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Design Equations Developed  by Geometric Programming  

 

History of Geometric Programming 

 

 Dr. Clarence Zener is credited for the first paper related to geometric programming and 

is considered to be  “the father of geometric programming” and is also known for the 

development of the Zener Diode.  His publication in 1961,  “A Mathematical Aid in Optimizing 

Engineering Designs[1]  in 1961 is considered as the start of geometric programming.  Dr. Zener 

was director of   the Westinghouse Research Laboratories in Pittsburgh, PA.  Dr. Zener also co-

authored, with Professor Richard J. Duffin and Graduate Student Elmor Peterson of Carnegie 

Institute of Technology in 1967,   the first book focused entirely on geometric programming-

Geometric Programming – Theory and Applications[2].  Geometric Programming was a popular 

research area with over 60 dissertations published on the topic during   1965 – 1995.  These 

dissertations primarily focused on specific problem solutions, but they did not involve the 

development of design equations.  This paper illustrates the development of design equations 

for  metal casting riser design.  Design equations allow the determination of process variables 

without needing to resolve  the original problem.  Geometric programming is used when the 

project objective and/or the constraint equations are non-linear. Previously the project 

objective and constraint equations had to be linear equations and the problem was solved 

using linear programming.  Geometric programming is used to control the process when the 

problem objective function and/or the constraints are non-linear.  Engineers develop process 

models and  develop design equations to keep the process under control.    

 In 1967 I was a Ph.D. Candidate in the Metallurgy Department and working as an 

Instructor in the Industrial Engineering Department at The Pennsylvania State University.  I 

applied and was accepted to attend an NSF Optimization Short Course at the University of 

Texas taught by Dr. Douglas Wilde and Dr. Charles Beightler using their book, Foundations of 

Optimization[3].  Professor Doug Wilde presented the chapter on geometric programming and 

during his lecture I immediately recognized that geometric programming as a useful tool for the 

design  of risers(feeders) in metal casting and the development of design equations.  I was 

excited, but my research in metallurgy was focused on the Imperial Smelting Process for lead-

zinc blast furnaces, taking various metallurgy courses and since I also  had a fulltime Instructor 

teaching position in Industrial Engineering,  I was unable to focus on applying  geometric 

programming to the metal casting riser design problem for two years.   

 

Design Equations Developed Using Geometric Programming for The Metal Casting Riser 

Design Problem 

 I had some time available to work on the riser problem in 1969-70 and the problem was 

to minimize the riser volume for rapid freezing alloys such as cast iron and steel with the 

constraint that the riser would solidify after the casting. The riser was designed to prevent 

internal shrinkage of the cast by feeding liquid metal to the casting as it solidifies.  The riser size 
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is often large and will be removed from the casting and remelted to supply liquid metal for 

another casting, but it represents a significant part of the casting cost.   My first geometric 

programming publication was “Optimal Riser Design by Geometric Programming”[4] in the Cast 

Metals Research Journal, in 1971 while I was still an Industrial Engineering Instructor  and a 

metallurgy graduate student at Penn State.  The paper developed design equations for 

minimizing the riser volume for the basic riser shapes of the cylindrical  side riser, the cylindrical 

top riser, and  a cylindrical riser with hemispheric  top. The example illustrated is the cylindrical 

side riser. These risers were “blind risers”, which were surrounded by sand except for the 

connection to the casting and for metals that had a short freezing range.  The theoretical basis 

was to assure that the riser(also called feeder) did not solidify completely until after the casting 

solidified to prevent shrinkage voids in the casting and is based upon Chvorinov’s Rule.  

  

Chvorinov’s Rule for solidification is: 

     t = q(V/SA)2      (1) 

 

The solidification time constraint becomes:                 

      tr  ≥   tc      (2) 

 

which becomes:            qr(Vr/SAr)2  ≥  qc(Vc/SAc)2   

 

and can be reduced to:                (Vr/SAr)    ≥  (Vc/SAc)       (3) 

where: 

 tr =   solidification time of the riser 

 tc =  solidification  time of the metal casting  

 qr = qc= solidification constants for the molding material are equal as both the riser  

  and the casting surfaces are in the same material – sand. 

