
2006-1777: DEVELOPMENT AND INTEGRATION OF A DIGITAL CONTROL
LABORATORY WITH A DIGITAL SYSTEM LABORATORY AT YOUNGSTOWN
STATE UNIVERSITY

Ben Shaw, Youngstown State University

Faramarz Mossayebi, Youngstown State University

© American Society for Engineering Education, 2006

P
age 11.452.1

FlexARM1: An ARM Based IP Core for the UP3 Education Kit

Introduction

Today’s embedded solutions require a rapid product development time to meet strict

market demands
1
. It is essential for system design engineers to verify complex designs in

hardware before final implementation. In order for upper level undergraduate students to gain

exposure to this verification process, a system level prototyping environment is a necessary tool

to provide hands on experience for realizing complex digital systems. System Level Solutions
2

and Altera
3
 offer the UP3 Education Kit as a low cost prototyping platform for system level co

hardware/ software development. The UP3 features a powerful Altera Cyclone FPGA
4
and an

abundance of I/O, peripheral, and memory components allowing for intellectual property (IP)

design, prototyping and testing using a hardware descriptive language (HDL).

Modern FPGAs are equipped with features that were not previously available. Today’s

FPGAs usually come with phase-locked loops, low-voltage differential signaling, hardware

multipliers for DSP, memory, programmable I/O, IP cores, and microprocessor cores
5
. Because

of these features, FPGAs are now a viable choice for the implementation of entire system on a

chip, the so-called system-on-a-chip (SoC) concept. HDL design flows using Verilog, VHDL, or

SystemC along with today’s advanced logic synthesis tools support the rapid development of

these high density programmable SoCs. It is important for students to develop the necessary

skills and experience for this emerging technology with the use of available IP cores
6
, EDA

vendor’s logic synthesis tools, and FPGA development boards.

At the heart of every SoC lies a CPU responsible for coordinating the tasks of various

components of the system. This paper presents the FlexARM1 processor and its IP design

methodology, which could be used as the central core for teaching processor-based systems on

FPGAs. This also provides a library of synthesizable VHDL modules for this RISC based CPU,

which are currently used in the senior level Computer Architecture course at our institution.

FlexARM1 Design Methodology

The FlexARM1 architecture based on the ARM9 family of commercially available

processors developed by ARM
7
, utilizes the same Harvard architecture and memory mapped I/O

concept as the ARM9. The FlexARM1 is a load/store architecture, which implements the

following addressing modes from the ARM architecture: data processing immediate shift, data

processing register shift, data processing immediate, load/store immediate offset, load/store

register offset, and branch and branch with link. All load/store addresses are determined from

the register contents and instruction fields only. The FlexARM1 also employs a conditional

execution option for each instruction in order to maximize execution throughput. These include

fourteen available conditions allowing for the equality and inequality testing of the condition

code flags zero, carry, overflow, and negative. The FlexARM1 instruction set is fully

compatible with the ARM instruction set. However, time constraints were an issue in

implementing every instruction. Some of the more notable instructions not implemented as of P
age 11.452.2

now are coprocessor instructions, multiple register loads, status register access instructions, and

exception-generating instructions
8
.

 The proposed IP methodology allows the software and hardware paths to be developed

concurrently as shown in Figure 1. This approach introduces the students to current SoC design

issues, such as bridging the design gap between the software and hardware engineer
9
. This

design flow may be partitioned within a project group. Thus, allowing the software and

hardware paths to be developed simultaneously. During the time the hardware components of

the CPU are being designed, test vectors are created using the FlexARM1 instruction set with the

uVison3 ARM assembler developed by Keil
10
. The assembler translates the test instructions into

machine code as an output file (.hex) in Intel Hex Format.

