 

understanding from analysis of procedural work. Van Hiele
4
 has noted that when students 

move from material at one conceptual level to a higher level, there is usually a sudden 

decrease in the speed of learning as the students struggle with the new material. Some 

students then speed up as they master the higher level, while others continue to struggle. 

We adopt this approach to searching for evidence that students are encountering and 

mastering (or not) new concepts.  

 

Measuring speed is a little more complicated than it may seem. While the system records 

when students receive problems and when they submit their answers, there is no way to 

tell how much time students spent actually working on problems between these two 

events. In fact, frequently it is clear that students were not working for significant lengths 

of time between getting the problems and submitting their answers. A student who gets 

the problems one day and submits the answers two days later may reasonably be assumed 

to have printed out the problems and worked on them at some point, but not for 48 hours 

straight. On the other hand, some students will work several problem sets in quick 

succession, in which case we can reasonably assume most if not all the time from getting 

the problems to submission of answers is spent in working the problems. Since one of the 

design criteria is that problem sets should take roughly the same amount of time to 

complete, we use samples where it is reasonable to measure the length of time working 

problems to calibrate how long the problem sets are and then use the number of problem 

sets attempted, which can be well-measured for all students, to calculate speed. Hence we 

take the inverse of the number of problem sets attempted on average on each assignment P
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as the speed with which students work an assignment. Speeds for the 12 assignments over 

the course of the semester are shown in the graph below. 

 

Trigonometry
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Figure 1 

 

A short aside on statistical significance of our results is appropriate at this point. The data 

above is drawn from the Fall ’06 semester, with the number of students completing each 

assignment ranging from 238 to112. There was significant falloff in the number of 

students completing the last assignment – we have found that first and last assignments in 

many classes do not provide consistent data as student performance is strongly affected 

by other factors at the beginning and end of the semester. While not every shift in the 

curve above is statistically significant (for example, the changes in speed between 

assignments 2-4 are insignificant), the changes we will discuss in this article are 

statistically significant. Perhaps more important from the standpoint of establishing that 

the points being discussed are real and not just the result of random variation, the features 

discussed in this article have been observed consistently over several years. The graph of 

speeds for other semesters looks very similar to the graph above. 

 

In the graph above, the first 4 assignments deal with right angle trigonometry and 

introduce the unit circle. Assignments 5 and 6 deal with symmetry properties of trig 

functions and require the students to work with function properties of sine and cosine, not 

just treating these as properties of a triangle. Assignment 7 introduces complex numbers 

and assignment 8 applies trig identities to the solution of triangles. Assignments 9-12  

cover analytic geometry starting with a review of lines in assignment 9 and then three 

assignments on graphing conic sections in 10-12, where the primary technique is 

completing the square. 

 

Looking at the data, we see the speed starts out relatively constant, dips at assignment 5 

before recovering later, then falls more precipitously at assignment 10. Since assignment 

5 moves from thinking of trig functions as properties of angles to thinking of them as 

primary objects themselves with their own symmetry property, it appears the students 
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may be struggling with the concept of function at this point. Assignment 10 introduces 

new material for analytic geometry, hence the slowdown here may also be related to 

difficulties with new concepts. Of course, these dips have other possible explanations as 

students might reasonably allot more or less time for assignments as the semester 

progresses. We have found a better signal of conceptual difficulty is by comparing the 

percentage of students who get A’s on each assignment (defined as 90% or better) with 

the mean score on each assignment. This data is graphed below. 
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Figure 2 

 

Not surprisingly, in general the percentage of A’s tracks the mean score. However, there 

are a couple of places the two move in different directions. In particular, at assignments 5 

and 10, where we suspected conceptual difficulties were encountered, both measures fell. 

But on the next assignments, 6 and 11, the mean score continued to fall while the % of 

A’s rose. This is consistent with the hypothesis that students encountered new conceptual 

difficulties in assignments 5 and 10. When the students first deal with new concepts, 

almost everyone struggles. The better students then master the concepts, and hence the 

percentage of A’s recovers. The weaker students do not master the concepts, and their 

grades plummet as they get deeper into material they don’t understand, causing the mean 

score to continue falling even though the percentage of high scores is rising. We have 

found that this pattern is a more secure way of recognizing conceptual difficulties. When 

this pattern matches the results from a pure speed analysis as above, our confidence is 

even higher. 

 

Other issues can be seen in this data, of course. The behavior in assignment 7 

(introducing complex numbers) is the reverse of the usual pattern for introducing new 

concepts. This may be caused by a mix of factors, including the fact that problem set 7 

includes certain problems (such as adding complex numbers) are extremely easy, raising 

the mean scores relative to the other assignments. Another factor is that the deadline to 

drop without a “W” being recorded took place between the 6
th

 and 7
th

 assignment, leading 

to a decrease in the number of weak students completing the assignment as they dropped 
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the class. We would like to better understand this situation, but since there is only a single 

assignment on this topic, it is difficult to sort out different effects. Note that the key 

pattern identified above requires having more than one assignment addressing the 

concepts, so that variations between the assignments can be observed. What is more, even 

with multiple assignment controlling for extraneous effects (such as did a big football 

game cause students to spend less time on homework) is difficult. With only a single 

assignment, controlling for such extraneous factors becomes even less possible.  

