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Abstract -With the surge in global usage of internet in smartphones, so has the need for extra Bandwidth 

requirements with simultaneous shared antenna capabilities for multi-channel video streaming and data 

speeds up surged. In order to meet design specifications two different ECADs namely ADS and AWR were 

used based on the High Frequency Engineering Design requirement and to obtain accurate RF results. A 

comprehensive design of RF Wilkinson Power Divider (WPD) incorporating microstrip lines in two-sectional 

configuration including EM model testing for device modeling, using RF test bench consisting of Fitted and 

Discrete frequency interpolation points have been carried out. Receiver (RX) System modeling results using 

1-tone and 2-tone  RF signals are meticulously presented along with analytical results for RX System analysis 

and synthesis. Exhaustive simulations have been carried out in all cases along with comparisons using ADS 

as the primary software tool. During these investigations the theoretical and simulation results are found to 

be in good agreement at System level, including design validation and modeling of the integrated RX module.  

The design of Bandpass Filters (BPF), Quadrature (90°) Hybrid Branch Line Coupler (BLC) 

incorporating microstrips and a 3 dB filter in four port network configuration has been carried out. It 

incorporates the EM model for device modeling, using Full-wave analysis consisting of Fitted and Discrete 

frequency interpolation points. Comprehensive RF Power Analysis and Optimizations of Radio Link with 

the modeling results achieved by Small and Large Signal analysis are meticulously presented. During the 

investigations carried out using the ADS Harmonic Balance tool for Noise control, the hypothetical 

simulation results are found to be in good agreement at System level. These include design validation and 

modeling effects of the integrated RX System Front End module for 5G Communications. An introduction 

to establish a common level of knowledge  at System level platform is also addressed. Frequency response 

definitions of conventional BPF for 3rd order Chebyshev type – I filter approximations are discussed. In the 

end, the derivation of S-parameters matrix for the BLC carried out using the well-known Even-Odd mode 

network analysis is presented.  

 

1.     INTRODUCTION 

During the 5G investigations, eight modules have been built mostly based on the Fundamentals of Physics, 

Semiconductors and Circuit Theory including the Patch Antennas, BPF, Couplers, Transmitter (TX), 

Receiver ( RX) and Switches etc. The Switch between the Antenna and TX and/or RX must be equipped to 

handle high power when connected to the TX, and LO-Power when connected to the RX. In order to meet 

these requirements, the p-i-n diodes with forward and reverse biases have been used, respectively. Its Phase 
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shifting capability is deployed while designing the Antenna. The Varactor diode is used in designing 

wideband BPF because the diode resonates at frequencies at the application of different reverse biased modes. 

All principles of Device Physics, Semiconductor Fundamentals and Circuit Theory are integrated in the 

Author’s MMIC Design and Fabrication Course.  
During these research investigation eight modules have been built mostly based on the Fundamentals of 

Physics, Semiconductor, and Circuit theory. Only few modules, however, are covered here in details 

deployed at the receiver as well as the transmitter end. Front end receiver (RX) employs patch antenna, 

SPDT switch, low noise amplifier (LNA), mixer with oscillator, band pass filter (BPF), power limiter and 

(ADC) modulator. 

The transmitter (TX) uses (DAC) demodulator, mixer with oscillator, power amplifier (PA), BPF and 

SPDT switch attached to the patch antenna. In order to transmit the maximum power matching networks 

are used. All the elemental values R, L and C are built with microstrips such as microstrips lines (MLIN), 

microstrip coupled lines (MCLIN) and microstrips thin film capacitors (MTFC), and microstrip coupled 

line filter (MCFIL), microstrip inductor (MSIND) etc. as given in ADS [1] 

A novel SPDT switch is designed which is capable of handling very high power from the TX and very low 

power to the RX. The P-i-N diode is chosen for this purpose, which handles very high power in its forward 

biased state, and a very low power at its reverse biased state. 

