

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

Session 2220

Development of a Matlab-Based Graphical User Interface

Environment for PIC Microcontroller Projects

Sang-Hoon Lee, Yan-Fang Li, and Vikram Kapila

Department of Mechanical, Aerospace, and Manufacturing Engineering

Polytechnic University, Brooklyn, NY 11201

Email: [slee05@utopia, yli14@utopia, vkapila@duke].poly.edu

Abstract

Peripheral Interface Controllers (PICs) are inexpensive microcontroller units with built-in

serial communication functionality. Similarly, Matlab, a widely used technical computing

software, allows serial communication with external devices. In addition, Matlab provides

graphical design tools such as Simulink and Dials and Gauges Blockset. This paper exploits the

serial communication capability of PIC microcontrollers and the Matlab software along with

graphical design tools of Matlab to create a Matlab-based graphical user interface (GUI)

environment for PIC microcontroller projects. Three examples are included to illustrate that the

integration of low-cost PIC microcontrollers with the Matlab-based GUI environment allows

data acquisition, data processing, data visualization, and control.

1. Introduction

Peripheral Interface Controllers (PICs), developed and marketed by Microchip

Technology, Inc. [1], are inexpensive microcontroller units that include a central processing unit

and peripherals such as memory, timers, and input/output (I/O) functions on an integrated circuit

(IC). There are more than 100 varieties of PIC microcontrollers available, each providing

functionality for different types of applications [2], making PICs one of the most popular

microcontrollers for educational, hobby, and industrial applications. Similar to other

microcontrollers, PICs are usually not designed to interface with human beings; instead they are

directly embedded into automated products/processes. Thus, graphical user interface (GUI)

capabilities, which have become a mainstay of many personal computer (PC) applications, are

nonexistent for PICs.

P
age 9.436.1

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

Endowing PIC-based projects with GUI tools can speed the development process in data

driven applications such as feedback control, smart sensors, etc. Microchip Technology’s

emulator and debugger products (e.g., MPLAB IDE, MPLAB-ICE) are very helpful in

debugging PIC source code and emulating user-written programs. However, these tools do not

provide data co-processing and advanced data visualization capabilities.

Fortunately, PIC microcontrollers include serial communication functionality to facilitate

data communication with external devices such as analog-to-digital converters (ADC), 1-wire

sensors, etc. Similarly, Matlab, a commercially available interactive mathematical programming

software, also provides serial data communication functionality on PCs. In addition, Simulink,

Matlab’s interactive icon-based programming environment, enables users to simulate and

analyze dynamic system models. Finally, the Dials and Gauges Blockset of Simulink allows

users to embed control objects (e.g., sliders, knobs) and display objects (e.g., graphs, gauges) in

Simulink models to develop an interactive GUI environment. In this paper, we exploit the serial

communication functionality of Matlab to enable a PC to communicate with PIC

microcontrollers to transmit control commands and receive sensory data. In addition, we utilize

Matlab, Simulink, and Dials and Gauges Blockset to develop an interactive GUI environment for

PIC projects, allowing enhanced data processing and visualization.

In this paper, we use a PIC16F74, 40-pin, 8-bit CMOS FLASH dual inline package IC.

To facilitate serial communication between PIC and PC, we interface a RS232 driver/receiver

with the PIC16F74. The effectiveness of our Matlab-based GUI environment to interact with PIC

microcontroller projects is demonstrated by using three examples: (1) export user commands

from a Simulink GUI to an actuator interfaced to the PIC, (2) import signals from a sensor

interfaced to the PIC into a Simulink GUI, and (3) use Simulink GUI to export user commands to

the PIC and import sensory data from the PIC to control a device and monitor its status.

2. Hardware Environment

The hardware environment for this paper consists of a PIC microcontroller, a PC, a

RS232 driver/receiver, and a DB-9 serial cable. The PIC microcontroller is interfaced with

external devices such as sensors (e.g., photoresistors) and actuators (e.g., servomotors). In

addition, the PIC microcontroller performs embedded computing. The PC is used to write user

specified embedded programs to be executed by the PIC microcontroller. Furthermore, the PC

hosts an interactive GUI for the user to manipulate control variables and visualize sensory data.

The PIC microcontroller and the PC communicate using a serial interface. A PIC development

board (see section 2.4) and a light refraction experiment test bed (see section 2.5) are used to

illustrate our PIC-based data acquisition and control approach.

2.1. Peripheral Interface Controller

PIC microcontrollers are small, low-cost controllers that include a processor and a variety

of peripherals. PICs are significantly easier to use vis-à-vis embedded microprocessors. As an

P
age 9.436.2

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

example, users can assign desired functionality (e.g., ADC, USART
1
) to I/O pins of PICs. PICs

can be operated at various clock speeds (32 kHz to 20 MHz). PIC’s memory architecture

separates its data memory from its program memory with the program memory available as One-

Time Programmable (OTP), Erasable Programmable Read-Only Memory (EPROM), or FLASH.

PICs are programmed in the PIC assembly language using a 35 single-word instruction set. See

[3] for more details on hardware and software features of PIC microcontrollers.

The user specified embedded PIC program is written on the PC and downloaded from the

PC to the PIC microcontroller using the DB-9 serial cable connection between the PC and a PIC

Development Programmer on which the PIC microcontroller is installed. Commonly available

PIC Development Programmers include PICSTART Plus [4] from Microchip, Inc., and PIC-

PG2B, a handy, low-cost programmer [5] from Olimex Ltd., among others. In this paper, we use

the PICSTART Plus programmer that requires MPLAB Integrated Development Environment, a

free software available on the Microchip website, for programming PICs.