S o f t w a r e
D e v e l o p m e n t

A r c h i t e c t u r e

a n d

I n s t r u c t i o n

S e t

D e s i g n

C P U
F u n c t i o n a l
V e r i f i c a t i o n

V H D L

C o m p o n e n t

D e v e l o p m e n t

C P U

s y n t h e s i s

a n d

T i m i n g

A n a l y s i s

T e s t
 V e c t o r s A s s e m b l e r

T e s t

B e d

T e s t
P r o g r a m

N o

Y e s

N o
Y e s

Figure 1: FlexARM1 Design Flow

 Different test vector sequences simulate certain CPU operations. For instance, the file

Forward.hex runs a series of FlexARM1’s single clock cycle data-processing instructions to test

the forwarding of the 5-stage pipeline and verify there are no data hazards found in the

instruction stream. The software development also includes the writing of test (application)

programs for the synthesizable FlexARM1 core. These application programs ensure overall

functionality and provide a demonstration of the FlexARM1 operating in hardware. We are

presently developing several application programs (which we hope to finalize and demonstrate at

P
age 11.452.3

the time of presentation of this work). The design flowchart in Figure 1 illustrates where the

software path interacts with the hardware path.

 The first stage of the design process consisted of analyzing the ARM9 architecture
8
 along

with its instruction set. The focus here was to understand how the ARM processor worked

internally, i.e. programmer’s model, addressing modes, execution unit, etc; and how they affect

the operation of the processor. From this analysis, one can compare the architecture of the

processor with how well its components would map into the Cyclone FPGA architecture. For

example, the ARM datapath incorporates a barrel shifter and a hardware multiplier. Due to the

large amount of interconnect associated with these components, they utilize large amounts of

valuable area on the Cyclone FPGA. We decided to use a scaled down version of the barrel

shifter in order to implement multiplication in software to conserve area. However, depending

on the features of the target FPGA this might not be an issue due to embedded resources such as

hardware multipliers. After weighing several design issues, a preliminary block diagram of the

FlexARM1’s datapath was prepared for the VHDL component development phase.

 Most of the components of the FlexARM1 are found in other popular commercial CPUs.

These components make up our library of synthesizable VHDL models. The list of

synthesizable models includes an ALU, Register File, Barrel Shifter, I/O controller, ROM, and

RAM. The other components found in our library are specific to the ARM architecture but can

be used as a basis for other CPU architectures. They are comprised of several units, which

control the pipelined dataflow of the FlexARM1 and handle each instruction. The Control Unit

directs the operation of the pipeline, whereas, the Data Hazard and Forwarding Units detect

hazardous sequences and forward the correct data to the appropriate pipeline stage. A data

hazard may occur if a register is read before the result is written back to the register from a

previous instruction. The Immediate Unit and Instruction Decoder are the last two components

of the FlexARM1 and are responsible for generating the immediate constant and the decoding of

the FlexARM1 instructions.

 The VHDL Component Development phase consists of the following three steps:

Functional, Logic Usage, and Timing as shown in Figure 2. Each component of the FlexARM1

followed this procedure, which allowed us to experimentally show how certain modules

synthesized in the Cyclone FPGA according to their VHDL abstraction level. Examples of

VHDL abstraction levels are structural, behavioral, and dataflow (also known as register transfer

language, RTL). Lower levels of abstraction, i.e. dataflow and structural, usually lead to more

efficient logic usage on the FPGA. As this is the case with the more complex components, basic

building blocks synthesize equally as efficient at the behavioral level, i.e. multiplexors, adders,

registers, etc.

TimingLogic UsageFunctional

No

NoNo

YesYesYes QuartusII5.0ActiveHDL6.3

VHDL
QuartusII5.0

Figure 2: VHDL Component Development

P
age 11.452.4

 The Functional block serves to verify that the component under development is working

properly at the behavioral level with testbenches in a simulation environment. The functional

verification was confirmed with Aldec’s VHDL simulator, ActiveHDL 6.3
11
. For the Logic

Usage block phase Altera’s QuartusII 5.0 logic synthesis software is utilized to determine the

logic resources used on the Cyclone FPGA for each synthesizable component. The logic

resources in the Cyclone FPGA are known as logic elements (LE). At this step, we compare the

behavioral description to its lower level abstraction to determine which provides a better

synthesizable result, as measured by LE usage. Lastly, the Timing block’s input is also a

synthesizable VHDL description, which QuartusII compiles to determine the maximum timing

delay. If the inputs and outputs of the component are registered, QuartusII will calculate a

maximum frequency and a propagation delay of the component. Table 1 shows the experimental

results from the VHDL Component Development phase for the FlexARM1’s ALU.