A radio system is comprised of discrete modules essential for the receiver (RX) and the transmitter (TX) 

architecture. The Heterodyne principle is accomplished by integrating the discrete RF modules and 

performing modeling at system level using RF base band intermediate frequency (IF), and carrier frequency 

(RF) as a single sideband (RF-IF) = LO frequency. Conventional wireless communicator systems were 

established on high power TX units with the RF unit functional up until the signal levels decreases below a 

certain noise level (Threshold). However, with adjacent systems operating at same frequencies were found 

to be sensitive to interferences. Thus, system transmitting at identical frequencies were physically separated 

so that signals fall below the established noise threshold before interference occurs [2]. The physics and 

mathematics along with their models of all eight 5G modules are thoroughly covered in the MMIC Design 

and Fabrication course by the author. However, only selected few modules of high importance with 

examples are depicted in the paper with the ADS based design and simulation results. 

 

                           2.          P-i-N DIODE with APPLICATIONS 
 
Figure 1 depicts the p-i-n diode along with its profiles. Since the width of the depletion region is inversely 

proportional to the resistivity (doping concentration). The wider depletion region amounts to a smaller 

junction capacitance. The  i- region consists of impurities either p-type or n-type. The i region is of 

sufficiently high resistivity so that few impurities in the region are ionized and the depletion region extends 

throughout the i- region and includes a small penetration into both the 𝑝𝑝+ and 𝑛𝑛+regions as shown in Figure 

1 (ii). Because of the heavy doping of the 𝑝𝑝+and 𝑛𝑛+regions, the depletion does not extend very far into 

them, and the depletion width is essentially equal to the i- region width. The junction capacitance in the 

reverse bias is determined by this width [3]. 

 
 



 
(i) 

 
(ii) 
 
Figure 1 Profiles of two types of P-i-N Diodes 
 
Packed P-i-N diode 
The equivalent circuit of P-i-N region can be represented as shown in FIGURE 2. 

 

 
 
Figure 2 Equivalent Circuit of a P-i-N Diode 
 
 
 



The arrows connected to variable 𝑅𝑅𝑅𝑅 are in forward bias and 𝐶𝐶𝑅𝑅 in reverse bias. 𝑅𝑅𝑅𝑅 is a very small 

resistance connected to the diode. 𝑅𝑅𝑅𝑅 (V) is the variable resistance of the diode, which has very small value 

with the forward bias, but a very large resistance with reverse bias. (V) is the double capacitance whose 

value is dependent at the reverse bias. The 𝐿𝐿𝑅𝑅 and 𝐶𝐶𝑝𝑝 are inductance and capacitance of the package.  

Neglecting the package effects of 𝐿𝐿𝑅𝑅 and 𝐶𝐶𝑝𝑝, the equivalent circuit with forward bias behaves like a short 

circuit with total resistance 𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅+𝑅𝑅𝑅𝑅 (f.b.) 

 
Whereas the circuit with reverse bias acts as an open circuit.   

                                                                                                                      
Since 𝑍𝑍𝑍𝑍 in reverse bias is much higher than the 50 Ω transmission line impedance.    
 
Calculations for Isolation and Insertion losses:  
 
These calculations [5-9] are based on extracting A, B, C and D circuit parameters and applying them to the 

S parameters at microwave. The basic building blocks for series impedance ‘Z’, the parallel admittance 

‘Y’, and lossless transmission line with a characteristic impedance 𝑍𝑍0 and length l are given by as follows:  

 

     
     
                                                                                   
 
ii) 
 
 
 
 
 
iii) 
Figure 3 Three Basic Building Blocks 
 
The ABCD matrix for Z=R + jX  is given in Figure 3 (i) 

   
The ABCD matrix for Y=GT + jB is given in figure 3 (ii) 

 
The ABCD matrix for lossless transimittion line is given in Figure 3 (iii) 
 



�A B
C D�    =    � 𝑍𝑍𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐 𝑅𝑅𝑍𝑍𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐

 𝑅𝑅𝑌𝑌𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐 𝑍𝑍𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐 � 

 
Where A = 𝑍𝑍𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐       ;   B = 𝑅𝑅𝑍𝑍𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐 
          C = 𝑅𝑅𝑌𝑌𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐  ;   D = 𝑍𝑍𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐 
 
By definition S21 is the transmission coefficient of S-matrix, which is given 
S21 = 2

