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1. Abstract

A consortium consisting of three universities and three community college systems, in three
contiguous states, each with semiconductor manufacturing as an economic backdrop, is
implementing “cross-training” of technicians and engineers for semiconductor manufacturing.
The expectation is that “crosstraining” technicians and engineers, such that they better
understand the roles and skill sets of the other, will enhance their effectiveness as team members
in real factory settings. The modules cover basic semiconductor unit processes (e.g.,
lithography, metalization, etch) and their facility demands, design of experiments, and factory-
level dynamics, from both technician and engineering perspectives. The modules include
interactive, schematic-based simulator panels for selected manufacturing machines, to support a
need-based, top-down learning paradigm. In addition, the modules have structured exercises that
require interactive roles between technicians and engineers. The “side-by-side” presentation of
text, graphics, animations, videos, simulations and exercises will give technicians enhanced
exposure to math and science, and it will give engineers enhanced exposure to machine (tool)
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operation issues. The multi-media modules are designed to operate stand-alone or coupled to a
multi-level manufacturing simulator package. They can be used for training or evaluation. The
modules can serve training needs in real, mock or virtual factory-like labs.

The consortium, to date, has developed a suite of six computer-based training (CBT)
modules to be integrated into factory-like labs and related courses, for cross-training technicians
and engineers. The modules cover lithography, metalization, etch, chemical vapor deposition,
statistical process control and design of experiments. Over 280 students have used the modules,
in CD-format, in avariety of teaching settings, with expanded deployment in progress.

The participating organizations include the Univ. of New Mexico, Albuquerque Technical
Vocational Institute, Maricopa County Community College District, Austin Community College,
Arizona State Univ., Univ. of Texas-Austin, plus a curriculum consultant, an industrial advisory
board, and industry partners.

2. Introduction

The relationship of technicians and engineers in the semiconductor manufacturing industry
is somewhat unique in the manufacturing workforce. Typically, in manufacturing settings,
engineers (product and process designers, and process support) and technicians (assemblers,
processors, and maintainers) have only minimal if any technical exchanges. However, for the
semiconductor industry, process technicians and engineers working in a fabrication plant (fab)
have frequent exchanges in order to keep the process stream “on track”. Furthermore, as the
technical and role demands for technicians increase, their core knowledge in the areas of
statistics and unit-process operations increasingly overlaps that of engineers in a semiconductor
plant. Conversely, new engineers, who may become responsible for technician oversight in a
factory setting, need to better understand the job-scope of technicians, as well as receive more
hands-on training during their academic program. Historically, technicians and engineers work
together as team members in real fabs, but they are not trained together as team members in
academic labs.

The semiconductor (S/C) manufacturing sector of the U.S. economy is ever-changing. New
technologies, such as new interconnect methods, deep-UV lithography, copper metalization, low-
dielectric materials, chemical-mechanical polishing, failure analysis, on-line metrology,
automation, etc. [SIA, 1997; Feindel, Marteney and Francis, 1999], are sweeping through the
S/C industry at ever-increasing rates. As aresult of these technologies and heavy competition,
the cycle-time for introduction of new products continues to shorten. Because of the expanding
supply of complex facilities and new equipment, the nationwide bottleneck in delivery of wafer
product is and will be the ability to supply a well-trained, specialized, workforce for this major
hi-tech economic sector [Marsh, 1995; SEMATECH, 1995; Sidener, 2000; Riggs, 2000]. Out of
technical necessity, some S/C companies are continually raising the educational requirements of
their manufacturing-line personnel. However, industry attempts to increase advertising and
salaries have not drawn in the necessary set of skilled employees because of labor-pool
depletion. Competition between S/C companies, for the foreseeable future, will be as much for
new workers as for new customers.

Given the above circumstances, pertinent to the semiconductor industry, it is thus
advantageous to cross-train semiconductor engineers and technicians in shared factory-like
settings for selected equipment-intensive labs and courses, without artificially forcing complete
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articulation between respective curricula (which are typicaly digointed because of different
requirements in math and science, not to mention different semester schedules). A direct benefit
isthat such side-by-side cross-training, broken into unit modules and related exercises, nurtures a
teamwork discipline and respect between the different student types. Another direct benefit is
that new hires need less “in-plant training” by industry in order to integrate them into the
production environment. A derivative benefit is that sharing expensive fab-lab space decreases
the per-student lab costs and thus training costs. This combined core understanding within a
company should lead to increased efficiencies of manufacturing execution as the complexity of
operation increases at ever greater rates [Blake, 1990; Bolton, 1999; Brown, 1994; Kempf, 1994;
Pence, 1993].