Table 1: ALU synthesis results

 After each component has been tested, the CPU functional verification phase combines

all the components into a VHDL hierarchical design to form the datapath and control unit. This

stage performs a functional verification on the VHDL hierarchy model shown in Figure 3 to

confirm the CPU is working properly. ActiveHDL’s verification software features automated

testbench capabilities, which allow different test vectors to be used with the same testbench.

Once the designer has created the desired testbench along with its specific test vectors, the

testbench can be used numerous times to perform automatic verification of multiple revisions of

a HDL design. If the design does not pass this stage, the hardware debug issues must be resolved

before logic synthesis. The fully functional CPU core was synthesized by QuartusII. The results

from FlexARM1’s logic synthesis are shown in Table 2.

 The test bed in the last stage of the design flow is the UP3 development board and a

monitor. After the functionality and timing of the CPU core is verified, the CPU can be

downloaded to the UP3 board for hardware testing. Due to the rich features of the UP3 board,

there are many options for the CPU to be interfaced with in order to verify its operation in

hardware. The test application we set up involves the VGA port. A VGA IP core was added

which interfaced the FlexARM1 to the VGA port allowing us to output internal registers to a

monitor for display in real time. The VGA core is responsible for generating the vertical and

horizontal sync signals along with the three RGB signals required for video output.

Logic Element Usage

Behavioral Level Dataflow Level

Propagational Delay

(ns)

459 / 5980 (7%) 175 / 5980 (2%) 6.61

P
age 11.452.5

Register

 File
Control

 Unit

RAM

ROM

Forwarding

 Unit

Data Hazard

 Unit

 Instr

 Decoder

ALU

Immediate

 Unit

FlexARM1

Barrel

Shifter
 I/O

Controller

Figure 3: Hierarchy VHDL Model

Table 2: FlexARM1 synthesis results

Conclusion

 The FlexARM1 IP methodology presented provides a design flow geared toward helping

students become familiar with current FPGA design trends with an emphasis on verification.

The FlexARM1 processor’s VHDL code has been successfully implemented in the Cyclone

FPGA and is available for real time demonstration. A set of application programs for this test

bed is currently under development. This versatile hardware/software platform can be used to

enable students to learn how to “quickly” implement processors in hardware and interface them

to various I/O, memory, and communication protocols, as we plan to do so for the spring of 2007

offering of the computer architecture course at our institution.

References

1. M. Thompson, “FPGAs Accelerate Time to Market for Industrial Designs”, EE Times Online News, July 2, 2004

2. System Level Solutions, Inc., 14100 Murphy Ave., San Martin, CA 95046, www.slscorp.com

3. Altera Corporation, 101 Innovation Drive, San Jose, CA 95134, www.altera.com

4. Cyclone Device Handbook, Volume 1, www.altera.com/literature/lit-cyc.jsp

5. J. Kriegbaum, “FPGA’s vs. ASIC’s”, EE Times Online News, Sept. 13, 2004

6. www.opencores.org

7. ARM, Inc., 141 Caspian Court Sunnyvale, CA 94089, www.arm.com

8. ARM Architecture Reference Manual, www.arm.com/documentation/books/1183.html

9. J. Bruister, “Bridging the Hardware/Software Design Gap”, TechOnLine, March 1, 2001

Logic Elements

Used

Memory Bits

Used

Fmax

(MHz)

2104 / 5980 (36%) 13200 / 92160 (14%) 55

P
age 11.452.6

10. Keil Software, Inc., 1501 10
th
 Street Suite 110, Plano TX 75074, www.keil.com

11. Aldec, Inc., 2260 Corporate Circle, Henderson, NV 89074, www.aldec.com.

P
age 11.452.7