 D  =   diameter of cylindrical side riser(Primal Variable) 

 H  =   height of cylindrical side riser(Primal Variable) 

 Vr =  riser cylindrical volume (Primal Objective Function) = ꙥD2H/4  (4) 

 SAr=  cooling surface area of riser = ꙥDH + 2ꙥD2/4     (5) 

 Yc   = casting modulus  =( Vc/SAc)       (6)   

 Vc  =      casting volume 

 SAc= casting surface area 

 

The objective function is to minimize the riser volume and  is:      

    Minimize Vr = ꙥD2H/4     (7) 

    

The  constraint    tr  ≥   tc becomes: 

    Vr/SAr ≥ Vc/SAc  = Yc           

     (( ꙥD2H/4)/ (ꙥDH + 2ꙥD2/4))  ≥  Yc    (8)  
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The constraint must be written in the form of  ≤ 1; thus Equation (8) becomes 

            4Yc D-1 + 2Yc H-1 ≤  1      (9) 

 

The Primal Form of the cylindrical side riser design problem is:     

    Minimize: Vr   =  ꙥD2H/4     (7) 

   

Subject to:     4Yc D-1 + 2Yc H-1  ≤  1        (9) 

    

The primal form formatted for starting the dual form sets up as:    

    Minimize        ꙥD2H/4      (7) 

    Subject to:     4Yc D-1 + 2Yc H-1  ≤  1    (9) 

 

 The sigma values obtained from the primal form are signs of the terms which are all 

positive and thus 1; they are:                  

    Objective function   σ01 = 1   

              Constraint Terms  σ11, σ12, and σ10 =1 

 

 The coefficients of sigma are the signs(+ is positive 1(+1) and – is negative 1(-1) and the 

subscripts  indicate the row and the column;  the objective function(only one term) term has 

the subscript σ01.  The dual formulation(ꙍ values) is based on Equations 7 and 9 and is:  

    

   Objective Function: 1*ꙍ01         = 1      

   D terms (exponents) 2*ꙍ01  -      1*ꙍ11   = 0 

   H terms (exponents) 1*ꙍ01           - 1*ꙍ12    = 0  

 

Solving these equations, the values are: ꙍ01   = 1, ꙍ11   = 2, and ꙍ12   = 1  (10) 

 

The linearity inequality equation is: 

   ꙍ10 = ꙍmt = σm ∑ꙍmt σmt 

    ꙍ10      = (1) [(2*1) + 1*1)]  =3        (11) 

   

The dual objective function is:         

                M     Tm            σmtꙍmt 

       d(ꙍ) = σ [ ∏      ∏  (Cmt * ꙍmo / ꙍmt )           ]σ     

                  m=0   t=1 

 

            d(ꙍ)   =  1[[{(ꙥ/4)*1/1}(1*1)]  *  [{(4Yc * 3/2)}(1*2)] * [{(2Yc * 3/1)(1*1)]]1 

    =   1 *[[     (ꙥ/4)       ]  *  [   (6Yc)2     ] * [       (6Yc)           ]]1 

   d(ꙍ)  =    (ꙥ/4)*(6Yc)3        (12) 

 This is the volume of the riser as determined by the dual function.  
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Using the primal-dual relationships for the first and second terms of the constraint: 

    4YcD-1 = ꙍ11/ꙍ10  = 2/3 

   and D = 6Yc        (13) 

 

   2YcH-1 = ꙍ12/ꙍ10  = 1/3 

   and H = 6Yc        (14) 

 

 Thus, for any casting which solidifies by  following Chvorinov’s Rule, the design 

equations for the cylindrical riser diameter(D), the cylindrical riser height(H) and cylindrical riser 

volume(Vr) are: 

  D =6( Vc / SAc)         (15) 

  H =6 (Vc / SAc)         (16) 

  Vr =   (ꙥ/4)*(6 * Vc / SAc )3       (17) 

 