In an attempt to enhance the relevancy and proficiency of technicians and engineers for the
semiconductor manufacturing sector, a consortium of three universities and three community
college systems, in three contiguous states, is developing a suite of computer-based training
(CBT) modules to be integrated into factory-like labs and related courses, for cross-training of
technicians and engineers [Lawson, 1999; Wood et al., 1999; Wood et al., 2000]. The
expectation of the consortium is that co-training and “cross-training” technicians and engineers,
such that they better understand the roles and skill sets of the other, will enhance their
effectiveness as interactive team members in rea factory settings. The participating
organizations, each of which has semiconductor manufacturing as an academic track and as an
economic backdrop, include the University of New Mexico (UNM), Albuquerque Technical
Vocationa Ingtitute (TVI), Maricopa County Community College District (MCCCD; includes
Glendale CC (GCC) and Pima CC), Austin Community College (ACC), Arizona State
University (ASU), and the University of Texas at Austin (UTA). The project aso utilizes
consultants and an industrial advisory board. It is noted that each of the three community
colleges has a somewhat standardized Semiconductor Manufacturing Technology (SMT)
Associates Degree program, although they have different sets of pre-requisites.

The computer-based curriculum modules cover basic semiconductor unit processes (e.g.,
lithography, metalization, etch and oxidation) and their associated facility demands, statistical
process control and design-of-experiments methods, and factory-level dynamics, from both
technician and engineering perspectives. The presentation of the materials uses a * side-by-side”
format that not only contrasts the conventional coverage of topics, but also indicates where
“hand-offs’ of assignments or responsibilities are required, from technicians to engineers and
visa versa, during the normal routine of factory processing. As a generic example, an engineer
may design or modify a process, and the technician might implement the process, with
technicians and engineers jointly poring over the test results. As a didactic example, technicians
might notice a high “particle” count (and an associated “ pattern”) on alot of reused test wafers,
that in turn cause a high rejection rate; however, an engineer notices that elements of the
“particle” pattern mimic the mapping of the test probes. The “side-by-side” presentation of text
(accessed by tabs in some cases), interactive graphs and panels, animations, simulations and
exercises will give technicians enhanced exposure to math and science, and it will give engineers
enhanced exposure to machine (tool) operation issues. In addition, the modules have * hand-off”
sidebars and structured exercises that require interactive roles between technicians and engineers.
All materials are generally tabulated under roles and skills, tutorials, simulations and exercises.
Under the simulation tab, interactive control panels that represent the “anatomy” and essential
functions of the various tools, provide the focus of the need-based |earning paradigm.
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The multi-media modules are designed to operate stand-alone or coupled to a multi-level
Manufacturing Enterprise Training Simulator (METS) so that the consequences of line-level tool
interactions, or factory-level dynamics, can be explored [Wood, et a., 1997]. The modules can
be used for training or assessment. The modules can serve training needs in real, mock or virtual
factory-like labs. The modules, though utilizing tool-specific data, control panels and video, are
designed to allow easy swap-out with other tool-specific features. For example, the control panel
variables and data associated with one brand of etcher could be swapped for another brand of
etcher. Thus, the modules can be customized to the available tool set of a particular educational
ingtitution, or the students can contrast and learn the features of different tools for a given unit-

process step.

3. Participantsand Organizational Structure

The FY-00 and FY-01 participants of the project include faculty, technical staff, consultants

and students. These persons are listed below:

FACULTY PARTICIPANTS

Tom Edgar Assoc. V.P Academic Computing | UTA
Ch. Fleddermann Prof. EE UNM
John Fowler Assoc. Prof. |E ASU
Louis Frenzel Prog. Coordi. SMT ACC
Eric Krosche Instructor, SMT TVI
Alfred Lavender Instructor, SMT TVI
Michagl Leeming Professor PimaCC
Luke Lester Ast. Prof. EE UNM
Fabian Lopez Instructor, SMT TVI
Bassam Matar Professor Glendale CC
Dwayne Rollier Assoc. Prof. |IE ASU
George Runger Assoc. Prof. |IE ASU
Isaac Trachtenberg Professor UTA
John Wood Prof. ME & Dir. Mfg. Engr. Prog. | UNM
Hong Xiao Professor ACC
STAFF
Beth Fuchs Research Engineer UNM
Barbara L opez Research Engineer UNM
STUDENT PARTICIPANTS
Tanvir Hossain Grad Student UTA
Amitav Jha Grad Student UTA
Ashwin Joshi Grad Student ASU
Milton Lau Grad Student UNM
Anders Nilsson Grad Student ASU
Michele Pfund Grad Student ASU
J. Ranganathan Undergraduate UTA
Katina Skinner Grad Student ASU
Jon Ulrich Grad Student ASU
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CONSULTANTS/CONTRACTORS
David Hata Dept. Chair Microelec. Techn. Portland CC
David Vick Computer Programmer dynaVu, Inc.

In addition, industry participants provide review and evaluation of the module materials and
cross-training methods. These persons are affiliated with Allied Signal, AMD, Hyundai, Intel,
Motorola, ON Semiconductor, Sematech, Sumitomo, and Philips Semiconductor (see
acknowledgements).

The University (U) and Community College (CC) members are paired -- with one pair per
State. These pairs establish aregional group by which to test cross-training methods in different
venues. The relationships of the various participants are schematized in Fig. 1, below. Activities
of the consortium include the development of computer-based training modules; implementation
of the modulesin labs and courses at community colleges and universities; formation of teams of
technician and engineering students to perform cross-training exercises; continued acquisition of
competency expectations from industry; a review of modules by industry representatives;
assessment and evaluation within labs and classrooms across a wide spectrum of community
colleges (and other universities); and marketing of CD materials.

Although there is a U/CC pair in each of three states (regions), each U/CC pair utilizes the
computer modules in different ways, by design, so that their effectiveness in different venues,
once the modules are distributed widely, may be evaluated. For example, UNM and ATVI have
used the modules during shared fab-labs; UTA and ACC have used the modules to supplement
existing technician and engineering courses;, and ASU and MCCCD have used the modules to
supplement existing courses, utilizing the “virtual lab” features of the modules. UNM, TVI,
ASU and UTA have cleanroom facilities/labs in which students can get hands-on training. All
members anticipate enhanced cross-training implementation, particularly as new cleanroom
facilities come on-line at ASU-East and ACC (to supplement ACC’ s existing equipment |abs).

LEni

. -

................................................................
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Fig. 1. Schematic of roles and relationships of project participants. MATEC is an
NSF ATE Center, located in Maricopa County (AZ), devoted to semiconductor
manufacturing.

4. Module Content

The development of each module is led by an appointed Community College and University
consortium member, representing technician and engineering viewpoints, with inputs from the
other project members as appropriate. The computer integration of all materials, into a CD
format, isby UNM. In more detail, the modules cover:

e Lithography (lead by MCCCD and UTA): lithography methods (contact, proximity,
projection, optical, x-ray), steppers, resist types, coating methods, surface preparation,
soft and hard bake, wafer loading, alignment, exposure methods, developers, wet and dry
strip, instrumentation and measurements, equipment, automation steps, inspection,
masks, reticles, and waste streams.

e Sputter & Metalization (led by TVI and UNM): thermal vacuum evaporation, e-beam
evaporation, sputtering, metal deposition rate theory, concepts of gases, plasmas,
terminology of vacuum pumps, evaporation issues, conductors and semiconductors,
interconnects, electromigration, film quality, and instrumentation and measurements.

* Design of Experiments (led by MCCCD and ASU): input/output variables for each of
the unit processes (e.g., litho, sputter, etch, etc.), factorial design, response surfaces,
optimization, and statistical package linkages.

* Plasma Etch (led by ACC and UTA): etch flow, dc-bias, end point signal, spectroscopy,
selectivity, power, RF power, anisotropy, RF discharge, voltage, plasma chemistry, etch
profiles, residue and cleaning.

e Thin-Film Deposition (led by MCCCD and UNM): elipsometry, nitrides, oxides,
epitaxial silicon, polysilicon, dielectrics, instrumentation and measurements.

* Characterization & Control (led by TVI and ASU): dtatistical control charts, gauge
capability, sampling plans, process capability; equipment productivity, equipment teams,
impact on factory operations and costs.