In this paper, we employ a PIC16F74, a 40-pin CMOS FLASH-based, 8-bit, mid-range

(14-bit instruction word length) microcontroller (see Figure 1). PIC16F74 has 4 Kbytes of

FLASH program memory and 192 bytes of data memory. Furthermore, it has 33 digital I/O pins

organized in 5 groups of I/O ports that can be assigned as 8-bit ADC, Capture/Compare/PWM
2

(CCP), the 3-wire Serial Peripheral Interface (SPI), the 2-wire Inter-Integrated Circuit (I
2
C) bus,

USART ports, etc. We use an external 20 MHz high-speed crystal oscillator to supply operating

clock cycles. The PIC16F74 can be powered using a wide range of voltage sources, e.g., 2-volt

direct current (VDC) to 5.5VDC, and each of its I/O pin can sink or source up to 25mA of

current. It is ideal not only for laboratory data acquisition (the application considered in this

paper), but also for automotive, industrial, and consumer applications.

2.2. Personal Computer

In this paper, an IBM-compatible Pentium 3 PC running Microsoft Windows NT 4.0

operating system is used. As previously mentioned, the PC is used to write, debug, and download

1
 Universal synchronous/asynchronous receiver and transmitter.

2
 Pulse width modulation.

(a)

(b)

Figure 1: (a) PIC16F74 (b) Pin diagram of PIC16F74

P
age 9.436.3

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

embedded PIC programs. One of the serial ports on the PC is reserved for serial communication

with the PIC microcontroller. MPLAB, Matlab (version 6.1), Simulink, and Dials and Gauges

Blockset are installed on the PC. Control variables are manipulated via the PC by interacting

with control panels embedded in the Simulink program. In addition, all experimental data is

collected and displayed on the PC in display panels embedded in the Simulink program.

2.3. RS232 Driver/Receiver

MAX232 (see Figure 2) is a 2-channel, RS232 driver and receiver manufactured by

Maxim Integrated Products, Inc. It requires a 5VDC power supply and converts voltage levels

between PC-based logic and PIC microcontroller-based logic. Specifically, whereas the voltage

levels of logic high and logic low for the PC correspond to –12VDC and 12VDC, respectively,

like many other microcontrollers the logic high and low for the PICs correspond to 5VDC and

0VDC, respectively. The MAX232 is used with five 1µF capacitors to adjust the voltage level

differences between the PC-based logic and the PIC-based logic. See [6] for more details of the

MAX232 hardware features.

2.4. PIC Development Board

The PIC development board (see Figure 3) consists of a sensor (photoresistor), a 3-pin

header for a servomotor connection, a 20MHz crystal oscillator, a MAX232 with five 1µF

capacitors, a PIC16F74 microcontroller, a breadboard, and two DB-9 connectors. The

photoresistor sensor provides light intensity measurement and is interfaced to a pin allocated as

an 8-bit ADC in port A of the PIC16F74 microcontroller. The circuit diagram of Figure 3(c)

illustrates how various sensors and actuators of the light refraction experiment test bed (see

section 2.5) are interfaced to the PIC microcontroller. The PIC transmits/receives sensory data

to/from the PC via the MAX232. A red reset button is connected to the Master Clear (MCLR)

pin of the microcontroller.

(a)

(b)

Figure 2: (a) MAX232 (b) Pin diagram of MAX232

P
age 9.436.4

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

2.5. Light Refraction Test Bed

The light refraction test bed (see Figure 4) is a mechatronics-aided physics experiment

developed under a National Science Foundation (NSF) sponsored Science and Mechatronics

Aided Research for Teachers (SMART) program [7] at Polytechnic University. This experiment

is designed to demonstrate the law of light refraction. It consists of a light source, a light sensor,

a linear potentiometer, two limit switches, a servomotor, a DC motor, a liquid reservoir, and

necessary circuitry. A liquid reservoir on the top of the test bed can store various liquid media

whose index of refraction needs to be determined. For simplicity, in this paper, we use water

from a water fountain as the test liquid.

(a)

(b)

(c)

Figure 3: (a) PC and PIC development board (b) Larger view of the PIC development board

(c) Circuit diagram of the PIC development board

Pentium class PC

DB-9 serial cable

DB-9 connector to

light refraction test bed

PIC

MAX232

Reset button

Photoresistor

3-pin

servomotor

connector

P
age 9.436.5

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

On one side of the tank, as shown in Figure 4(b), a laser pointer, used as the light source,

is mounted on the arm of the servomotor that sets the angular position of the light source to the

incidence angle specified by the user. On the other side of the tank, a general Cadmium Sulfide

(CdS) photoresistor, used as the light sensor, is mounted on the wiper of the linear potentiometer.

It monitors the refracted light coming out from the liquid reservoir (see Figure 5). A DC motor

drives the light sensor along the linear potentiometer by turning a motor shaft connected to a

brass screw rod thereby transforming rotary motion into linear motion. Limit switches at each

end of the linear potentiometer indicate sensor travel limit. The photoresistor and the linear

potentiometer output analog voltage signals between 0VDC and 5VDC.

3. Software Environment

The software environment for this paper consists of the PIC assembly language, Matlab,

Simulink, and Dials and Gauges Blockset. The PIC assembly language is a primitive

programming language consisting of a 35 single-word instruction set. Matlab is an interactive

technical computing software. Simulink is Matlab’s model-based, system-level, visual

programming environment that is widely used to simulate and analyze dynamic system models

using icon-based tools. Finally, the Dials and Gauges Blockset of Simulink provides an ability to

 (a) (b)

Figure 4: (a) Light refraction experiment test bed (b) Light source mounted on the servomotor

Figure 5: Detailed view of the light sensor traveling along the linear potentiometer

Light sensor

Limit switches

Linear

potentiometer

Light source

DC motor

Servomotor
ReservoirH-Bridge

P
age 9.436.6

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

embed visual, realistic-looking, virtual instrumentations in Simulink models. In this paper, these

software tools are judiciously synthesized to produce an effective, interactive GUI environment.