 

Transfer 

 

Now that we have presumptively identified patterns that indicate students are struggling 

with new concepts, the next question is to determine if good performance on those 

assignments indicates understanding the concepts, and in particular if such understanding 

will then transfer to improved work in later courses. The natural approach here is to look 

at correlations between success on specific assignments in different courses. 

Unfortunately, determining whether a correlation is caused by transfer of knowledge 

from one course to another, as opposed to occurring because high scores on assessments 

in both courses are caused by some third factor (IQ, being a good worker, etc.) is tricky. 

There is a natural level of background correlation between any two assessments reflecting 

these common factors. To address this issue, we set a fairly high hurdle for counting a 

correlation as indicating transfer. A correlation matrix of all assignments in both 

Trigonometry and Calculus 2 is created. This correlation matrix is then processed using 

the technique of Agglomerative Nesting
5
 to produce a tree diagram (dendrogram) that 

shows which assignments are most closely correlated to each other. When applied to 

assignments from two different courses, this process typically produces a tree with two 

distinct sections, one for each course. This is not surprising. It is very reasonable that 

assignments in one semester will be more closely correlated to assignments given in the 

same course and same semester than they are to assignments given a year later in a 

different course. Furthermore, the background correlation effects can reasonably be 

assumed to be larger between “nearby” assignments than distant assignments (it is 

reasonable to assume that student effort next week is more closely correlated to the effort 

they put in this week than it is to the effort they will put in next year). However, on 

occasion assignments will be more closely correlated to assignments in a different 

semester than they are to assignments in the same semester. When this happens, we will 

treat this as indicating transfer has taken place. When correlations with “distant” 

assignments are larger than correlations with “nearby” assignments, it is reasonable to 

suggest that the correlation is caused by some special feature of those two assignments 

that is important enough to produce larger effects than the background correlations that 

affect assessments taken at nearly the same time and in the same class. 

 

We applied this technique to assessments in Trigonometry and assessments a year later in 

Calculus 2. Assessments were scored in two different fashions. The scores on each 

assignment (where 10 is perfect) were recorded and are listed as “hw.” However, 

especially in Calculus 2, the fact that students could repeat problem sets as many times as 

they liked sometimes led to almost all students getting perfect scores, in which case the 

scores contained very little information. So for each assignment we also computed an 

P
age 12.440.8



“inverse time to perfect” marked “it.” This was 1 over the number of attempts it took to 

reach a perfect score. If a student never obtained a perfect score, the “it” for that 

assignment was set to 0. With units of inverse time, “it” is a measure of speed to achieve 

a perfect score. Furthermore, using inverses produces better results since speed need not 

fit the linear model implicit in computing correlations. For example, the difference 

between getting a perfect score in 1 attempt and in 3 attempts seems larger than the 

difference between getting a perfect score in 5 attempts and in 7 attempts. In computing 

linear correlations between number of attempts, these differences would be treated the 

same. But in taking inverse number of attempts, 1/1 and 1/3 are much farther apart than 

1/5 and 1/7, in keeping with our intuitive sense. When we apply these techniques to the 

data from Trigonometry and Calculus 2, we get the results in Figure 3 below. 

 

Dendrogram of Trigonometry and Calculus Online Assessments 

 
Figure 3 
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In the notation for this diagram, the first letter represents which class (Trigonometry or 

Calculus), the next two letters represent the type of measure, and the final number 

represents which assignment number. So for example, cit9 refers to the inverse times 

computed for the 9
th

 assignment in Calculus 2. 

 

Looking at this diagram, we see the top half of the tree primarily consists of trigonometry 

assessments, while the bottom half consists primarily of calculus assessments. This is in 

keeping with the assumption that assessments taken in the same semester will be more 

closely correlated than assessments taken a year earlier (or later) in a different class. 

However, there are a few assessments that are out of place, marked by highlighting in the 

diagram. In particular, the inverse times for the Trigonometry assignments 5 and 6 both 

appear in the Calculus section (along with those for assignments 3 and 7 as we will 

discuss below). Based on this procedure, it is reasonable to conclude that students who 

more quickly master material in Trigonometry that depends on the function concept (as 

assessed in assignments 5 and 6) will transfer their understanding of functions 

successfully to their later study of calculus. Note however that the overall score on the 

assignments is less important than the speed with which the material is mastered. This fits 

with the description of learning concepts at different levels from Van Hiele as previously 

noted. 