We anticipate the development of three new modules that would cover:

» Diffusion and Oxidation
* Implant and Rapid Thermal Processing
* Factory Dynamics

The entire set of modules will be sufficient to cover the key unit steps of an NMOS or
CMOS process, depending on the user’s curriculum.

5. Module Featuresand Formats

Materials and features contained in the CBT modules created to date include tutorial text,
roles and competency specifications, figures, equations, equipment panels and schematics,
process simulations, interactive graphs, active SPC charts, process data, step-throughs for
practice exercises, self-paced exams, embedded how-to video segments, animation, graphical
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user interface (GUI) control panels, “knobs’ and “dliders’ for data input, “hand-off” dialogues,
and cross-training exercises. Technician content covers process execution, science and math
elements of the process, and statistical monitoring of processes, as well as standard operating
procedures, tool simulations, normal and abnormal equipment operations, alarms, fault detection,
diagnostics and effect of run-to-run control systems. Engineering content covers the physics of
the unit-process, equipment engineering and modeling issues, design of experiments (DOE) for
selected processes, waste-stream analysis, and process simulation.  Unit-process CBT modules
can also be concatenated for “short-loop” operations (a short sequence of related, recurrent
process steps, such as lithography and etch). Some modules address factory-level operational
issues [Hopp and Spearman, 1996]. In addition to supporting lectures and hands-on lab
exercises, the CBT modules also enable stand-alone, self-paced “ desk-top” learning.

The graphical user interface (written in Visual C++ [Microsoft]) for the multi-media
materials starts with a navigation menu covering the basic processing tool groups and related
topics for semiconductor manufacturing (Figs. 2 and 3). These “toolboxes’ include oxidation
and diffusion, lithography, etch, doping and implant, thin-film depositions, heat treatment, test-
sort-packaging, DOE, SPC, factory dynamics, and safety. Within each module, materials are
generally tabulated under simulations, theory, methods and technologies, quality issues, roles
and skills, and exercises. The presentation format is scrolling text divided, when appropriate,
into technician material on the left side and engineering material on the right side (narratives are
merged when materials are essentially similar). The lab-exercises are divided into on-line
exercises (labs and simulations), off-line exercises, and DOE exercises [Drain, 1997a, 1997b;
Montgomery and Runger, 1999].
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Fig. 2. Entry point of the CD. [Courtesy of UNM et al.].
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Fig. 3. Graphical User Interface for a typica module, showing tabs. [Courtesy of
UNM et a.]

Multi-media segments illustrating tool use or tool operations are laced throughout the side-
by-side (technician vs. engineer) presentation format of the GUI structure (see Fig. 4). Some of
these are video clips (e.g., thermal evaporator), while others are animations generated by project
members (e.g., step coverage, and step-and-repeat).
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Fig. 4. Graphica User Interface for a typical module, showing technician (left
column) and engineer (right column) views of atopic. [Courtesy of UNM et al.]
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The GUI panel is backed by equations, parametric models and/or data sufficient to “close
the loop” for a design of experiment exercise (see Fig. 6; Czitrom, et a., 1997; deVore, et al.
1992). An example of “closing the loop”, in this case for a thermal evaporator, is shown in Fig.
6. The salient control (input) variable for an evaporator is the “current” (to the “boat”), which a
technician sets on the machine panel. The output of the process is the “deposition rate” (and
associated film quality). This overal input-output relationship can be characterized by a “curve-
fit” of actual tool-generated data, or it can be obtained from a concatenation of physics-based
models and simulations, or it can be a mix of physics-based models and parametric models. The
later case is seen in Fig. 6, which uses a concatenation of data (curve-fits) from Current (1) to
Boat Temperature (Tb), and simulations (equations) from Tb to Deposition Rate (R). Once the
forward input-to-output pathway is quantified, in whatever fashion, run-to-run data can be
generated, with process noise and drift superimposed on the process “model”. Then, SPC and
DOE factoria analysis can be performed (as a simulation) using commercial DOE software
packages to explore optimum factors. Moreover, engineering students, for an exercise, can
refine the physics-based models, while technicians, for an exercise, can refine the parametric
representation.