In the sequel, we summarize key instructions of the PIC assembly language and Matlab that

enable serial communication between PIC microcontroller and Matlab GUI running on the PC.

3.1. PIC Assembly Program

As indicated above, the PIC assembly language consists of a 35 single-word instruction

set (see datasheets [8] for details). The PIC data memory is partitioned into several banks (e.g., 5

banks for PIC16F74) that contain the general-purpose registers and the special-function registers.

The special-function registers are used to set up special operations (e.g., ADC, USART, and

PWM) and to watch the status of the special operations (e.g., the availability of transmission or

reception of the USART). Below, we review key PIC instructions and special function registers

used for serial communication functionality.

3.1.1. Key PIC instructions

BCF: Bit clear f

Syntax: [label] BCF f, b

BCF literally means that the b
th

 bit in the register ‘f’ is cleared. BCF sets the b
th

 bit in the register

‘f’ to zero, logic low.

BSF: Bit set f

Syntax: [label] BSF f, b

BSF instruction does the opposite of BCF, i.e., it sets the b
th

 bit in the register ‘f’ to one, logic

high.

MOVLW: Move literal to w

Syntax: [label] MOVLW k

The literal ’k’ is loaded into the working register. The literal ‘k’ can be expressed in terms of an

8-bit binary, decimal, or hexadecimal number. For example, b’00101111’ in 8-bit binary is

equivalent to 0x2F in hexadecimal. Note that the prefixes b, 0x, and d declare the data type to be

binary, hexadecimal, and decimal, respectively.

MOVWF: Move w to f

Syntax: [label] MOVWF f

MOVWF transfers data from the working register to the specified register ‘f.’ Since the literal ‘k’

cannot be directly assigned into the specified register ‘f,’ the literal ‘k’ is first assigned to the

working register (e.g., MOVLW k) and then moved into the register ‘f’ (e.g., MOVWF f).

BTFSS: Bit test f, skip if set

Syntax: [label] BTFSS f, b

P
age 9.436.7

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

BTFSS checks the b
th

 bit in the specified register ‘f,’ and executes the next instruction if this bit

is zero. Alternatively, if the bit is one, the next instruction is skipped, and the following

instruction is executed.

3.1.2. Special function registers used for serial communication functionality

MOVLW d’value’

MOVWF SPBRG

The special function register ‘SPBRG’ contains the user-specified baud rate for serial

communication. In particular, the command MOVLW d'129' places 129 in the working register.

Next, the command MOVWF SPBRG moves the content of the working register to the special

function register ‘SPBRG.’ The placement of ‘value’ 129 in the ‘SPBRG’ register sets the baud

rate to 9,600.

MOVLW b’clock source select bit, 9-bit transmit enable bit, transmit enable bit, usart mode

select bit, unimplemented, high baud rate select bit, transmit shift register status bit, 9th bit of

transmit data’

MOVWF TXSTA

The special function register ‘TXSTA’ contains information for the data-transmit status and

control in an 8-bit binary expression. In particular, the use of commands MOVLW b'00100100'

and MOVWF TXSTA, sets up the ‘TXSTA’ register to enable 8-bit, high speed asynchronous

serial data transmission.

MOVLW b’serial port enable bit, 9-bit receive enable bit, single receive enable bit, continuous

receive enable bit, unimplemented, framing error bit, overrun error bit, 9th bit of received data’

MOVWF RCSTA

The special function register ‘RCSTA’ contains information for the data-receive status and

control in an 8-bit binary expression. In particular, the use of commands MOVLW b'10010000'

and MOVWF RCSTA, sets up the ‘RCSTA’ register to enable 8-bit, continuous asynchronous

serial data reception.

3.2. Matlab Program

Matlab is a commercially available, widely used, interactive, technical computing

software. Matlab’s versions 6.1 and higher provide serial communication functionality. To

serially communicate with an external device from Matlab, the following steps need to be

performed. First, create a serial port object to identify the specific serial port of the PC connected

to the external device. In addition, specify how this serial port is to be configured (i.e., baud rate,

number of data bits, etc.). Second, connect the serial port object created above to the external

device. Third, send command signals to the external device and receive data from the external

device. Fourth, disconnect serial communication connection from the external device and close

the serial port object. Finally, release control of the serial port. Next, we list the key Matlab

instructions used for serial communication. See [9] for further details.

P
age 9.436.8

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

serial (the PC serial port, the baud rate, the number of data bits)

This command is used to create a new serial port object. In addition, it configures the serial port

properties. In this paper, we used the COM2 serial port of the PC with 9,600 baud rate.

fopen (object)

This command opens the serial port object just created and connects the PC to the external

device for actual serial communication.

fread/fwrite (object, size, precision)

The ‘fread’ command enables the PC to read binary data from the external device. Alternatively,

the ‘fwrite’ command enables the PC to send control data in binary format to the external device.

fclose (object)

This command closes the serial port object, thereby disconnecting serial communication between

Matlab and the external device.

freeserial(port)

Once Matlab establishes a data link with the serial port, it assumes complete control of the serial

port. The ‘freeserial’ command is used, after closing the port object using the ‘fclose’ command,

to force Matlab to relinquish control of the serial port. The command takes on one argument, the

port that was used for data communication. This command is executed from the Matlab

command line after the termination of experiment.

3.2.1. Simulink

Simulink is Matlab’s interactive, icon-based programming environment [10]. It enables

users to build block diagrams to simulate and analyze dynamic system models. Designers can

effortlessly transfer paper designs of dynamic systems into Simulink block diagrams. Simulink

block diagrams can be modified as easily as paper models of dynamic systems. In addition,

Simulink allows for detailed monitoring of dynamic system outputs at any point in the block

diagram using various tools (e.g., Scope, Display, etc.). Finally, data processing tasks such as

signal scaling, filtering, etc., can be easily performed in Simulink.

