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Developing a Cross-Cultural Model of Problem Solving: 

Comparing U.S. and Indian Engineering Undergraduates 
 

The process of globalization has changed economies and the workplace worldwide. As this 

process has evolved, competitiveness has become a central issue. According to a typical metric 

of competitiveness used by government agencies and the media, which is the number of 

engineering graduates, the U.S. has been falling behind emerging economies, most particularly 

India and China.
1
 However, in trying to decide who is winning and who is losing, Gereffi et al.

1
 

emphasize that it is important to consider quality as well as quantity. But what does “quality” 

mean in engineering, and how are we to measure it?  These are the questions addressed in this 

paper within the topic of engineering problem solving. 

 

A central topic for educators and researchers in engineering education and related fields is 

problem solving.  A theoretically and practically rich collection of scholarly work surrounds this 

topic, from the perspectives of the learning sciences and engineering education.  Within the 

discipline of cognitive psychology a theoretically-based distinction developed between “experts” 

and “novices” that was underpinned by hypotheses about learners’ mental representations and 

how those mental representations changed both locally, during the solution of specific problems, 

and distally, as a natural developmental unfolding of skill due largely to extensive experience 

within a domain.
2,3,4,5

  Engineering educators took a more didactic approach to the problem, 

recommending that certain problem-solving routines and practices be taught to students in order 

to develop disciplined and effective practitioners.
6,7,8

 

 

The present study was motivated by a search for the best and brightest engineering 

undergraduates and the question of whether there were “experts” at this level.  A classic body of 

research in cognitive psychology had suggested that undergraduate students are not capable of 

achieving levels of deep understanding in problem solving in their domain of study, i.e., in 

becoming experts.
9
  In response to that research, other cognitive research questioned the very 

depiction of what it meant to have deep understanding.
10

  One goal of this research was to re-test 

the original hypothesis
2,3,4,5

 that deep understanding was beyond the scope of undergraduate 

learners.  To test this hypothesis, students enrolled in introductory Mechanics at one of the best 

engineering institutes in India, the Indian Institute of Technology at Kharagpur (IIT-KGP), were 

tested using standard textbook problems.  An Indian Institute of Technology was selected 

because of the reputation these schools have for providing world-class training.  For comparison, 

the problem solving ability of the IIT-KGP students was compared to data from a  U.S. research 

university, Texas Tech University (TTU), and to a less-renowned (compared to IIT-KGP) but 

well-regarded engineering institute in India, Manipal Institute of Technology (MIT). The 

experimental design provided a stringent test of the hypothesis that engineering undergraduates 

could achieve expert levels of performance because IITs recruited the very best students.  The 

control conditions were appropriate because they provided some indication of normative 

performance within and outside India. A second goal was to implement an experimental 

methodology that was able to capture students’ problem-solving behavior in sufficient detail to 

allow identification of prior knowledge and problem-solving strategies. 

 

The next two sections present overviews of the classic position in cognitive research that asserts 

that undergraduates perform at a novice level and not at an expert level; and an alternative theory 
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Figure 1. Neglecting friction, 
determine the tension in 
cable ABD and the reaction 
at support C.

12
 

that suggests that the development of expertise is incremental with multiple intermediate states. 

These two positions will be tested in the present research. 

 

Forward and Backward Inferencing Problem Solving Models 

 

Problem solving requires cognitive strategies for retrieving, selecting, and applying knowledge.  

Research has shown that specific orders of equations in a solution are indicative of the level of 

understanding of the problem solver. In seminal studies in introductory physics mechanics, a 

domain with similarities to statics, two kinds of control were identified: backward inferences and 

forward inferences.
2,3,4,5

  In applying backward inferences, 

the person begins with a variable value that is requested by the 

problem statement and identifies a principle that includes that 

variable. The selected equation may include other variables for 

which a value is unknown. The person then selects an equation 

involving that unknown variable or some other equation. He or 

she continues to select and apply equations until the desired 

variable value is found.  Using the problem in Figure 1 as an 

example, an individual may choose to expand  FX, which 

includes one of the desired variables (CX), but also an 

additional unknown (TX), so the individual must continue to 

search for equations before a variable value can be found. In 

applying forward inferences, the person selects equations 

that can be solved immediately. As a result, the solver can 

systematically add new information to his or her database 

until the variable values requested by the problem are found. 

Using the same example, choosing to solve for the  MC 

allows one to immediately solve for tension (T), which is one 

of the variable values requested in the problem statement. Forward inferences have been 

associated with expert problem solving, and backward inferences have been associated with 

novice problem solving.
2,3,4,5

  Other research, though, has found no differences in the 

application of forward and backward inferences in physics across a wide range of expertise.
10

 

Therefore, the available research is unclear about whether forward inferences are indicative of 

problem-solving expertise in undergraduate students. 