𝐴𝐴+𝐵𝐵𝑌𝑌𝑜𝑜 + 𝐶𝐶𝑍𝑍𝑜𝑜 +𝐷𝐷
  from transmission table of S vs ABCD parameters 

So for Z = R + jX      S21 = 2

1+ (𝑅𝑅+𝑗𝑗𝑗𝑗)
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                            1+ 𝑅𝑅
2𝑍𝑍𝑜𝑜

 which with forward bias as x = 0, so Attenuation = 1 + 𝑅𝑅𝑠𝑠+ 𝑅𝑅𝑔𝑔
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Where 𝛼𝛼𝐿𝐿 is defined as 20 log� 1
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In case of reverse bias R = Rr, and X = 
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Essentially, P-i-N diode provides minimum insertion loss with forward bias maximum isolation with 

reverse bias. This provides sound platform in switching applications with adequate power handling 

capabilities. Input power is usually expressed in dBms i.e., 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, so output power 𝑃𝑃0 can be expressed as 

𝑃𝑃0 = 𝑃𝑃𝑠𝑠 - 𝛼𝛼𝐿𝐿 in ON state of the p-i-n diode. For OFF state, the p-i-n diode is reverse biased. The isolation is 

expressed in dBs. So, output power is expressed as 𝑃𝑃0 = 𝑃𝑃𝑠𝑠 - 𝛼𝛼𝑠𝑠.   

2.1 Circuit Modules of a Packaged P-i-N Diode 

          ii)   
Figure 4. Equivalent Circuits at i) Forward Bias ii) Reverse Bias 

 
At forward bias, the diode acts as nearly short circuit which causes the microwave power to be reflected 

totally. As shown in Figure-4 (i) the switch is ON and the insertion loss is:  

 
𝛂𝛂 = 𝛼𝛼𝐿𝐿 = 10 log [(1+ 𝑅𝑅

2𝑍𝑍𝑜𝑜
)2+ ( 𝑋𝑋

2𝑍𝑍𝑜𝑜
)2]; 



Where YD = j𝜔𝜔CP + 1
𝑅𝑅𝑆𝑆 + 𝑗𝑗𝜔𝜔𝐿𝐿𝑆𝑆

  

ZD = 1
𝑌𝑌𝐷𝐷

 = R+jx 
 
At reverse bias, the diode acts as a nearly open circuit, the signal passes through the microchip line with an 

insertion loss 𝛼𝛼𝐿𝐿 which is due to the finite value of 𝐶𝐶𝑝𝑝. As shown in Figure-4 (ii) the switch is OFF and the 

isolation is 
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So 𝑍𝑍𝐷𝐷 = 1/𝑌𝑌D  
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�
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All these concepts pertaining to p-i-n diode have been successfully integrated into course EECE 517 MMIC 

Design and Fabrication. The detailed calculations for insertion loss and isolation along with simulation are 

carried out making use of ADS tools in the classroom along with intensive analytical techniques. Some 

select examples are being presented in this paper spectral analysis phase shift 𝛼𝛼𝐿𝐿 and 𝛼𝛼𝑠𝑠 in dBs along 

calculating minimum detectable signal levels at input and output. 

 
 
Example #1 [6] 
A nonlinear mixer diode is used as an up converter shown in Figure 5. Assume that the output current of 

the diode is i = 𝑎𝑎o + 𝑎𝑎1v + a2v2. Where 𝜈𝜈 = 𝜈𝜈RF sin (ꞷRF t) + 𝜈𝜈LO sin (ꞷLO t); ꞷ = 2𝛱𝛱f. Calculate the 

frequencies of all signals at port A in the diagram. Draw a composite spectrum for all the frequencies along 

with their amplitudes. 

 
Figure 5. Up Converter Mixer with LO. 



 
The results of equation (3) along with fundamental, harmonics and amplitudes are given in tabular form as 

below: 

 



 
    Example #2 [6] 

 
Figure 6 Phase Shifter and Attenuator 
Transmission line is lossless with Zo = 50Ω and electrical length = 𝑐𝑐𝑐𝑐 =  𝜃𝜃 

�A B
C D�    = �1 jx

0 1�  �
𝑍𝑍𝑐𝑐𝑅𝑅𝜃𝜃 𝑅𝑅𝑍𝑍𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃

 𝑅𝑅𝑌𝑌𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃 𝑍𝑍𝑐𝑐𝑅𝑅𝜃𝜃 �  �1 jx
0 1�   