3.2.2. Dials and Gauges Blockset

The Dials and Gauges Blockset [11] provides enriched views of graphical, 3-D

instruments called virtual instruments. It has various templates that can be customized to create

realistic virtual instruments for electrical, aerospace, automotive, medical, and process control

systems. The virtual instruments created using the Dials and Gauges Blockset dynamically

interact with Matlab and Simulink, thus providing an interactive interface for users to enter

command inputs and visualize sensory outputs.

P
age 9.436.9

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

4. Examples of Serial Communication between PIC and PC

4.1. Serial Communication from PC to PIC: Servomotor Position Control

This example illustrates one-directional serial communication from the PC to the PIC

microcontroller. In particular, it demonstrates that the user commands from a Simulink block

diagram can be exported to an actuator interfaced to the PIC microcontroller. The example

focuses on servomotor position control.

The Simulink block diagram for this example is shown in Figure 6. It consists of a dial,

from the Dials and Gauges Blockset, denoted as the servo angle knob. The user interacts with the

dial to enter servomotor position control command. The dial has a range from 0 to 90 degrees

with one-degree resolution. The value of the angle commanded by the user is shown in the

middle of the knob. The Matlab m-function block next to the knob contains a Matlab m-file to

perform serial communication from the PC to the PIC. The user specified servomotor position

control command is transmitted to the PIC via a serial cable connection between the PC and the

PIC. When the PIC receives the command angle, it assigns the angle to a variable in the PIC

code. Next, the PIC utilizes the command angle to compute, generate, and apply pulse trains for

servomotor position control. In this example, we used a 6VDC standard servomotor that is

interfaced to the 3-pin servomotor connection header on the PIC development board (see Figure

3). The PIC assembly code corresponding to this example is available in Appendix A.

%Matlab function serial_out.m for serial communication from PC to PIC

function serial_out(angle) %serial_out function defined

ser_obj=serial('COM2','baudrate',9600); %create and configure a serial port object

fopen(ser_obj); %connect the serial port object to the device

ServoCommand=round(angle+107.3); %input for servomotor where 107.3 refers to offset

fwrite(ser_obj,[ServoCommand],'async'); %send user command, i.e., dial input, to the PIC

pause(1);

fclose(ser_obj); %disconnect the serial port object from the device

Figure 6: Simulink block diagram and m-function for PC to PIC serial communication

P
age 9.436.10

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

4.2. Serial Communication from PIC to PC: Data Acquisition, Processing, and Plotting

This example illustrates one-directional serial communication from the PIC

microcontroller to the PC. In particular, it demonstrates that a Simulink block diagram can be

designed to acquire measurement from a sensor that is interfaced to the PIC. The example

focuses on acquiring measurements from a photoresistor that senses light intensity.

Referring to Figure 3 (c), a light sensor is constructed by connecting a 10 Kっ resistor and

a photoresistor in a voltage divider circuit. The output of the light sensor varies depending on the

light intensity incident upon the photoresistor; here the light sensor output refers to the voltage at

the junction of the 10 Kっ resistor and photoresistor. This output is connected to I/O pin 2 of the

PIC16F74. The I/O pin 2 is configured as an ADC in the PIC assembly code. Each time, the PIC

assembly code tasks the PIC to measure the light sensor output, the PIC16F74 converts the

analog voltage signal at the voltage divider output into a corresponding 8-bit digital value. Thus,

when the photoresistor is placed in dark condition, the 8-bit ADC returns a value close to 255.

Alternatively, when the photoresistor is exposed to bright light, the ADC returns a value close to

0.

The Simulink block diagram for this example is shown in Figure 7, where a Matlab m-

function is used to acquire the digitized output of the sensor using serial communication. The

Simulink block diagram of Figure 7 also processes and plots the sensory data. In particular, the

top scope in Figure 7 plots the light intensity measurement (in terms of digitized output of the

%Matlab function serial_in.m for serial communication from PIC to PC

function v=serial_in(dmyin) %serial_in function defined

ser_obj=serial('COM2','baudrate',9600); %create and configure a serial port object

ser_obj.ReadAsyncMode = 'manual'; %specify an asynchronous read operation

fopen(ser_obj); %connect the serial port object to the device

LightSensOut=fread(ser_obj,1,'uint8'); %read the light sensor output

fclose(ser_obj); %disconnect the serial port object from the device

v=LightSensOut; %8-bit representation of the light sensor output

Figure 7: Simulink block diagram and m-function for PIC to PC serial communication

Scopes

P
age 9.436.11

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

voltage divider circuit) versus time, where the measurements are filtered using a low-pass filter.

The middle scope plots the unfiltered light intensity measurement. Finally, the bottom scope

plots the light intensity measurement in terms of voltages by processing the 8-bit digital value of

the voltage divider circuit through a gain factor.

An experiment was conducted in which the light intensity was abruptly altered at several

time instances. The response plots acquired and processed using the Simulink block diagram of

Figure 7 are shown in Figure 8. The filtered output response in Figure 8(b) is much smoother

than the unfiltered response in Figure 8(a). Thus, Figure 8 demonstrates the efficacy of signal co-

processing using Matlab and Simulink for PIC-based projects. The PIC assembly code

corresponding to this example is available in Appendix B.

4.3. Bi-directional Serial Communication between PIC and PC

In this example, the light refraction test bed is used to demonstrate the advantage of

exploiting bi-directional serial communication between PIC and Matlab-based GUI executing on

the PC. A Simulink-based interactive GUI for the light refraction test bed is shown in Figure 9.