 If a casting with is a plate shape of dimensions of 2 x 4 x 4, the volume would be 32 

cubic units and the surface area would be 64 square units.  The casting modulus 

(volume/surface area) is 0.50 units and the riser diameter and riser height would be 3 units and 

the riser volume would be 21.2  These design equations, made when the solidification 

constants were equal, resulted in a simple relationship and  requiring only the volume and 

surface area of the particular casting  to be produced. The solidification constants would be 

different if insulating sleeves or other exothermic materials are used.  If the constraint is 

controlled by the shrinkage rate, another solution would be needed.  This model was developed 

in the 1969-71 era -  before personal computers and calculators were available.  Later 

publications considered top risers, hemispherical top risers, modified hemispherical risers, 

tapered risers,  and insulated risers.  Design equations were developed for these riser types 

during 1970’s into the 1990’s.  

 

The Cobb-Douglas Cost Minimization Model for the Civil Engineering Construction Sector of 

Turkey 

  

 Ibrahim Guney and Ersoy Oz published  the paper "An Application of Geometric 

Programming"[5] in 2012. Their example concerned the minimization of production costs for a 

fixed production level in the civil engineering construction sector in Turkey using the Cobb-

Douglas production function. The authors presented the objective function, the Cobb-Douglas 

production function, the input data, and the solution obtained.  They used geometric 

programming and presented their solution results in detail for that specific problem,  but they did 

not develop design equations or present any details on their procedure for determining the two 

output variables. . After reading their paper, I wanted  to determine the design equations for the 

variables in terms of the input constants.  The plan was to solve the dual and primal problems 

and then use the primal-dual relationships to determine the design equations for the primal 
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variables.   The design equations results were initially published in a paper in 2015[6] and later 

in a book[7]. 

  

The primal objective function, Y(x), is  to minimize production costs which are: 

 Y(x) = r1x1 + r2x2     (18) 

 

Subject to the Cobb-Douglas production constraint, which  is: 

 q = A x1
α  x2

β       (19) 

   

 

 

The variables are:  The input  constants are: 

 x1 =  labor amount   r1 =  labor rate = C01 

 x2 = capital amount   r2 =  capital rate = C02 

   q = desired output level         

   A = total productivity factor 

   (q/A) = C03 

   α  = labor elasticity 

   β = capital elasticity 

   (α + β) = 1 

 

The Cobb-Douglas production constraint must be written in the less than or equal unity form, that 

is:  

 q/ (A x1
α  x2 

β ) ≤ 1  or as 

 (q/A)  x1
-α  x 

-β  ≤ 1     (20) 

 

  In Linear Programming, the primal Y(x) and dual d(ꙍ) objective functions must be equal 

and this also applies in Geometric Programming.  The dual formulation appears more complex, 

but it results in  linear equations which are easier to solve.  The dual objective function is NOT 

linear and is solved after the dual variables have been determined.   The dual objective function is: 

          

           M     Tm                  σmtꙍmt 

     d(ꙍ) = σ [ ∏      ∏  (Cmt  ꙍmo / ꙍmt )      ]σ      (21)  

          m=0   t=1 

where  

             σ  =   signum function for objective function =1     

         ( 1 for minimization and -1 for maximization) 

    σmt =    signum function for dual constraints (± 1)  

    Cmt > 0  positive constant coefficients are required 

   ωm0 =     dual variables from the linear inequality constraints 

    ωmt =      dual variables of dual constraints 

    σmt =      signum function for dual constraints 

  ω00 = 1   (by definition = the sum of the components of the objective function 
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 Since all the coefficients in equations have positive signs. All the signum values for the 

dual will  be positive, that is: 

    σ00   =1  (objective function is minimization) 

   σ01   =1   

   σ02   =1   

   σ10   =1  (right hand side of constraint is positive) 

 

 The dual can be formulated with signum values and equations 18 and 20 determining 

the dual variables. The objective equation is initially: 

 Objective Function σ01*ꙍ 01 +  σ02*ꙍ 02                 = σ00 * ꙍ00   (22) 

 X1 terms  σ01*ꙍ 01     -α* ꙍ 11 =0   (23) 