=�𝑍𝑍𝑐𝑐𝑅𝑅𝜃𝜃 − 𝑋𝑋𝑌𝑌𝑜𝑜  𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃 𝑅𝑅[2𝑋𝑋𝑍𝑍𝑐𝑐𝑅𝑅𝜃𝜃 + (𝑍𝑍𝑜𝑜 −  𝑋𝑋2𝑌𝑌𝑜𝑜)𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃
 𝑅𝑅𝑌𝑌𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃 𝑍𝑍𝑐𝑐𝑅𝑅𝜃𝜃 − 𝑋𝑋𝑌𝑌𝑜𝑜𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃

� 
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So α = � 1
𝑆𝑆21
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Here ∑ Re = 𝑍𝑍𝑐𝑐𝑅𝑅𝜃𝜃 − 𝑋𝑋𝑌𝑌𝑜𝑜 𝑅𝑅𝑠𝑠𝑛𝑛𝜃𝜃 
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This provides the basis of phase shifting. 
 
Example #3 [6] 
The receiver system shown in figure 7 below is operating with a RF input signal of 10 to 11 GHz. Calculate  

a) The overall gain and loss of the system.  

b) The overall noise –figure in dB, and  



c) The input and output minimum detectable signal levels in mW for the receiver at room temperature.  
 

 
Figure 7 Receiver System 

 

 
 
3. Wilkinson’s Power Divider and Power Combiner 
 
Wilkinson Power Combiner (WPC) is a 3-port network device often made using Microstrip lines. For 3-dB 

device operation, port isolation is achieved using quarter-wave transmission lines acting as microstrip arms 

followed by balancing these arms (output ports) using a balanced resistance with respect to the input port.  



 
Figure 8. Power Coupler with Power Divider and Power Combiner 
 
 

 
Figure 9. Geometry of Wilkinson’s Power Combiner 
 
Fig. 9 shows WPC structure whose analysis is made with Even-Odd mode coupling techniques that uses 

superposition theorem and network symmetry to deduce the ideal (lossless transmission line) [S] parameter 

matrix, given in [10,11] as 

 

 

 
 
  design expressions of impedances shown in Figure 9 taken from [5].  
 

 
 
 
 
 
 



3.1 Distributed Model of WPD with Results 

 
Figure 10. ADS Model with Microstrips 

 
Figure 11. Schematic of Optimized WPD in ADS 

 
Figure 12. ADS Simulated Frequency Response 
 



3.2 Branch Line Coupler 
 
Analysis of generic Directional coupler or a basic 4 port Coupler [10-14] is presented below:.  

 
Figure 13. Portrait of 4 Port Coupler 
(a). Conventional Coupler  (b) Branch Line Coupler 
Figure 13 depicts standard 4 port coupler while the general form of S- parameter matrix for a 4 port coupler 
network is given in [10] as 

 
 
 



 
 
3.3 Distributed Element BLC Model using ADS 
Fig.14 depicts BLC Distributed Model[8] that is being optimized in ADS to Compensate the Microstrip 
TEE effects Connections using ADS  

 
Figure 14. Schematic of BLC Distributed Element Model 
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Figure 15. Schematic of Optimized BLC Distributed Element Model 
 

 
Figure 16. S-Parameters of BLC using the non-optimized smart Component Schematic 
 

 
Figure 17. S-Parameters of BLC using the ADS optimized smart Component Schematic 
4. Power Limiter Design with Results 



Fig. 17 depicts ADS schematic while Fig. 16 provides the modeled results of the RF power limiter.  

 

 
Figure 18. ADS Schematic of Power Limiter 

 
Figure 19. ADS Simulated Insertion Loss (S21) and Return Loss (S11) 
 
4.1 Design of Power Amplifier 
Design parameters of ADS  components  are being incorporated into MMIC-RFIC integrated models. 

These are utilized from the available standard ADS PDK library to develop ADS behavioral models and 

subsequently simulate the system response of RF Front End. 



 
Figure 20. 1-Tone Excitation PA System Model 
 
4.2 Results 
The PA system Model Results are in Fig 21 

 
Figure 21. System Response depicting output spectrum (Pout) in dBm. 