The user interacts with the dial object to command the angle of incidence of light source. The

Matlab m-function block next to the knob contains a Matlab m-file that transmits the user

command input to the PIC serially. The PIC stores the user input in a variable and uses it to

compute, generate, and apply pulse trains to control servomotor position. This positions the light

source, mounted on the servomotor arm, at the commanded angle of incidence. Next, the PIC

turns on the light source and performs the following tasks: drive the light sensor along the linear

potentiometer by turning the DC motor, measure the position of the light sensor along the linear

potentiometer and the corresponding output of the light sensor, and transmit the position and

light sensor measurements to the PC. The Matlab m-function block shown in Figure 9 enables

receipt of the position and light sensor measurements from the PIC serially. Simulink blocks

following the m-file function block are used for various data processing tasks, e.g., conversion of

position measurement to the refraction angle and computation of index of light refraction.

(a)

(b)

Figure 8: (a) Unfiltered plot of ADC and (b) Filtered plot of ADC

L
ig

h
t

se
n

so
r

O
/P

 (
8

-b
it

)

L
i g

h
t

se
n

so
r

O
/P

 (
8

-b
it

)

Time (Sec) Time (Sec)

P
age 9.436.12

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

Finally, a generic numeric LED display, from the Dials and Gauges Blockset, is used to indicate

the calculated value of index of light refraction for the experimental liquid.

Figure 10 shows the block diagram of index of light refraction subsystem of Figure 9.

The block diagram of Figure 10 is used to generate a plot of angle of refraction versus the light

sensor output. Figure 11 shows the plots of angle of refraction versus the light sensor output for

two commanded values of incidence angle, namely, 40˚ and 20˚. Note that for each incidence

angle, the index of refraction is computed from the angle of refraction corresponding to the

smallest output returned by the light sensor. Thus, the block diagram of Figure 10 is also used to

calculate the index of light refraction. The Matlab m-function in this subsystem monitors and

captures the angle data corresponding to the smallest measurement returned by the light sensor.

Note that the light sensor output is smallest when the intensity of refracted light focused on the

light sensor is highest. Next, the angle data is used to compute the index of light refraction. The

PIC assembly code corresponding to this example is available in Appendix C.

%Matlab function serial_inout.m for bi-directional serial communication between PIC and PC

function V=serial_inout(angle) %serial_inout function defined

ser_obj=serial('COM2','baudrate',9600); %create and configure a serial port object

ser_obj.ReadAsyncMode = 'manual'; %specify an asynchronous read operation

fopen(ser_obj); %connect the serial port object to the device

ServoCommand =round(angle+107.3); %input for the servomotor where 107.3 refers to offset

fwrite(ser_obj,[ServoCommand],'async'); %send user command, i.e., dial input, to the PIC

LightSensOut =fread(ser_obj,1,'uint8'); %read the light sensor output from the PIC

Position=fread(ser_obj,1,'uint8')+9; %read the linear potentiometer output from the PIC

fclose(ser_obj); %disconnect the serial port object from the device

V=[LightSensOut;Position]; %output in matrix form

Figure 9: Simulink block diagram and m-function for bi-directional serial communication

between PIC and PC

P
age 9.436.13

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

%Matlab function PickMin.m for capturing the angle of refraction when max. light is on the light sensor

function y=PickMin(minangle,minLSO,LSO,angle) %PickMin function defined

if LSO <= minLSO %condition loop for updating the minangle

 minangle=angle; %update minangle with respect to min. LSO

end

y=minangle; %show the angle at the most light intensity

Figure 10: Simulink block diagram and m-function for calculating the index of light refraction

5. Conclusion

In this paper, we developed and presented Matlab-based GUIs for PIC microcontroller

projects by exploiting Simulink, Dials and Gauges Blockset, and serial communication

capabilities of Matlab and PIC. Three examples were presented to illustrate the productivity

enhancement potential of the Matlab-based GUI environment when developing PIC

microcontroller projects. The GUIs designed using framework of this paper allow the user to:

 (a) (b)

Figure 11: Angle of refraction vs. light sensor output for incidence angle (a) 40˚ and (b) 20˚

XY Graph block

P
age 9.436.14

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

vary control commands, acquire sensory data, perform on-line data processing, and visualize

data using realistic looking virtual instruments. Note that the framework of this paper allows the

use of microcontroller as a low-cost, stand-alone Data Acquisition and Control Board (DACB).

Whereas PC-based DACBs typically cost several hundred to over thousand dollars, a PIC

microcontroller costs only a few dollars. Thus, the use of PIC microcontrollers with the proposed

Matlab-based GUI environment provides a low-cost DACB solution that can be particularly

beneficial to educators.

Appendix

Appendix A. PIC Assembly Code for Serial Communication from PC to PIC

;This code is used to control angular position of a servomotor

;1. Receive user command from PC

;2. Generate pulse train to drive servomotor to a desired angle

 LIST p=16f74

 INCLUDE "p16f74.inc"

 __CONFIG _CP_OFF & _WDT_OFF & _HS_OSC &

_PWRTE_ON ;configure PIC16F74

counter EQU 20h ;file address of counter var

iteration EQU 21h ;file address of iteration var

tempval EQU 22h ;file address of tempval var

 ORG 0 ;origin address is 0

 CLRF STATUS ;clear status register

 GOTO BootStart ;go to BootStart

BootStart

 BANKSEL PORTA ;select bank 0

 CLRF PORTB ;clear portB

 CLRF PORTC ;clear portC

 BANKSEL TRISA ;select bank 1

 MOVLW b'00000000'

 MOVWF TRISB ;set PORTB as all outputs

 MOVLW b'10000000'

 MOVWF TRISC ;set RC7 as input

TimerInitialization

 BSF STATUS, RP0 ;select bank 1

 MOVLW b'00000001'

 MOVWF OPTION_REG ;set prescaler of TMR0 to 1:4

 BCF STATUS, RP0 ;select bank 0

 MOVLW b'10000100'