 

The Calculus 2 assessments that appear in the Trigonometric half of the tree are the three 

assessments that deal with techniques of integration, where students frequently draw right 

triangles to determine which trigonometric substitution is appropriate, hence it is not 

surprising that they end up more closely correlated to Trigonometric skills. A review of 

the third assignment in Trigonometry (measured by tit3) showed there was a single 

problem that prefigured later work on symmetry of trigonometric functions, possibly 

explaining its appearance at the edge of the calculus section of the tree (though it is just at 

the boundary from being placed in the Trigonometric portion of the tree). Finally, the 

assignment marked tit8 referred to the complex variable assignment discussed earlier as 

assignment 7 which was difficult to classify. The reason for the reversed numbering is 

that students completing Calculus took trigonometry a year earlier, when the previous 

coordinator had switched the order of assignments 7 and 8. 

 

It should be noted that the hurdle proposed to detect transfer is quite high. It is possible 

that transfer is taking place in terms of other concepts as well, but that the amount of 

transfer is not so large as to stand out relative to the level of background correlation. The 

technique used here is deliberately chosen to be quite conservative in indicating transfer, 

so that we only accept transfer as occurring when the evidence is very strong. 

 

One final issue is the granularity of the developments noted here. It would be nice to have 

a measure that would tell us if individual students were ready for Calculus based on their 

work in Trigonometry. Unfortunately, the techniques we have described here are not 

suitable for such claims at present. Draper and Smith
6
 recommend that before using 

statistical models for predicting performances of individuals, the F-statistic should be 4 

times the critical value used for measuring statistical significance, and this data doesn’t 
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reach that threshold. So the techniques as yet are only suitable for determining if how 

well a class is doing overall and not how well particular students are doing. As noted in 

the introduction though, since the classes in question range from 150-300 students, a 

measure of overall class performance is still useful from the standpoint of a course 

coordinator trying to manage a large lecture. 

 

Conclusions and Research Problems 

 

We began with three questions that have now been answered. It is possible to detect 

conceptual learning from analysis of procedural homework and it is possible to show that 

conceptual learning will transfer to later courses in at least some cases. The level of 

granularity possible at this stage is measurements of overall class performance and not of 

the individual student. To carry out this analysis, it is necessary that assignments be 

prepared so that there are several assessments over a concept in order that changes over 

different assessments can be compared. Looking at scores on individual assignments are 

not particularly meaningful, which is unsurprising since there are so many factors that 

can affect a single assignment.  

 

In some ways, our work might seem unnecessary. Most instructors can recognize that 

students are likely to struggle with the function concept in trigonometry without a 

detailed analysis. But measuring exactly how they are struggling and how many are 

succeeding has traditionally been carried out using clinical interviews, which are not 

feasible for tracking a large class. Data-mining techniques that indicate the size of the 

bounce in the number of A papers on the second assignment gives us a way to automate 

the measurement of such learning in a fashion that scales easily to handle a large lecture. 

Using this technique, we can now address additional research questions. 

 

One obvious research topic is whether we can extend this work to more courses, and 

especially for transfer from math to engineering, as opposed to just transfer between 

different math classes. This is currently difficult for several reasons. The hurdle we have 

proposed for identifying transfer is quite high and becomes higher the more remote the 

two courses are, hence showing transfer to engineering is difficult. Furthermore, we have 

found that differences between different semesters are much larger when looking at 

transfer to engineering than when looking at transfer between two math classes. We have 

had some success in measuring preparation for Linear Systems using acceleration of 

learning in Differential Equations, but the results have not been reproducible over 

different semesters. Our working hypothesis is that the instructor (which varies according 

to a rotation) is a significant variable in transfer between disciplines. Our reasoning is 

that math instructors are likely to have similar attitudes toward mathematical topics that 

transfer to later math courses, but may have more varied attitudes toward more applied 

materials. This hypothesis seems consistent with the limited data we have, but we are 

waiting to accumulate sufficient information for each instructor to test this hypothesis 

properly. 

  

Another obvious extension is to consider the specific sorts of errors students make in 

trying to analyze conceptual learning. The difficulty with this approach is that students 
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are too inventive in the types of errors they make. Furthermore, they often make multiple 

errors in a single problem. We have thus far been unable to develop an artificial 

intelligence system that is capable of classifying a sufficient number of student errors to 

support a proper data-mining procedure. 

 

Finally, we hope to move this research into practice. Currently, the feedback loop for 

teaching is so long that it is rarely completed. The instructor lectures, but homework isn’t 

turned in until a week later and often not graded until a week after that. Analysis of how 

students are doing is anecdotal and doesn’t come soon enough to enable the instructor to 

make changes when things aren’t going well. The long-term goal is to prepare a system 

that provides real-time feedback to the coordinator so that each week or so the system 

provides an email indicating roughly what percentage of the students are understanding 

the key concepts and are likely to be successful in applying these ideas in future classes. 

With prompt feedback, the instructor may be able to make adjustments on the fly to 

address situations where the class is not understanding in time to help students before 

they get left behind. The research in this paper suggests such a system is feasible as 

online homework systems become more sophisticated. 
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