 
Figure 22. Power Gain (dB) simulated from 1-Tone excitation. 
 
 



 
Figure 23. 2-Tone excitation PA System Model. 
 

 
Figure 24. System Response of 2-Tone Excitation. 
 

 
Figure 25. Frequency Responses for each of the PA System Models. 
 
5. Microstrip Patch Antenna Design [15] 
 
The MPAs are thin metallic conductors micro strips called “Patch” [6] placed above the ground plane 

separated by a dielectric substrate, whose thickness ‘t’ is much smaller than the free space wavelength ‘λ0’. 



For HF applications, MPA is a MMIC design consisting of patch, ground plane, and dielectric substrate 

along with feeding mechanism. Usually height of substrate h << λ0, and typically 0.003λ0 ≤ h ≤ 0.05λ0. 

Geometry of MPA is portrayed in Fig. 26. The rectangular and square patches are the most popular types 

due to the ease of their design, analysis and MMIC fabrication along with their desired radiation pattern 

and lower polarization radiation. 

 
Figure 26. (a) Geometry of Microstrip Patch Antenna. (b) Side view of MPA (c) 
Radiating Slot Elements 
 
5.1 Analytical Calculations of MPA Dimensions 
 
ADS tools from Momentum-Microwave (MoM (UW) [4] suite are used to design the microstrip patch 

antenna working between 0.95 GHz to 12 GHz and the resonance frequency operable for this effort is good 

for 2.4-5 GHz range devices. The operating frequency fr = 4.89 GHz. The substrate material for these 

simulations is GaAs comprising of a dielectric constant (relative permittivity) εr value of 12.3. The 

substrate height ‘h’ of dielectric used for design is 0.635 mm (25 mils), as this is the standard height of 

GaAs substrate used in MMIC designs. 

The design of the rectangular patch antenna is accomplished using essential formulas from  [15-19]. The 

rectangular patch design parameters using the geometry depicted in Fig. 26 (a) are calculated by using 

equations (6) through (10). 

The width ‘W’ of the patch is obtained by: 
 

                
Where v0 = free space velocity of light = 3x1011 mm/s, fr = Resonant frequency = 4.89 GHz, εr = GaAs-

Relative Permittivity, so that from Eq. (6), Patch width ‘W’ = 11.895 mm ~ 12 mm. 

The effective permittivity constant of microstrip antenna is calculated using the relation: 

 
where εreff = Effective dielectric constant, εr = Dielectric constant of substrate h = Height of the dielectric 

substrate, W = Width of the patch 

6 

7 



Substituting the respective values in Eq. (7), we get εreff = 11.068 Then the extension length; L is obtained 

by using the below equation: 

 

 
where εreff = Effective dielectric constant, εr = Dielectric constant of substrate h = Height of the dielectric 

substrate, and W = Width of the patch; Substituting the values from previous step, we get extension length 

;L = 0.26763 mm. Finally, the actual length of the patch ‘L’ is determined by: 

 

 
 
Where fr = Resonant frequency, εreff = Effective dielectric constant 

μ0, ε0 = Relative Permeability (4πx10-7 H/m) and Permittivity (8.854x10-12 F/m) free space respectively 

Substitution of these values gives L = 8.685 mm. Ground dimensions of the antenna are essential to have a 

finite ground plane as shown in Fig. 26 (b). The size of the ground plane is greater than the patch 

dimensions by Approximately six times the height of the substrate, governed by the equations given as 

Lg = (6h +L) and Wg = (6h + W)                                                                              
Thus, length of the ground plane Lg = 12.495 mm ~ 12.5 mm and width of the ground plane Wg = 

15.81 mm ~ 16 mm. 

 

5.2 Antenna Impedance Matching Techniques for MPA Design 
Exploiting MLIN, there are two predominantly used techniques for impedance matching of the antenna. 

They are (a). Rectangular MPA Impedance transformer matching section, and (b). Square MPA coupled 

with Recessed Microstrip line feed. 

5.2.1 Analytical Calculations for Rectangular MPA Design 

 
Figure 27. Microstrip patch Antenna (a) Quarter-wavelength Impedance transformer (b) 
Geometry Comprising of Copper center Patch feed (c) Transmission Line Model 
Equivalent Circuit.  
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For the Quarter-wavelength transformer section depicted in Fig 27(a) 

 

 
Zin can be varied by selecting ZT such that Zin = Z0 and the antenna will be impedance matched. By 

feeding the patch antenna at the end, it yields a high input impedance value of Zin as current is lower at 

patch ends (Impedance Z = V/I). 