 MOVWF INTCON ;enable all unmasked interrupts

 ;and TMR0 register overflow

 CLRF TMR0 ;clear timer

BaudRateSettingsforUSART

 BSF STATUS, RP0 ;select bank 1

 MOVLW d'129'

 MOVWF SPBRG ;set baudrate 9600 for 20MHz crystal

 MOVLW b'00100100'

 MOVWF TXSTA ;8-bit asyn. high-speed transmission

 BANKSEL RCSTA ;select bank 0

 MOVLW b'10010000'

 MOVWF RCSTA ;8-bit asyn. continuous reception

 MOVF RCREG, W

 MOVF RCREG, W

 MOVF RCREG, W ;flush reception buffer 3 times

MainProgram

 BCF STATUS, RP0 ;select bank 0

Check BTFSS PIR1, RCIF ;check if data is received

 GOTO Check

 MOVF RCREG, W ;move received data to W

 MOVWF tempval ;save data from W into tempval

 MOVLW 0x64

 MOVWF iteration ;save iteration value for pulse train

BeginServo

 MOVF tempval, 0 ;move tempval to W

 MOVWF counter ;save data from W into counter

LoopHigh

 CLRF TMR0 ;clear timer

 BSF PORTB, 1 ;set RB1 to high

 MOVLW 0x05

InnerLoopHigh

 SUBWF TMR0, 0 ;set and countdown timer

 BTFSS STATUS, 2 ;check if timer is zero

 GOTO InnerLoopHigh ;go to InnerLoopHigh again

 BCF STATUS, 2 ;reset zero bit of status

 DECFSZ counter ;countdown counter and check if zero

 GOTO LoopHigh ;go to LoopHigh

 BCF PORTB, 1 ;set RB1 to low

 MOVLW 0xfa

 MOVWF counter ;set the value of counter for low

LoopLow

 CLRF TMR0 ;clear timer

 BCF STATUS, 2 ;reset zero bit of status

 MOVLW 0x15

InnerLoopLow

 SUBWF TMR0, 0 ;set and countdown timer

P
age 9.436.15

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

 BTFSS STATUS, 2 ;check if timer is zero

 GOTO InnerLoopLow ;go to InnerLoopLow again

 BCF STATUS, 2 ;reset zero bit of status

 DECFSZ counter ;countdown counter and check if zero

 GOTO LoopLow ;go to LoopLow

 BCF STATUS, 2 ;reset zero bit of status

 DECFSZ iteration ;countdown iteration, check if zero

 GOTO BeginServo ;go to BeginServo

 GOTO MainProgram ;go to MainProgram to repeat

 END ;end line of the code

Appendix B. PIC Assembly Code for Serial Communication from PIC to PC

;This code is used to collect the light sensor output

;1. Measure the voltage output from photoresistor

;2. Send the digitized output to PC using USART

 LIST p=16f74

 INCLUDE "p16f74.inc"

 __CONFIG _CP_OFF & _WDT_OFF & _HS_OSC &

_PWRTE_ON ;configure PIC16F74

 ORG 0 ;origin address is 0

 CLRF STATUS ;clear status register

 GOTO BootStart ;go to BootStart

BootStart

 BANKSEL PORTA ;select bank 0

 CLRF PORTA ;clear portA

 CLRF PORTC ;clear portC

 BANKSEL TRISA ;select bank 1

 MOVLW b'00000001'

 MOVWF TRISA ;set RA0 as input

 MOVLW b'10000000'

 MOVWF TRISC ;set RC7 as input

ADCInitialization

 BCF STATUS, RP0 ;select bank 0

 MOVLW B'10000001'

 MOVWF ADCON0 ;enable ADC and select CH0

 BSF STATUS, RP0 ;select bank 1

 MOVLW b'00000100'

 MOVWF ADCON1 ;set RA0, 1, and 3 to A/D ports

TimerInitialization

 BSF STATUS, RP0 ;select bank 1

 MOVLW b'00000001'

 MOVWF OPTION_REG ;set prescaler of TMR0 to 1:4

 BCF STATUS, RP0 ;select bank 0

 MOVLW b'10000100'

 MOVWF INTCON ;enable all unmasked interrupts

 ;and TMR0 register overflow

 CLRF TMR0 ;clear timer

BaudRateSettingsforUSART

 BSF STATUS, RP0 ;select bank 1

 MOVLW d'129'

 MOVWF SPBRG ;set baudrate 9600 for 20MHz crystal

 MOVLW b'00100100'

 MOVWF TXSTA ;8-bit asyn. high-speed transmission

 BANKSEL RCSTA ;select bank 0

 MOVLW b'10010000'

 MOVWF RCSTA ;8-bit asyn. continuous reception

StartADCandUSART

 CALL ADCLight ;call ADCLight subroutine

 CALL Send ;call Send subroutine

 GOTO StartADCandUSART ;go StartADCandUSART

;SUBROUTINE

ADCLight

 BSF ADCON0,GO ;start A/D conversion

Wait

 BTFSC ADCON0,GO ;check if A/D conversion is done

 GOTO Wait

 MOVF ADRES,W ;move ADC data to W

 RETURN

Send

 BSF STATUS, RP0 ;select bank 1

 BTFSS TXSTA, 1 ;check if transmission is available

 GOTO Send

 BCF STATUS, RP0 ;select bank 0

 MOVWF TXREG ;move data to TXREG register

 RETURN
 END ;end line of the code

Appendix C. PIC Assembly Code for Bi-directional Serial Communication

;This code is used to run the light refraction test bed

;1. Generate pulse train to drive servomotor to a desired angle

;2. Turn on the Laser mounted on the arm of the servomotor

;3. Turn on the DC motor

;4. Measure the light intensity and linear position

;5. Convert sensor data into 8-bit A/D and send them to PC

;6. Stop DC motor if the limit switch at the end is pressed

;7. Relocate light sensor to the initial position

 LIST p=16f74

 INCLUDE "p16f74.inc"