 X2 terms         σ02* ꙍ 02   -β * ꙍ 11 =0   (24) 

 

 Inserting the values of σ and ꙍ the dual objective function and variable constraints 

become: 

 Objective function 1*ꙍ 01 +  1*ꙍ 02     =1* 1    (22) 

 X1 terms  1*ꙍ 01       -α* ꙍ 11 =0   (23) 

 X2 terms       1* ꙍ 02   -β * ꙍ 11 =0   (24) 

 

Using Equations 22-24, one obtains 

   ꙍ00  =   1 

   ꙍ01  =  α / (α + β) = fraction of total cost by first term of primal (25) 

   ꙍ02  =  β / (α + β) = fraction of total cost by second term of primal (26) 

   ꙍ11  =  1 / (α + β)       (27) 

  

 Now the value of ꙍm0 can be determined from inequality constraints being positive and 

m=1, that is: 

                   Tm 

 ꙍm0  =  ꙍ10 = σm  ∑  σmt  ꙍmt =σ10*σ11* ꙍ11= 1 * 1 * (1/(α + β))  = 1/(α + β)  (28) 

                t=1 

and note that ꙍ10 =  ꙍ11  = (1/(α+β)) 

 

      The dual objective function(21) can now be formulated as:                                                             

 d(ω) = 1*[{r1*1/(α/(α+β))}(1*( α/(α+β)) *{r2*1/(β/(α+β))}(1*( β/(α+β)) *{q/A}(1*/(α+β))  ]1 (29) 

 

 Since the primal and dual terms must be equal, they can be used to determine the 

primal variables. 

               N 

      C0t  ∏  ( xn)mtn  = ꙍ0t σ0t d(ꙍ)     (30) 

              N=1 
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This results in:                   r1* x1= (α/(α+β))   * 1 * d(ꙍ)    (31) 

        r2 *x2 = (β/(α+β))  * 1 * d(ꙍ)      (32) 

 

Dividing Eqn 31 by Eqn 32 one obtains: 

      (r1*x1)/(r2*x2)  = (α/β)        (33) 

 

Solving for x1 one obtains: 

    x1 = (α /β )(r2/r1) x2 = [(α * r2) / (β*r1 )] *x2   (34) 

 

 

                     N 

For the constraint terms:       Cmt  ∏  ( xn)mtn  = ꙍmt/ꙍmo     (35) 

                       N=1 

 

Results in   (q/A) = x1
α  * x2

 β        (36) 

 

Using Equation 34 for X1  and using Equation 36 to solve for x2  

  (q/A) = x1
α  * x2

β 
  (q/A) = [(α * r2 ) / (β * r1 ) x2]α   x2

β   

  (q/A)  = [(α * r2 ) / (β * r1 )]α *  x2 
(α+β)  

  x2 = (q/A)1/(α+β) *[(α* r2 ) / (β * r1 )] ((-α)/(α+β))     (37)  

and   x1  = (α *r2 )/(β*r1 ) x2 = [(α* r2) /(β*r1)* (q/A)1/(α+β) *[(α* r2) /(β*r1)]((-α)/(α+β))  

  x1 = (q/A)(1/(α+β) [(α * r2 )/(β *r1 )] ( (1-α) / (α + β))     (38) 

 

The primal objective function can be determined from the primal variables and Equation 18 

     Y(x) = (q/A)(1/(α+β)  * [ r1 *(α * r2 )/(β*r1 ) (1 -a)/ (α+β) )   + r2 * (α * r2)/(β * r1 ) ( -α/(α+β)) ] (39) 

 

 Now that the formulas for x1(Eqn. 38),  x2 (Eqn. 37), Y(x) (Eqn. 39) and d(ꙍ) (Eqn. 29) 

have been developed, the results are presented in Table 1.   

