DESIGNING MULTIDISCIPLINARY GRADUATE
EDUCATION IN TECHNOLOGY AND THE SOCIAL
SCIENCES

Mary Jane C. Parmentier and Raji Sundararajan

College of Technology & Applied Sciences
Arizona State University East
Mesa, AZ-85212

Abstract

In 2001 The College of Technology and Applied Sciences at Arizona State University initiated a new graduate concentration – Global Technology & Development (GTD) - for the M.S. in Technology degree. This paper presents the details of this truly multidisciplinary, innovative curriculum development in technology. The program offers students the opportunity to study applications of technology for global development, how systems of technology interface, and technology’s role in global economic, political, and social development and change. While the traditional MS in Technology disciplines produce specialized technologists, the GTD concentration integrates social scientific approaches to the study of human development with coursework in systems of technology to train students to become “technology interpreters” for careers in technology-related public policy, administration, government service, and international development and management. Some of the central issues addressed in this concentration include technological change and its effects on societies and their economies, and how, in turn, social change influences technological advance. Thus, engineering students are exposed to graduate level theoretical foundations in the social sciences, and liberal art students are exposed to courses in information technology software, transportation systems, technology forecasting, and sustainable energy studies. Because of the unique multidisciplinary curriculum that combines technology, social sciences, and international and comparative studies, students in this program are able to choose elective courses and theses or applied project topics from a wide variety of fields, depending upon their academic backgrounds, strengths, and interests. The experience of implementing this multidisciplinary graduate program, bridging technology and the social sciences, provides a model for further multidisciplinary curriculum development.

Introduction

The discussion about the impact of technology on society and the way of living, especially in developing countries was the seed to the development of the GTD program. It was during the trip (in 2000) to a conference on water and development in the Southeast Anatolian Region of Turkey, a region that has experienced large scale development projects, including the Ataturk Dam, one of the largest in the world. Technological change was being introduced to modernize and increase irrigation and farming, and a new international airport was being designed to serve the region, which is also seeking foreign direct investment. The Turkish government was implementing programs to deal with the economic impact of displaced communities from the dam construction, and to address the overall low levels of development in the region, home to many of Turkey’s
Kurds, a people historically in conflict with the central Turkish government. Some interesting and difficult questions were raised about these activities. What impact would the Dam and other large scale development projects have on the region’s social and cultural institutions, or on Turkey’s political system? How would technological advance and globalization of trade and investment impact the country’s economic, social and political institutions? Were changes necessary in these institutions for the country to fully participate in the global economy, and more pressingly, to join with the European Union?

These questions laid the foundation for the multidisciplinary collaboration that would follow in the development of a program designed to provide graduates with knowledge of the broad trends of technological development and how these systems of technology influence human development. While the College has excelled in producing technologists and applied scientists, the concept of the new master’s programs was to produce graduates prepared to act as analysts of the effects of those technologies on society. In order to organize these basic concepts into a curriculum, an multidisciplinary faculty committee was formed. The various departments include information & management technology (which also includes social science faculty), environmental management technology, aeronautical management technology, electronics and computer engineering technology, and geography. The committee designed the curriculum with areas of human activity potentially revolutionized by technology, while utilizing the disciplinary strengths present within the College and other areas of the University. The initial categories have been under continuous revision since the programs’ inception to allow students more options in selecting an area of concentration.

Curriculum Design

The MS in Technology/GTD Specialization had the following requirements for 33 credits while starting.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Core</td>
<td>12</td>
</tr>
<tr>
<td>GTD Core</td>
<td>4</td>
</tr>
<tr>
<td>Research/statistics</td>
<td>5</td>
</tr>
<tr>
<td>Electives/Specialization</td>
<td>6</td>
</tr>
<tr>
<td>Thesis/Applied Project</td>
<td>6</td>
</tr>
</tbody>
</table>

However, these requirements are under continuous revision. For example, originally, there were four one credit hour seminar modules for GTD core. Currently, they were revised to be two three credit hour modules (totaling 6 credit hours) and the total credits were maintained the same by reducing the credits of Technology Core.

Technology Core

The technology core was initially designed by conceptualizing areas perceived to have been ‘revolutionized’ by technology, resulting in the categories of telecommunications, transportation and commercial activity, with sustainable development covering energy and environmental issues, critical to any study of development. These subject areas also reflected the disciplinary strengths at the university. At the same time, as students began entering the program, feedback received from students indicated that these were areas that fit, for many of them, topics that they were interested in professionally. Students are therefore able to take their elective courses in a selected technology core area as well, particularly if their capstone work fits into one of these themes.