 __CONFIG _CP_OFF & _WDT_OFF & _HS_OSC &

_PWRTE_ON ;configure PIC16F74

counter EQU 20h ;file address of counter var

iteration EQU 21h ;file address of iteration var

tempval EQU 22h ;file address of tempval var

P
age 9.436.16

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

iter EQU 23h ;file address of iter var

iter1 EQU 24h ;file address of iter1 var

iter2 EQU 25h ;file address of iter2 var

iter3 EQU 26h ;file address of iter3 var

 ORG 0 ;origin address is 0

 CLRF STATUS ;clear status register

 GOTO BootStart ;go to BootStart

BootStart

 BANKSEL PORTA ;select bank 0

 CLRF PORTA ;clear portA

 CLRF PORTB ;clear portB

 CLRF PORTC ;clear portC

 BANKSEL TRISA ;select bank 1

 MOVLW b'00000111'

 MOVWF TRISA ;set RA0, 1, and 2 as inputs

 MOVLW b'00000000'

 MOVWF TRISB ;set PORTB as all outputs

 MOVLW b'10000000'

 MOVWF TRISC ;set RC7 as input

ADCInitialization

 BCF STATUS, RP0 ;select bank 0

 MOVLW B'10000001'

 MOVWF ADCON0 ;enable ADC and select CH0

 BSF STATUS, RP0 ;select bank 1

 MOVLW b'00000100'

 MOVWF ADCON1 ;set RA0, 1, and 3 to A/D ports

TimerInitialization

 BSF STATUS, RP0 ;select bank 1

 MOVLW b'00000001'

 MOVWF OPTION_REG ;set prescaler of TMR0 to 1:4

 BCF STATUS, RP0 ;select bank 0

 MOVLW b'10000100'

 MOVWF INTCON ;enable all unmasked interrupts

 ;and TMR0 register overflow

 CLRF TMR0 ;clear timer

BaudRateSettingsforUSART

 BSF STATUS, RP0 ;select bank 1

 MOVLW d'129'

 MOVWF SPBRG ;set baudrate 9600 for 20MHz crystal

 MOVLW b'00100100'

 MOVWF TXSTA ;8-bit asyn. high-speed transmission

 BANKSEL RCSTA ;select bank 0

 MOVLW b'10010000'

 MOVWF RCSTA ;8-bit asyn. continuous reception

 MOVF RCREG, W

 MOVF RCREG, W

 MOVF RCREG, W ;flush reception buffer 3 times
MainProgram

 CALL ReceiveAngle ;call ReceiveAngle subroutine

 MOVLW 0x64

 MOVWF iteration ;save iteration value for pulse train

BeginServo

 MOVF tempval, 0 ;move tempval to W

 MOVWF counter ;assign user input into counter

LoopHigh

 CLRF TMR0 ;clear timer

 BSF PORTB, 1 ;set RB1 to high

 MOVLW 0x05

InnerLoopHigh

 SUBWF TMR0, 0 ;set and countdown timer

 BTFSS STATUS, 2 ;check if timer is zero

 GOTO InnerLoopHigh ;go to InnerLoopHigh again

 BCF STATUS, 2 ;reset zero bit of status

 DECFSZ counter ;countdown counter and check if zero

 GOTO LoopHigh ;go to LoopHigh

 BCF PORTB, 1 ;set RB1 to low

 MOVLW 0xfa

 MOVWF counter ;set the value of counter for low

LoopLow

 CLRF TMR0 ;clear timer

 BCF STATUS, 2 ;reset zero bit of status

 MOVLW 0x15

InnerLoopLow

 SUBWF TMR0, 0 ;set and countdown timer

 BTFSS STATUS, 2 ;check if timer is zero

 GOTO InnerLoopLow ;go to InnerLoopLow again

 BCF STATUS, 2 ;reset zero bit of status

 DECFSZ counter ;countdown counter and check if zero

 GOTO LoopLow ;go to LoopLow

 BCF STATUS, 2 ;reset zero bit of status

 DECFSZ iteration ;countdown iteration, check if zero

 GOTO BeginServo ;go to BeginServo

TurnLaser

 BSF PORTB, 5 ;turn on the laser

TurnMotor

 BSF PORTB, 7 ;turn on the DC motor

 CALL DelayDCMotor ;call DelayDCMotor subroutine

StartADCandUSART

 CALL ADCLight ;call ADCLight subroutine

 CALL Send ;call Send subroutine

 CALL DelayUSART ;call DelayUSART subroutine

 CALL ADCPosition ;call ADCPosition subroutine

 CALL Send ;call Send subroutine

 CALL DelayUSART ;call DelayUSART subroutine

 BTFSS PORTA, 2 ;check if the light sensor is at the end

 GOTO StartADCandUSART ;go StartADCandUSART

ReverseDCMotor

 BCF PORTB, 5

 BCF PORTB, 7 ;stop the DC motor

 CALL DelayDCMotor2 ;call DelayDCMotor2 subroutine

P
age 9.436.17

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

 BSF PORTB, 6 ;reverse the direction of the DC motor

 CALL DelayDCMotor2 ;call DelayDCMotor2 subroutine

CheckInitialPosition

 BTFSS PORTA, 2 ;check if the sensor back to the origin

 GOTO CheckInitialPosition

Finish

 BCF PORTB, 6 ;turn off the laser

 GOTO Finish ;finish the program

;SUBROUTINE

ReceiveAngle

 BCF STATUS, RP0

 BCF STATUS, RP1 ;select bank 0

 BTFSS PIR1, RCIF ;check if data is received

 GOTO ReceiveAngle

 MOVF RCREG, W ;move received data to W

 MOVWF tempval ;save data from W into tempval

 RETURN

Send

 BSF STATUS, RP0 ;select bank 1

 BTFSS TXSTA, 1 ; check if transmission is available

 GOTO Send

 BCF STATUS, RP0 ;select bank 0

 MOVWF TXREG ; move data to TXREG register

 RETURN

ADCLight

 BCF STATUS, RP0 ;select bank 0

 MOVLW B'10000001'