 

Learning Progressions 

 

Learning progressions refer to a pedagogical construct that is associated with advances 

individuals make toward more sophisticated understanding in a domain. Learning progressions 

depict the acquisition of knowledge and skill as an incremental process through which 

competence is gained in a piecemeal manner. Intermediate levels of development can be useful 

stepping stones that represent productive but incomplete or partly incorrect systems of domain 

knowledge.
11

  

 

According to theories of learning progressions, skill development is not inevitable and often 

depends in significant measure on instruction.
11

 There are multiple paths in development, with 

specific pathways influenced by an individual’s prior knowledge and experience, the nature of 
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learning contexts and instructional supports, and specific learning tasks. The acquisition of 

knowledge and development of skills in a domain take place along multiple dimensions 

simultaneously. Knowledge and skill are interconnected in multiple and sometimes complex 

ways. Assessment requires fine-grained observations of individuals over time in order to identify 

critical bits of knowledge and the acquisition of successful strategies for effective problem 

solutions.  

 
Case Study 

 

Engineering educators have provided a number of useful didactic models for teaching problem 

solving,
6,7,8

 but there are few cognitive models that show how mental processes change as 

students become skilled problem solvers in their area of training. The goal of this research was to 

assess expert thinking in undergraduates. One way to distinguish between expert and novice 

problem solvers is in terms of how they reason about a problem, particularly early in the 

solution. Expert solvers create an accurate and detailed mental model and use this to strategically 

select equations to solve the problem.  Novice solvers follow a stereotypical algebraic approach.   

 

Two models of problem-solving were evaluated here. According to a model of shallow forward 

inferencing, individuals select forward inferencing equations, but without demonstrating deeper 

understanding of the problem. According to a model of deep forward inferencing, individuals 

build a rich and accurate mental model of a problem prior to the application of forward-

inferencing equations.  The former model is consistent with the classic models of forward 

inferencing.
2,3,4,5

  The latter model is more consistent with theories of learning progressions.
11

 

 

To decide if deep forward inferencing took place in the present study, an explicit set of judgment 

criteria was necessary.  A student was credited with deep forward inferencing if 

 a  Forces or  Moment equation was selected that could immediately yield a value for a 

variable in the problem  

 the  Forces or  Moment equation was the first equation that the participant produced 

 the requisite assumptions or prior knowledge were correctly applied prior to solving the 

equation 

 the equation was accurate 

 the equation yielded a variable value. 

Shallow forward inferencing was credited to the student if the student selected a  Forces or  

Moment equation that could immediately yield a value for a variable in the problem (the first 

criterion above) but one or more of the other criteria was lacking. 

 

The following predictions were made for this study: 

 IIT-KGP students would show relatively strong evidence of deep forward inferencing 

 deep forward inferencing is a sufficient, but not necessary, marker of problem solving 

ability 

 deep forward inferencing would be associated with high ability, as reflected in 

cumulative grade-point averages (GPA). 

The reasoning for these predictions is as follows.  The first prediction was made because the 

stringent admission standards and intense engineering training programs at IITs suggested that 

these students were some of the most gifted engineering students in the world.  The second 
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Figure 2. The 10-m beam AB 
rests upon, but is not attached 
to, supports at C and D.  
Neglecting the weight of the 
beam, determine the range of 
values of P for which the beam 
will remain in equilibrium.

12
  

prediction was made because of the possibility of successfully solving problems without using 

deep forward inferencing, that is, there are multiple ways of successfully solving a problem. The 

third prediction was made because the broad and rich conceptual knowledge required for 

successfully applying deep forward inferencing would plausibly be associated with general 

intellectual ability, as indicated by GPA.   

 

Participants and Procedures 

 

The participants in this study were 26 engineering students enrolled in Mechanics I at IIT-KGP 

(public-India). The comparison sample consisted of 23 engineering students enrolled in 

Mechanics I at MIT (private-India) and 28 engineering students enrolled in Mechanics I at TTU 

(public-U.S.). 