Currently, each student is required to take one course from each area meeting the Technology Core requirements, and each semester there is a range of courses available, to suite the range of student interests and backgrounds in the program. For example, in Information
Technology/Telecommunications, students can take courses in Geographic Information Systems or Project Management with software applications, or, if they have a background in electronics, they can take an advanced course in telecommunications. Thus those with less technical backgrounds learn a software application, and those with technical backgrounds can either take more advanced technical courses, or other courses in the management and forecasting of technology. The areas of Transportation and Commerce further touch upon the technological forces enabling globalization. Sustainable development includes courses in alternative, sustainable energies, such as courses in fuel cell technology and solar technology, as well as courses related to the policy implications of sustainable issues, such as international environmental law.

To obtain an area of specialization, students would also choose their thesis or applied project topics within the set of issues that pertain to their area of specialization, while utilizing the multidisciplinary foundations of the program. Following are the various areas of specialization and the courses in each of them available to the students. Additional courses may be taken as electives.

Information Technology/telecommunications
- ITM 570 Project Management 3
- EET 579 Digital Data Communications 3
- GIS 598 Geographic Information Systems 3

Transportation
- AMT 523 Aviations Systems Management 3
- AMT 528 International Aviation 3
- AMT 522 Strategic Multi-Model Transportation Planning 3

Commerce
- ITM 540 International Management 3
- AGB 552 International Agricultural Policy 3
- AGB 494 E-Commerce and Trade 3
- GTD 598 Area Studies Courses 3

Sustainable Development
- ETM 526 Current Environmental Technology Issues 3
- ETM 428 International Environmental Management 3
- EET 598 Introduction to Green Technology 3
- GPH 405 Energy and Environment 3

Core Seminars

The following two core seminars form the foundation of the GTD curriculum. Together with the research sequence they are the common courses that all students take. Designed to integrate the program and provide a solid basis for approaching issues in development, these seminars are taken during the first two semesters, in either order, to allow flexibility on when students may enter the program.

- GTD 501 Introduction to Global Technology and Development 2
- GTD 503 Technology and the International Political System 2

The first seminar, GTD 501 Introduction to Global Technology and Development, introduces the major approaches to economic, social and political development, seeking to expose students to the theoretical heritage that integrates these aspects, from Adam Smith and Karl Marx, to Amartya
Sen and Paul Streeten. It is assumed that students entering the program are not familiar with this literature, and the text chosen (Martinussen [1]) offers one of the best overviews of multidisciplinary development literature available. In addition they are assigned books on globalization, the information revolution, and information technology and development (Lechner and Boli [2], Castells [3], Mansell and When [4]). As they become familiar with the development paradigms, students are challenged to formulate their own approach to development. Does development, for example, essentially mean economic growth? Technological advance? Alleviation of poverty and disease? Freedom from political repression? The goal is for each student to crystallize their own perspective on these questions and be able to defend it, verbally and in writing.

The other seminar, GTD 503 Technology and the International Political System, focuses more specifically on political development and change, both at the nation-state level and the global level of the international political system. The texts mentioned above also provide readings for this seminar, as well as journal articles from many academic journals, including World Development, Human Development, World Politics, Technology and Society, Third World Quarterly, Information Technology and Society, and Information Technology and International Development. Students in this seminar must consider questions that center on nation-building, war and conflict, technology and the possible changing role of the nation-state. Does democratization equal political development? Is the secular western model of state-building relevant or applicable to other social, cultural and religious contexts? Does technology serve to promote political participation, or enhance the power of repressive states?

Student assessment in both seminars is designed to help each student develop and improve his/her ability to read critically, analyze varying perspectives, and articulate their views both orally and in written form. Assignments therefore consist of 3-4 critical essays, where students discuss various themes, such as ‘What is development?’ and a critique of a country’s science and technology policy, utilizing and critiquing the assigned literature to formulate their views. Students are also required to begin a ‘research portfolio’ which they will maintain throughout their program, in which they keep track of their progress and utilize their course work to develop their ideas for their capstone requirement.

Electives

As mentioned above, students may select their electives from the technology core areas. These courses would follow the theme of a chosen core class, and, depending upon the student’s background, provide an area of specialization in a technological or social scientific field, designed with the counseling and the approval of the faculty advisor. Students may also select electives from another department at the university. For example, we had a student, with interest in women, technology and development, take electives from the women studies curriculum. Another, interested in non-governmental organizations and aid for technology development, took classes in non-profit organizational management. Either way, students are strongly urged to specialize in a specific area of their choice and choose electives accordingly, with their capstone thesis or applied project fitting into this theme as well.