Impedance of the patch is given by 

 

 
 
Ground plane dimensions from Fig. 27 (b), the Rectangular MPA are Lg = 12.5 mm and Wg = 16 mm. 

For the calculation of width (WT) and length (LT) of (Quarter-wavelength) transformer section having 

narrow strip dimensions, Eq. (13) is used. 
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   Resulting from Matlab calculations. 
 
5.3 Analytical Calculations of Transmission Line Matching for Square MPA 
Design[15,20,21] 
 

 
Figure 28. Microstrip Patch Antenna (a) Square Geometry comprises of Copper center 
Patch fed (b) Top view depicting the dimensions of Recessed Microstrip 
 

 

 
           From [7] and w/2 = 0.833mm, so that the depth of feed line into the MPA, as illustrated in 
           [6] is calculated as Y0 (or) H =0.833 L/2 = 3.8mm 
           Other dimensions of recessed MLIN feed in Fig 28 (a) as stated in [6] 

 
 
5.4 Rectangular MPA Design with Simulation Results. 

 
Figure 29. Rectangular Microstrip Patch Antenna 
 



 
Figure 30. ADS Mesh Layout view of Microstrip Antenna 
 

 
Figure 31. Return Loss S11 (dB) vs Frequency 
 

 
Figure 32. ADS Frequency Response (a) Magnitude Response (b) Phase Response 
 

 
Figure 33. Far-Field Radiation intensity Patterns 
 



 
Figure 34. Single Patch 3D Isometric Schematic view of Square Microstrip Patch 
Antenna. 

 
Figure 35. (a) Return Loss of S11 (dB) vs Frequency (b) Smith chart Quantifying MPA 
 

 
Figure 36. ADS Frequency Responses (a) Magnitude Response (b) Phase Response 
 

 
Figure 37. Visualization of electric field Strength of the MPA 



 
Figure 38. Post-Processed intensity Pattern of the MPA 
 
                                            

                                               6. CONCLUSION 
RF – microwave chip-design needs multidisciplinary skills of Mathematics, Physics and Circuit Theory. To 

carry out device modelling precisely, the MMIC model comprised of smith chart and ECAD software 

(ADS) has addressed this problem adequately. An RF Engineer needs to inculcate skills in the design 

simulation, testing and verification along with the understanding microwave – measurements accurately. 

The fruitful partnership between Academia and Hi-Tech industry is of vital importance which the author 

has envisioned all along, especially through achieving the sponsorships for Teaching and Research 

endeavors in MMIC design and Fabrication activities. All the concepts of 5G chip-design have been 

presented in the MMIC and microwave electronics courses. Part-time students from the industry have 

appreciated learning a lot of fundamentals of microwave circuit design and full-time students have 

expressed gratitude for providing hands-on experience in the lab using ADS tools. 

A consummate 5G chip-set has been designed as a result of teaching and research investigations. All the 

modules for 5G communication have been designed and simulated along with their system-level 

integration. There is a potential for high-end RF-PA to be able to fit the desired needs of the next 

generation (G) technologies including 6G communications. Presently, detailed simulations were carried out 

for the RF input power of 1mw (0dbm), to establish a baseline, which is the transmitter output power of 

0.2W (23dbm). For future work based on the baseband expectations of 10mW(10dbm), it is to be advanced 

by accomplished strings standards in power  analysis of RF link acompassing Front and Back-end systems 

for the next G wireless communications. 

The author has been involved in this state-of-the-Art MMIC system level integration for the last three 

decades and has witnessed numerous students achieving high accomplishments in their careers. 

Throughout, the mantra in the class room has been “Only those students who learned the integration of 

Fundamentals in Hi-Tech courses become wise, else they remain otherwise”. The earnest attempts of the 

author have been to place all his students into the category of the “wise”. 

During these novel investigations the consummate 5G chip-set as attached has been designed simulated and 

is ready for fabrication. 
 



                                                   

5G Chip-Set
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