 

Students participated about halfway through the semester and had covered the topics in the 

problems they were asked to solve.  Students solved three problems. The results for Problems 1 

and 2, shown in Figures 1 and 2, respectively, will be reported 

here. The third problem resulted in very low performance 

across all participants and will not be considered here. All 

participants met individually with an experimenter in a quiet 

room.  They were instructed to solve the problems on paper as 

they normally would and to think out loud as they solved the 

problems. All sessions took approximately one hour.  Problem 

solving was video recorded with the permission of 

participants. During data collection, the primary role of the 

experimenter was to prompt participants to continue to 

verbalize their thoughts if they fell silent for longer than a 

minute or two.  At the conclusion of the meeting the U.S. 

students were compensated $25 for participation; the Indian 

students received a ballpoint pen, based on the advice of 

Indian faculty. All students appeared content with their compensation. Video recordings and 

paper solutions were used to analyze performance. 

 

Results and Discussion 

 

The findings (see Table 1) confirmed the first prediction that IIT-KGP students would 

demonstrate deep forward inferencing. This result contests the conclusion in the cognitive 

literature that undergraduates function at a novice, not an expert level of reasoning.
2,3,4,5,9

  TTU 

students also showed evidence of deep forward inferencing, whereas MIT students did not.  A 

statistical analysis of deep forward inferencing showed that the differences between schools were 

statistically reliable [F(2,74) = 3.52, p = .03].  Table 1 also shows that the shallow forward 

inferencing model did not distinguish between students, which was confirmed through a 

statistical test  [F(2,74) = 0.21, p = .81].  

 

Although the TTU students were more like the IIT-KGP students in their tendency to apply deep 

forward inferencing, they were more like MIT students in terms of overall problem accuracy. 

IIT-KGP students had overall significantly higher accuracy rates because there are multiple ways 

P
age 17.16.5



to reach a correct solution besides deep forward inferencing, which is consistent with the second 

prediction in this study. 

 

Correlation analyses were conducted in order to test the third prediction that deep forward 

inferencing would be associated with high ability.  The analyses showed a modest association 

between the application of deep forward inferencing and GPA (r = .20, p = .08), a non-

significant association between the application of shallow forward inferencing and GPA (r = -

.08, p = .49), and a strong association between overall problem accuracy and GPA (r = .30, p = 

.008). The overall pattern of correlations generally supports the third prediction. 

 

Table 1.  Percent Accuracy Across All Problem Solutions, Percent Application of Forward 

Inferencing Equations, Percent Application of Deep Forward Inferencing, and Mean Grade-Point 

Averages (GPA). (Percents adjusted for differences in GPA are in parentheses). 

 

Institutions Overall Problem 

Solution 

Accuracy 

Application of 

Forward 

Inferencing 

Equations 

Application of 

Deep Forward 

Inferencing 

GPA (10-point 

scale) 

IIT-KGP 

(PublicIndia) 

65% (71%) 35% (31%) 23% (25%) 8.20 

MIT 

(Private-India) 

25% (29%) 30% (28%) 0% (1%) 8.35 

TTU 

(Public-U.S.) 

38% (30%) 39% (45%) 25% (22%) 9.29 

 

In summary, the evidence for deep forward inferencing provides a “proof of concept” that 

contests the widely accepted claim that undergraduates cannot reason like experts. It also helps 

to establish an attainable benchmark for engineering curricula. Finally, it supports a model of 

deep forward inferencing, which is more consistent with learning-progression theory than with a 

shallow forward inferencing model. 

 

Conclusions 

 

The research presented here reveals both the outlines of a theory of expertise for engineering 

undergraduates and an empirical methodology for broadening and confirming the theory. The 

levels of performance across the data sets suggest several levels of skill.  Some students are 

simply stumped by typical problems from the domain of study. There are conventional problem 

solvers who follow a fixed routine when solving problems. These students eventually reach the 

correct solution. There are incisive analysts who take time before attempting to solve a problem 

to reflect on the parameters and to develop a mental model. This reflective reasoning is 

evidenced in deep forward inferencing. Deep forward inferencing depends on prior knowledge, 

which plays a critical role in the problem solution and cannot be inferred from information given 

in the problem. The student must simply know this information. Similarly, knowledge of specific 

concepts, like range of values (e.g. Figure 2), and the ability to translate those concepts into 

mental models of the problem, are required to solve a problem.  The student must be able to P
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translate these concepts from a general form of knowledge to the requirements of specific 

problems.  

 

The data from the present study begin to operationalize the cognitive construct of deep 

understanding as it applies to problem-solving in statics.  In this respect, the study complements 

contemporary theoretical
13,14

 and didactic
7,8

 research efforts directed at advancing engineering 

education pedagogy.  It is also consistent with learning-progressions theory, which by its nature 

combines theory
13,14

 and instruction.
7,8

  The primary contribution of this research is in 

establishing meaningful benchmarks and boundary conditions for instruction. It lays the 

groundwork for follow-up studies on how to promote the development of deep conceptual 

understanding and problem-solving skill. 
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