Some of the elective courses are:

- AMT 542 Impact of Technology on Aviation
- EET 494/598 Fuel Cells: Science & Technology
- AGB 454 International Trade (students can take up to 9 credit hours of 400 level courses)
- SOC 485 Sociology of Knowledge
Research Sequence and Capstone Experience

The research sequence includes a course in research design that focuses on the construction of research questions and problem statements, literature reviews and methodology selection, with an introduction to quantitative (statistical) and qualitative methods. Students can choose between a research-focused thesis or an applied project, which they need to prepare for by developing a proposal, which they are encouraged to develop throughout the research sequence. Part of the capstone experience includes a defense of the proposal, and a defense of the final thesis or project. We have found that a proposal defense is extremely valuable to the student, not only as a practice run for the final defense, but to gain faculty input and reaction and minimize later problems with research, methodology, etc. Table 1 illustrates the course distribution for thesis and applied project students related to research sequence and capstone experience.

Table 1: Course Distribution for Thesis and Applied Project Students related to research sequence and capstone experience

<table>
<thead>
<tr>
<th>Course</th>
<th>Thesis</th>
<th>Applied Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTD 505 Research Design</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GTD 506 Quantitative Analysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GTD 599 Thesis</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>GTD 593 Applied Project*</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Approved Elective</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Students are encouraged, via their elective courses, to specialize in a particular area. Often these areas correspond to the technical content areas, but students can specialize in some other area in which there are courses they can take at the university. This can lead to contact with a wide range of faculty, who can serve on the thesis or applied project committees. So far there have been committees made up of faculty from electronics engineering, information technology management, geography, urban planning, justice studies, and global technology and development. Multidisciplinary faculty collaboration on student projects is thus a reality, with faculty research collaboration an opportunity that will be pursued in the future.

The multidisciplinary makeup of the curriculum combined with the wide variety of student backgrounds and interests has resulted in a range of topics that students have pursued so far. Following are some recently completed theses and applied projects:

- *The Re-Enforcement of Traditional Gender Roles in the Technology Sector: A Case Study of Female Engineers in India* (thesis)
- *Multilateral Aid Allocation and Patterns of Informational Marginalization in South America* (thesis)
- *Framework for Development of Contextual Information Storage and Search Mechanism* (applied project)
- *Technology Solutions for Consulting Companies in Ecuador* (applied project)

Admissions and Student Body

The challenge of setting admissions standards, apart from the basic graduate school requirements of the University of a 3.0 cumulative GPA from an accredited institution of higher education, has centered on what standards to require, given the assumption that students with degrees ranging from engineering to English might apply. The faculty committee agreed upon the following:

"Copyright © 2005, American Society for Engineering Education"
• Minimum of 12 credits of social sciences
• Coursework and/or professional experience in computer science/technology
• International or intercultural experience

Occasionally a student might be admitted with a ‘deficiency’ in one of these areas, with extra courses, as co-requisites, required as a condition for admissions.

The current student body of 29 students represents the following undergraduate degrees:

<table>
<thead>
<tr>
<th>Undergraduate Degree</th>
<th>Number of Students in GTD program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>5</td>
</tr>
<tr>
<td>Science/Computer Science</td>
<td>6</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>10</td>
</tr>
<tr>
<td>Business</td>
<td>8</td>
</tr>
</tbody>
</table>

The student body is also very diverse culturally, with 1/3 of the students on international student visas from India, Japan, Taiwan, and Uzbekistan, and another 1/3 U.S. citizens with significant experience living in Nigeria, Cameroon, Kazakhstan, Nicaragua, Haiti, Belize, and the south Pacific. The remaining 1/3 of the student population do not have significant international experience, but their academic experience is enhanced by their classmates from around the globe, and many of them pursue trips for study and/or research abroad during the course of the program. Regarding gender, the student body is currently split, with 15 males and 14 females. The unifying feature of this group of students with highly diversified academic and life experiences is the interest in technology, globalization and world development.

GTD Trips Abroad

In order to allow students and faculty the opportunity to explore GTD topics in real world contexts, and to stay current on global development issues, the faculty has undertaken several short-term study trips abroad. While short term study abroad cannot take the place of longer, more integrated experiences living and working abroad, it provides important international educational opportunities for students that fit well logistically with a graduate student’s relatively short length of study (and the fact that most of our students work fulltime). In May of 2002 faculty and students visited Turkey, the location that inspired the initial conceptualization of the program. The group visited the GAP (Southeast Anatolian Project) region, observing large scale dam and irrigation projects as well as small farm and women’s cooperatives, gaining insight into the benefits and trade offs of large scale technological advances in rural areas (Figs. 1 and 2). Meetings with business and government leaders included one with Suleyman Demiral, former Prime Minister and President of Turkey, where the discussion included the country’s long time quest to enter the European Union.
In January 2005, a GTD group of faculty, staff and students traveled to Ecuador, where they met with Sixto Duran Ballen, former President of Ecuador, under whose presidency the current tenets of globalization, privatization and de-regulation of industries, were pursued. The students had already read a book (Gerlach [5]) on the oil industry and the transformation of Indian societies in the Amazon, and thus were well prepared to discuss economic, social, and political issues with President Duran Ballen and other Ecuadorian officials and intellectuals. The trip spanned from Andean capital of Quito, to the edge of the Amazon basin, where the students witnessed vast diversity in human development and technology. They also visited northern coast region of Esmeraldas, where shrimp farming is being enhanced with technology, but at environmental costs. Each student kept a journal, raising his/her questions of interest, and reflecting upon them throughout the trip. The students received one credit turning in an essay discussing, from their area of interest, what they learned about the country and its most pressing issues during the trip.
Results and Future Directions

