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Abstract

When the method of double integration is used to determine deflections, as well as statically in-
determinate reactions at supports, of a beam in Mechanics of Materials, one has the option of us-
ing singularity functions to account for all loads on the entire beam in formulating the solution.
This option is an effective way and a right way to solve the problem if the beam is a single piece
of elastic body. However, this option becomes a wrong way to do it if one fails to heed the exis-
tence of discontinuity in the slope of the beam under loading. Beginners tend to have a miscon-
ception that singularity functions are a powerful mathematical tool, which can allow one to blaze
the loads on the entire beam without the need to divide it into segments. It is pointed out in this
paper that hinge-connected beams are a pitfall for unsuspecting beginners. The paper reviews the
sign conventions for beams and definitions of singularity functions, and it includes illustrations
of both right and wrong ways in solving a problem involving a hinge-connected beam. It is
aimed at contributing to the better teaching and learning of mechanics of materials.

I. Introduction

There are several established methods for determining deflections of beams in mechanics of ma-
terials. They include the following:*® (a) method of double integration (with or without the use
of singularity functions), (b) method of superposition, (c) method using moment-area theorems,
(d) method using Castigliano’s theorem, (€) conjugate beam method, and (f) method using gen-
eral formulas. Naturally, there are advantages and disadvantages in using any of the above meth-
ods. By and large, the method of double integration is the commonly used method in determining
slopes and deflections, as well as statically indeterminate reactions at supports, of beams. With-
out using singularity functions, the method of double integration has a disadvantage, because it
requires division of a beam into segments for individual studies, where the division is dictated by
the presence of concentrated forces or moments, or by different flexural rigidities in different
segments. Readers, who are familiar with mechanics of materials, may skip the refresher on the
rudiments included in the early part of this paper.

= Sign Convention. In the analysis of beams, it is important to adhere to the generally agreed
positive and negative signs for loads, shear forces, bending moments, slopes, and deflections of
beams. A segment of beam ab having a constant flexural rigidity EI is shown in Fig. 1. Note that
we adopt the positive directions of the shear forces, moments, and distributed loads as indicated.
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Fig. 1 Positive directions of shear forces, moments, and loads

As in most textbooks for mechanics of materials, notice in Fig. 1 the following conventions:**®

(a) A positive shear force is one that tends to rotate the beam segment clockwise (e.g., V, atthe
left end a, and V, at the right end b).

(b) A positive moment is one that tends to cause compression in the top fiber of the beam (e.g.,
M, at the left end a, M, at the right end b, and the applied moment K tending to cause com-
pression in the top fiber of the beam just to the right of the position where the moment K
acts).

(c) A positive concentrated force applied to the beam is one that is directed downward (e.g., the
applied force P).

(d) a positive distributed load is one that is directed downward (e.g., the uniformly distributed
load with intensity w,, and the linearly varying distributed load with highest intensity w; ).
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Fig. 2 Positive deflections and positive slopes of beam ab

The positive directions of deflections and slopes of the beam are defined as illustrated in Fig. 2.
As in most textbooks for mechanics of materials, notice in Fig. 2 the following conventions: %°

(i) A positive deflection is an upward displacement (e.g., y, at position a, and vy, at position b).
(if) A positive slope is a counterclockwise rotation (e.g., ¢, at position a, and ¢, at position b).

m Singularity functions. Note that the argument of a singularity function is usually enclosed by
angle brackets (i.e., < >), while the argument of a regular function is enclosed by rounded paren-
theses [i.e., ()]. The relations between these two functions are defined as follows:"®

<x—a>"=(x-a)" if x-a>0and n>0 (1)

<x—-a>"=0 if x—-a<0 or n<0 (2)
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Ix<x—a>”dx: L ox—as™ if nx»0 (3)
o n+1
“<x-—a>"dx = <x—a>"" if n<0 (4)

Based on the sign conventions and the singularity functions defined above, we may write the
loading function g, the shear force V, and the bending moment M for the beam ab in Fig. 1 as
follows:'?
g =Va<X> T+ M, <X>7=P<Xx—X, > '+ K< X=X, >7
W,
L <x—x,>" ()