The notion of need-based learning is supported by interactive “function panels’ for each of
the major processtools. For example, apanel for a plasma etch tool is shown in Fig. 7. Clicking
on features of the tool (as represented by the panels) takes the learner to the relevant tutorial and
exercise sections. Logic tables that control events during atool simulation back the panels. The
speed of the simulation is a user-selected parameter. The user can monitor the sequence of
events to understand functional relationships of the tool subsystems. The panels also emulate
machine malfunctions or typical process problems. The user can then perform simulated
troubleshooting exercises, either individually or jointly (as engineer-technician exercises).
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Fig. 6. Input-Output flow diagram for thermal evaporator. The technician input-
output relationship is a linear regression model. The engineer input-out relationship
isamix of approximations from current (I) to Boat Temperature (Tb) and physics-
based equations from Tb to deposition rate (R). [Courtesy of UNM et al.]
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Fig. 7. Simulator panel for plasma etch machine. [Courtesy of UNM et a.]

A representative example of the GUI for the DOE sections is shown in Fig. 8. The panels
have a self-paced, multiple-choice “ question and answer” tutorial entry-point. Thisisaugmented
with panels that illustrate the controlled variables (and their ranges) relevant to the simulationsin
the walk-through tutorials. The DOE sections also have examples of the various statistical
plotting and data analysis methods commonly used for DOE. In addition to DOE sections for
engineers, the CD also has a unique set of sections devoted to priming technicians for DOE
concepts (see Fig. 9).
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6. Evaluation and Assessment

The goal of the project is to produce engineers and technicians who more effectively
communicate and function on a team within a real factory. The primary approach of this
Advanced Technological Education Project, to meet that goal, is to cross-train semiconductor
(S/C) manufacturing technicians and engineers side-by-side, module-by-module, in factory-like
settings for selected equipment-intensive courses. The secondary approach is to utilize the
materials in educational settings where side-by-side training of technicians and engineers is not
an available option. An intended educational outcome of the means is that the “side-by-side”
presentation of text, graphics, animation, simulations and exercises will give technicians
enhanced exposure to math and science, and it will give engineers enhanced exposure to machine
(tool) operations. The salient, measurable objectives are the education and training of engineers
and technicians who, within factory settings. (1) communicate more effectively, (2) perform
team-tasks more efficiently, (3) understand overlapping roles, (4) exhibit increased math and
science literacy, (5) exhibit increased understanding of principles of machine operations, and (6)
require reduced in-plant training preparation at the outset of being hired. The objectives are in
turn quantified by detailed Performance Criteria, per the Rose-Hulman methodol ogy [Rogers and
Sando, 1996; Frechtling and Sharp, 1997; and Stevens, et al., 1993]. These were the basis for a
survey instrument, to be completed by users of the CD, to collect evaluation and assessment data
for the project. The survey instruments asked the CD user to evaluate the following items, each
on ascale of 1 to 10: coverage of material, technical level, math/science background, ease of use,
visual aids, simulations, exercises, and understanding of role of their counterpart. The CD, in
various stages of development, has been tested by each of the organizations of the team (UNM,
TVI, ACC, UTA, ASU, Glendale CC and Pima CC), in classroom and lab venues. Since Spring
1999, over 280 students, in cross-training and conventional classroom modes, have used the CD.

During Spring Semester 1999, the University of New Mexico and the Albuquerque
Technical-Vocational Institute ran a pair of semiconductor process training labs (UNM: EECE-
472 and TVI: SMT-211) wherein cross-training was introduced, supported by a preliminary
version of the lithography and evaporation modules. The instructors (UNM: L. Lester; TVI: E.
Krosche) selected and paired 7 engineering students (senior/graduate level) with 7 technician
students, to perform selected lab exercises over a 5-week period. The exercises, that required
demarcated roles for the tasks, included the resistivity measurement of a patterned and etched
aluminum thin film as a function of evaporator base pressures. The students in each pair were
required to work together, cross-train their partner, explain decisions to the other, and critique
their teammate’ s effectivenessin their role.

The UNM/TVI cross-training exercise was tried again for Fall 1999, bolstered by improved
computer-based modules. Engineering students from the University of New Mexico and
technician students from Albuquerque TVI were again assigned to teams and assigned a metal
evaporation project. Specifically, the Sputter and Metalization (PVD) Module on the CD
supported this lab project. UNM/TVI had 16 graduate-level engineers and 9 second-year
technicians in these cross-training exercises. The engineers and technicians did thermal
evaporation, photoresist application on a coat-track station, contact lithography, and electrical
probing. The engineers had related exercises in making up process flow sheets, vacuum science
calculations, lithography and pattern transfer resolution estimates, and analysis of probing errors.