 MOVWF ADCON0 ;enable ADC and select CH0

 CALL Pause ;call Pause subroutine

 BSF ADCON0, GO ;start A/D conversion

 GOTO Wait ;go to Wait

ADCPosition

 BCF STATUS,RP0 ;select bank 0

 MOVLW B'10001001' ;

 MOVWF ADCON0 ;enable ADC and select CH1

 CALL Pause ;call Pause subroutine

 BSF ADCON0, GO ;start A/D conversion

Wait

 BTFSC ADCON0, GO ;check if A/D conversion is done

 GOTO Wait

 MOVF ADRES, W ;move ADC data to W

 RETURN

Pause ;short delay

 MOVLW 08h

 MOVWF iter

Loop1 DECFSZ iter

 GOTO Loop1

 RETURN

DelayUSART ;delay for USART

 MOVLW 0x0a

 MOVWF iter1

 GOTO Delay

DelayDCMotor ;delay for limit switch in the beginnig

 MOVLW 0x1a

 MOVWF iter1

 GOTO Delay

DelayDCMotor2 ;delay for limit switch at the end

 MOVLW 0x3f

 MOVWF iter1

 GOTO Delay

Delay

Loop2 MOVLW 0xff

 MOVWF iter2

Loop3 MOVLW 0xff

 MOVWF iter3

Loop4 DECFSZ iter3

 GOTO Loop4

 DECFSZ iter2

 GOTO Loop3

 DECFSZ iter1

 GOTO Loop2

 RETURN

 END ;end line of the code

Acknowledgements

This work is supported in part by the National Science Foundation under grants 0227479

and 0337668 and the NASA/NY Space Grant Consortium under grant 39555-6519.

P
age 9.436.18

“Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright 2004, American Society for Engineering Education”

References

[1] Online: http://www.microchip.com/1010/index.htm, website of Microchip Technology, Inc.

[2] Online: http://www.microchip.com/1010/suppdoc/appnote/index.htm, website of Microchip Technology, Inc.,

(access link for application notes, code examples, and templates).

[3] D. W. Smith, PIC in Practice, Newnes, Oxford, U.K., 2003.

[4] Online: http://www.microchip.com/1010/pline/tools/picmicro/program/picstart/index.htm, website of

Microchip Technology, Inc., (access link for PICSTART Plus Development Programmer).

[5] Online: http://www.olimex.com/dev/, website of Olimex Ltd., (access link for PIC-PG2B Development

Programmer).

[6] Online: http://pdfserv.maxim-ic.com/en/ds/MAX220-MAX249.pdf, website of Maxim Integrated Products,

(access link for MAX232 datasheet).

[7] Online: http://mechatronics.poly.edu/smart/, website of Polytechnic’s NSF funded Research Experience for

Teachers project.

[8] Online: http://www.microchip.com/download/lit/pline/picmicro/families/16f7x/30325b.pdf, website of

Microchip Technology, Inc., (access link for PIC16F74 device datasheet).

[9] Online: http://www.mathworks.com/products/matlab/, website of The Math Works, Inc., developer and

distributor of technical computing software Matlab (access link for Matlab product information).

[10] Online: http://www.mathworks.com/products/simulink/, website of The Math Works, Inc., developer and

distributor of Simulink (access link for Simulink product information).

[11] Online: http://www.mathworks.com/products/dialsgauges/, website of The Math Works, Inc., developer and

distributor of Dials and Gauges Blockset (access link for Dials and Gauges Blockset product information).

SANG-HOON LEE was born in Seoul, Korea. He received the B.S. degree in Mechanical Engineering from Sung

Kyun Kwan University, Seoul, Korea, in 1996 and the M.S. degree in Mechanical Engineering from Polytechnic

University, Brooklyn, NY, in 2002. From 1996 to 1997, he worked for Sam Sung Engineering Co., Ltd. in Korea.

He is currently continuing research at Polytechnic University as a doctoral student. His research interests include

linear/nonlinear control, UAV path planning and tracking control, and mechatronics.

YAN-FANG LI received the B.S. degree in materials science from Shanghai Jiao Tong University, China in 2000.

She began pursuing the M.S. degree in the Department of Mechanical Engineering at Polytechnic University,

Brooklyn, NY, in Spring 2002. Since Spring 2003, she has also worked as a teaching and research assistant with

responsibilities in the area of mechatronics. She is expected to receive the M.S. degree in mechanical engineering in

June 2004.

VIKRAM KAPILA is an Associate Professor of Mechanical Engineering at Polytechnic University, Brooklyn, NY,

where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF

funded Research Experience for Teachers Site in Mechatronics that has been featured on WABC-TV and NY1

News, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research

Laboratories in Dayton, OH. His research interests are in cooperative control; distributed spacecraft formation

control; linear/nonlinear control with applications to robust control, saturation control, and time-delay systems;

closed-loop input shaping; spacecraft attitude control; mechatronics; and DSP/PC/microcontroller-based real-time

control. He received Polytechnic’s 2002 Jacob’s Excellence in Education Award and 2003 Distinguished Teacher

Award. He has mentored 38 high school students, 10 high school teachers, 7 undergraduate summer interns, and 5

undergraduate capstone-design teams and has supervised 2 M.S. projects, 2 M.S. thesis, and 2 Ph.D. dissertations.

P
age 9.436.19