The ongoing challenges of administering the curriculum continues to center on how to integrate students with technical/science/engineering backgrounds, and social science/humanities/business backgrounds, and give them a common core, with common goals and outcomes. Some students with heavily technical backgrounds have been challenged by the level of written work required, and some of those with liberal arts and sciences backgrounds have had to take some extra courses in science and technology. The University has an excellent writing center that has helped many of the students in the program improve their written skills, a key goal of the program. The benefits of multidisciplinary study appear to outweigh the inherent challenges.

What we are continuing to see with the ongoing applicants and current students in the GTD program are students from engineering and technological backgrounds who want to understand their work within the social, political, cultural and economic context, and they are motivated to pursue difficult questions about technology and development in societies around the globe. One new student is on leave from the Japanese Transportation Agency, where he is a civil engineer, in order to pursue the GTD degree, after which he plans to work for the Japanese government on transportation infrastructure in developing nations. We are also seeing students from the liberal arts and sciences, some of whom have had work experience in developing countries, such as in the Peace Corps, who seek solutions to development issues and want to increase their knowledge of technology for that application. Again, the diverse student body intersects at this point where science and technology is perceived as a factor in global forces that are transforming social, political and economic institutions, and indeed cannot be fully understood outside of these institutions.

Of the students who have graduated or will graduate soon, we have been surprised at the number seeking to pursue doctoral degrees. While the focus of this terminal master’s is on application and policy implications, the theoretical exposure seems to have motivated several students to continue their graduate studies. One graduate is already working on a doctorate in human geography, and two more (one with an undergraduate degree in engineering and urban planning) are applying this year. Other graduates are working, several in technology in the private sector, and one in South America on tourism and development, for the local government. Comments from graduates of the program have been very positive. Feedback has indicated that they feel they have learned to comprehend and analyze global economic and political forces, and effectively conduct research, with one recent graduate commenting that the research and writing skills gained ‘directly contributed to... admission to Ph.D. programs.’

After three years the GTD faculty has begun to look into future directions and areas for growth. For example faculty are exploring possibilities with the new School of Global Studies at ASU, designed to create a curriculum that explores important global trends, such as information technology and international development. By sharing resources and faculty strength, it is felt that the multidisciplinary nature of the program can be further strengthened, as well as allowing for the creation of some options for students. One such option might be a one year professional master’s degree, offered online, perhaps designed for development professionals at the UN or World Bank; another option might be a doctoral program. Additionally, there have been discussions on collaboration with the new Department of Engineering, at ASU Polytechnic, also the home of GTD, for global development courses, or maybe even a concentration, created for undergraduates in the engineering program. What is clear is that the program continues to receive interest from a broad range potential students, with the program’s common objective of examining global challenges and trends in a multidisciplinary fashion that brings the social sciences and technological fields together in a joint effort to explore the issues facing the planet as we head into the 21st century.
Acknowledgments

Grateful acknowledgement is given to Dean Albert McHenry and Associate Professor Gary Grossman of the College of Technology and Applied Sciences, Arizona State University, for their origination of the concept for the Global Technology and Development curriculum.

Bibliographic Information

Biographical Information

MARY JANE C. PARMENTIER is a Lecturer and Assistant Faculty Director of the Global Technology and Development master’s program in the College of Technology and Applied Sciences at Arizona State University. She received her M.A. in International Relations from San Francisco State University, and her Ph.D. in International Studies from the Graduate School of International Studies at the University of Denver in 1999. While at Arizona State University she has developed the curriculum for the Global Technology and Development master's degree, as well as study trips to enhance the curriculum. She recently returned from a trip with graduate students to Ecuador over the winter session. E-mail: mary.parmentier@asu.edu

RAJI SUNDARARAJAN is an associate professor in the Dept. of Electronics & Computer Engineering Technology at ASU East. Her research interests include high voltage engineering applications, such as electro-biotechnology, and characterization of aging and degradation of high voltage polymeric insulators. She is also interested in developing new courses, and concentrations for undergraduate and graduate programs. Dr. Sundararajan is a Senior member of IEEE, and is very active in various IEEE Societies, such as PES, DEIS and IAS. She is also a Member of ASEE. E-mail: raji@asu.edu