Based on completed assessment forms, the technicians and engineers rated their
math/science backgrounds as adequate (except for, perhaps, chemistry) for understanding the
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material on the CD-ROM. The level of the material was rated "Just Right" by both groups of
students. UNM engineering students felt comfortable working within the assigned teams,
actively participating in team activities. They felt that communication between team members
was effective and perceived team members as being supportive. In general, they thought the
laboratory activity enhanced their understanding. However, engineering students felt that a
stronger chemistry background would have better prepared them for the laboratory exercise.
Likewise, TVI technician students felt comfortable working in teams, and similarly, they felt that
their chemistry and math background was marginaly adequate. Both groups found the CD-
ROM easy to use athough some students asked for better navigational aids. The technician
students rated the visual aids, simulations, and exercises as very good, but the engineering
students rated these categories lower. In a standalone setting, both groups found the CD-ROM
helpful in understanding their counterpart.

It is noted that an unexpected team dynamic was detected when comparing the Spring 1999
UNM-TVI cross-training exercises with the Fall 1999 exercises. Since the Fall 1999 engineering
group consisted of graduate-level students (who had considerable hands-on experience due to
either their research work or job experience), the gap in understanding and experience between
technicians and engineers was larger than for the Spring 1999 group. Consequently, the
technicians felt that their engineering counterparts could have been their “instructors’, instead of
an “equal partner” in the exercises. This led to some discouragement within the technicians
when trying to explore ideas or solutions, since the graduate students seemed to already know the
answers. Our recommendation, based on this experience, is to pair undergraduate engineering
students with technicians, so that both types are working in an exploratory mode.

ASU used the CD during two Spring 2000 statistics courses as a tool to support a DOE lab
exercise. Respondents were a mix of junior/senior undergraduates from EECE-380 (generic
statistics) and graduates from IEE-591 (semiconductor-oriented statistics). The graduate
students, relative to undergraduate students, rated the content and coverage of the PVD section
more complete (perhaps because the graduates were buffered by a semiconductor-oriented
course), however, the graduates rated the level of the PVD section a bit lower (not surprisingly).
Likewise, the graduates, relative to undergraduate students, tended towards a higher rating for
the benefit of the CD to their understanding of DOE and factory dynamics (again, perhaps,
because of the semiconductor slant of the DOE examples, which would have been of more use
and greater interest to the graduate students). Both groups suggested that additional (and better)
video segments and examples would be helpful.

In addition to the surveys collected, Dr. Mike Leeming was able to incorporate some of the
DOE materias for technicians into a course, TEC 151 at Pima Community College, during
Spring 2000. He obtained data, based on four hours of “quality-related” tutorials, that suggests
that the DOE material (which is typically not a part of SMT curricula) is not above the
capabilities of technician students. The students were given exposure to the basic terminology
and concepts. This yielded a starting sense of what DOE is about, including operations such as
blocking, randomization and replication. They observed how treatment combinations are
indicated, they know what “standard order” means, and they can identify a factor and response
variable. By this “primer”, the technicians are now less intimidated by Sigma type summation
notation. It isexpected that these students, with additional direction, could calcul ate estimates of
regression coefficients, using matrix multiplication, and sums of squares and mean sums of
squares if necessary.
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The team intends to continue its use of the CD in courses and labs in order to acquire
additional feedback with which to refine the materials. The team has sought other community
colleges (and universities) throughout the U.S. where it can apply the CD for assessment and
eval uation purposes.

7. Summary

To date, the project has contributed to the education of technician and engineering students
on alimited experimental in-house basis, as a preliminary test of the software and methodology.
The feedback to date is encouraging. The data and comments from students suggest that the CD
is presented at the intended level, i.e., dightly above a technician, but lower than required by an
engineer. Thislevel is consistent with the intent of the NSF Advanced Technological Education
(ATE) Program, which seeks to focus its benefit primarily on technicians and to enhance the
math and science understanding of technicians. The data also suggests that visuals and
interactivity can be enhanced, and that the exercises on the engineering side of the CD-ROM can
be improved. Eventually, we expect the project to generate educational tools to enable a better-
trained workforce for the semiconductor manufacturing industry.
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