0
— W< X— X, > —

W

V=V, <x>"+M,<x>"—P<x—%X >+ K< x—x, >

W,
— W< X=X, > < X — X >
S TR I e (6)

M =V, <x>'+ M, <x>"—P< X=X, >+ K< X — X, >°

W,

6(L—x,)

Wo

2
5 <X=X,>" =

<x-x,>° (7)

I1. Analysis of a Hinge-Connected Beam: Right and Wrong Ways

Most textbooks for mechanics of materials or mechanical design do not sufficiently warn their
readers that singularity functions can be elegantly used to overcome discontinuities in the various
loads acting on the entire beam [such as those shown in Egs. (5), (6), and (7) for the loads shown
in Fig. 1], but they cannot blaze the various loads for the entire beam when the beam has one or
more discontinuities in its slope when the loads are applied to act on it. In fact, singularity func-
tions cannot be above the rules of mathematics that require a function to have continuous slopes
in a domain if it is to be integrated or differentiated in that domain. Here, the beam is the domain.
If a beam is composed of two or more segments that are connected by hinges (e.g., a Gerber
beam), then the beam has discontinuous slopes at the hinge connections when loads are applied
to act on it. In such a case, the deflections and any statically indeterminate reactions must be ana-
lyzed by dividing the beam into segments, each of which must have no discontinuity in slope.
Otherwise, erroneous results will be reached.

m Example 1. A combined beam (Gerber beam) having a constant flexural rigidity EI is
loaded and supported as shown in Fig. 3. Show a wrong way to use singularity functions to at-
tempt a solution for the vertical reaction force A, and the reaction moment M, at A.
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Fig. 3 Fixed-ended beam with a hinge connector
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Wrong way. For illustrative purpose, let us first show how a wrong way may be used by an
unsuspecting person in trying to solve the problem and reaching wrong results as follows:
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Fig. 4 Free-body diagram with assumption of positive reaction forces and moments

Since this person would use singularity functions to blaze the loading for the entire beam, the
loading function g, the shear force V, and the bending moment M for the entire beam would be as
follows:

q=M,<X>?+A <x>"'-P<x-2L>"
V=M,<x>"+A<x>"-P<x-2L>°
Ely"=M =M, <x>"+A, <x>-P<x-2L>"

Double integration of the last equation yields

Ely' =M, < x>l+%Ay< x>2—% P<x—2L>+C,
Ely=fMu<x>? +1A <x>- Lp<x—2L>'1Cx+C
y—E A< X > +6 y<X> 6 <X >+ 0, X+ 2
Imposition of boundary conditions yields
y'(0)=0: 0=C, (@)
y(0)=0: 0=C, (b)
y'(3L) =0: 0 :MA(3L)+%Ay(9L2)—%PL2+C1 ©)
L)=0: 1 2, 1 2713 153 d
y(3L)=0: 0—§MA(9L)+gAy( 7L)—EPL +C,(3L)+C, (d)
Solution of simultaneous Egs. (a) through (d) yields
2PL 7P
Cl=0 CZZO MA:—T Ay:f
Consistent with the defined sign conventions, this unsuspecting person would report
_2PL 7P
M, ==g= J Ay=—o )

Note that these two answers are wrong because we can refer to Fig. 4 and show that they do not
satisfy the fact that the magnitude of moment Mg =0 at the hinge atB; i.e.,

Mg =M, + A/ L=-— 25'— 7P(L)
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m Example 2. A combined beam (Gerber beam) having a constant flexural rigidity EI is
loaded and supported as shown in Fig. 3. Show the right way to use singularity functions to de-
termine for this beam (a) the vertical reaction force A, and the reaction moment M, at A, (b)
the deflection y; of the hinge at B, (c) the slopes 6;, and G, just to the left and just to the right
of the hinge at B, respectively, and (d) the slope 4. and the deflection y. at C.
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Fig. 3 Fixed-ended beam with a hinge connector (repeated)