  

Table 1. Output Data and Input Data for The Cobb-Douglas Cost Minimization Model for the 

Civil Engineering Construction Sector of Turkey  

      
 Input Input Input Output Output r1* x1 r2 * x2 Primal  

   Y(x) 
Dual 
d(ꙍ) 

Check Cost  
r1*x1 + r2*x2  

 Production Labor Capital Labor Capital Labor Capital Primal Dual  Labor Cost + 

Year Index Index Index Estimate Estimate Cost Cost Total Total Capital Cost= 

 q r1 r2 x1 x2 r1*x1 r2*x2 Y(x) D(ꙍ) r1*x1 + r2*x2 

2006 291.90 121.88 114.32 62.56 155.63 7625 17791 25416 25416 25416 

2007 311.23 137.8 122.32 63.50 166.91 8750 20416 29166 29166 29166 

2008 283.64 153.85 140.06 59.82 153.32 9203 21473 30676 30676 30676 

2009 228.09 158.53 131.48 46.73 131.48 7408 17286 24695 24695 24695 

 The other input values for the study were:  A=1, α=0.53 and β=0.47 and (α + β  = 1) 
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 The results from the design equations produced the exact same results as those 

obtained by  Guney  and  Oz.  Results include both the primal and dual results for the objective 

function and the total of the labor cost and the capital cost. The fixed input values for the study 

were:  A=1, α=0.53 and β=0.47 and the annual input values were for the Production Index(q), 

the Labor Index (r1) and the  Capital Index (r2 ).   I decided to vary the three fixed input variables 

to investigate  the effect upon the results.  The values of A were varied and it appeared all 

positive values gave reasonable results.  When the values of α and β were randomly  changed, 

problems occurred.    It was found that the values of α and β had to be positive and that the 

sum of α plus β  had to equal 1. The reduced design equation formulas  with α+β = 1 are 

presented in Table 2.   

 

Table 2.  Design Equations for Output Variables, Annual Costs, and Objective Functions  

(These are the reduced equations using the requirement that α+β = 1) 

 

Variable Name Symbol Design Equation 

Labor Estimate x1 x1 = (q/A)* [(α * r2 )/(β * r1 )] (β) 

Capital Estimate x2 x2 = (q/A) * [(α * r2 )/(β * r1 )] (-α)  

Primal Objective Function Y(x) Y(x)=(q/A)*{r1*[(α*r2 )/(β*r1)]( β)+r2*[(α*r2)/(β*r1)( -α)]}  

Dual Objective Function             d(ꙍ) d(ω)= [{r1*1/(α)}(1*( α) *{r2*1/(β)}(1*(β)*{q/A}]    

Labor Cost  = r1*x1 

Capital Cost  = r2*x2 

Total Cost  = r1*x1 + r2*x2 

Cobb-Douglas Production Index q q(input) 

Labor Index  r1 r1(input) 

Capital Index r2 r2(input) 

 

 The output in the Geometric Programming Cobb-Douglas Cost Minimization Model 

produced the exact same results as reported in the paper  by Guney and Oz.   The primal, dual  

and Check Cost solutions obtained the same answers for all values of A tested, but they also 

indicated that the α and β values must be positive and the sum of  α and β  must be 1.  This sum 

of unity is often required in most Cobb-Douglas cost models,  but it may not be necessary in all 

models.  The Design Equations permit an analysis of the impact of the values of  the production 

index, labor index, capital index, A, α, β upon  the labor estimate, capital estimate, labor cost, 

capital cost and the total cost determined by the primal cost, dual cost, and check cost.  

Additional example problems are presented the book Geometric Programming for Design 

Equation Development and Cost/Profit Optimization[7] which contains fifteen different detailed 

examples  of design equations development. 
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Conclusions 

 Geometric Programming is a technique for optimizing non-linear problems. It can also 

be used to develop design equations for the variables in small problems, such as for the riser 

design problem for minimizing the riser volume.  It was used in evaluating other riser design for 

different shapes and different factors such as casting shrinkage and the use of exothermic 

materials.   The  Cobb-Douglas cost minimization model  was a complex constraint, but also 

provided three evaluations to  the minimum cost and the design equations provided a rapid 

process for evaluating alternatives values for the input variables.     The development of design 

equations gives a better understanding of the behavior of the process and the impact of the 

specific variables upon the results.  More work needs to develop design equations for the more 

complex problems. 