Right way. This beam is statically indeterminate to the first degree. Nevertheless, because of
the discontinuity in slope at the hinge connection B, this beam needs to be divided into two seg-
ments AB and BD for analysis in the solution, where no discontinuity in slope exists within each
segment.
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Fig. 5 Free-body diagram for segment AB and its deflections

The loading function g, , the shear force Vg, and the bending moment M, for the segment AB,
as shown in Fig. 5, are
Upg = My <X>7+ A, < x>
Vig = My < x>+ A, < x>°
Elyr =My = My<x>"+A, <x>'

Double integration of the last equation yields

Ely, =MA<X>1+%AV<X>2+C1

Ely,, =%MA<X>2 +%Ay<x>3+C1x +C,

Fig. 6 Free-body diagram for segment BD and its deflections
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The loading function g, the shear force \},, and the bending moment Mg, for the segment
BD, as shown in Fig. 6, are
Usp = By< X>"'—P<x—-L>"

Vo = By< x>° -~ P<x-L>°
Ely =Mg = By<x>'—P<x—L>

Double integration of the last equation yields

ElygD:%By<x>2—%P< x—L>2+C,
1 3 1 3
Ely,, = EB<X> —§P<X—L> +Cy;x+C,
Imposition of boundary conditions yields
Yrs (0)=0: 0=C, (@)
Yag (0)=0: 0=C, (b)
: 1 2, 1 3
Vag (L) = Yeo (O) EMAL +6Ay L= C4 (C)
Yl (2L) = 0: 0=%By(4L2)—%PL2+C3 d)
Yoo (2L) = 0 O=%By(8L3)—%PL3+C3(2L)+C4 @)

Imposition of equations of static equilibrium for segment AB yields
+OXM, =0: -M,-A/L=0 )
+T2Fy:0: A,—-B,=0 )

Solution of simultaneous Egs. (a) through (g) yields

PL2 5PL°

C,=0 C,=0 csz—W C,=- =
_oP _oP __oPL
Ay= 18 By= 18 M. = 18

Consistent with the defined sign conventions, we report that

_oP

_5P _5PL
18

A -
Y 18

M,

Substituting the above solutions into foregoing equations for Ely,,, Ely,;, and Ely,, , respec-
tively, we write
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EIyB=E'YBD(O):(341:_55P4L3 sz—;D;
10, = Ely (D =M,L+2 A L4 C,= - 2P =
A T
S RS LILI N S
E|yc:E|yBD(L)=%ByL3+C3L+C4=—% yc=—11;8P§

Based on the preceding solutions, the deflections of the combined beam AD may be illustrated as
shown in Fig. 7.
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Fig. 7 Deflections of the beam AD

Concluding Remarks

This paper provides a refresher on the sign conventions for beams and definitions of singularity
functions. Beginners in mechanics of materials are usually not sufficiently warned about the
limitations of what singularity functions can do. Students tend to have a misconception that sin-
gularity functions are a powerful mathematical tool, which can allow them to blaze the loads on
the entire beam without the need to divide it into segments for analysis. It is pointed out in this
paper that hinge-connected beams are a pitfall for unsuspecting beginners.

The paper includes two illustrative examples to demonstrate both wrong and right ways in using
singularity functions to solve a problem involving a hinge-connected beam. It is emphasized that
singularity functions cannot be above the rules of mathematics that require a function to have
continuous slopes in a domain if it is to be integrated or differentiated in that domain. In mechan-
ics of materials, the beam is the domain. If a beam is composed of two or more segments that are
connected by hinges (e.g., a Gerber beam), then the beam has discontinuous slopes at the hinge
connections when loads are applied to act on it. In general, the deflections and any statically in-
determinate reactions must be analyzed by dividing the beam into segments, as needed, each of
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which must have no discontinuity in slope. Otherwise, erroneous results will be reached. This
paper is aimed at contributing to the better teaching and learning of mechanics of materials.
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