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Abstract: 

This research develops an advanced numerical model to study laminar pipe flow and its heat 

transfer characteristics, targeting both educational and research applications. Numerical methods 

are essential for solving complex fluid dynamics and heat transfer problems. Implemented in 

MATLAB, the model employs a 2-D finite difference approach within an axisymmetric cylindrical 

geometry to simulate temperature distributions and Nusselt numbers under various boundary 

conditions, including uniform heat flux (UHF), uniform wall temperature (UWT), and external 

convection. Verification against theoretical values shows the model's accuracy, closely matching 

the theoretical Nusselt numbers of 3.66 for uniform wall temperature and 4.36 for uniform heat 

flux. Simulations demonstrate how ambient temperature, convection coefficients, internal heat 

generation, and fluid viscosity influence heat transfer rates and efficiency. These findings are 

crucial for optimizing engineering designs such as heat exchangers and cooling systems. This study 

demonstrates the educational value and knowledge gained from numerical modeling, bridging 

theoretical knowledge and practical applications, and prepares students for advanced 

computational fluid dynamics (CFD) and related fields. This is done with very few starting 

fundamental equations. Adaptable to other programming languages, the model is versatile for 

various educational and research contexts. Future work will expand the model to include complex 

configurations like annular flow and concentric-pipe systems, enhancing its utility for academic 

and industrial applications. This research contributes to developing effective teaching tools in 

engineering education, fostering a deeper understanding of fluid dynamics and heat transfer 

through numerical modeling. 
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Introduction: 

As technology progresses, it is crucial for engineering students to develop competency in 

computational problem-solving skills to succeed independent of their career path [1, 2]. Much 

recent literature has focused on development of numerical modeling into engineering classes [3-

5], citing its benefits in assisting complicated problems while prioritizing software approaches that 

use analytical techniques. Such numerical approaches to problem-solving can also be beneficial as 

they can be leveraged by existing knowledge that students have developed in their previous 

courses, including in mathematics [6]. However, students should still understand the underlying 

theory for programs to best interpret the results and understand limitations present in the model 
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[7]. Striking a balance between theory and application can be difficult [8-10], as there is only a 

limited amount of time that can be spent covering course material. 

Several institutions have made it a point to implement advanced software techniques including 

computational fluid dynamics (CFD) into their curricula [11]. Some have even stressed the 

implications of going directly into CFD modeling for more advanced computational methods [12-

14]. While learning the use of CFD can be invaluable in an undergraduate curriculum, it may not 

always be applicable to all undergraduates in preparation for their future careers. Furthermore, 

different workplaces and industries exhibit a myriad of different software techniques they use 

(including ANSYS, COMSOL, OpenFOAM, and Python) [15-18], so it may not be optimal to 

focus on just one technique for the selected software covered. 

In this work, we develop a model for analyzing temperature distributions in pipe flow for a heat 

transfer course for mechanical engineers. The initial intent of the model was to introduce students 

to 2-D numerical modeling, a requirement for the courses, while also integrating the core analytical 

differential equation that is necessary to determine temperature regarding radial and axial positions 

[19]. The model acts as a pseudo-1-D transient model, assuming an axisymmetric cylindrical 

geometry and an initial condition for velocity and temperature distributions at the inlet of the pipe. 

The model is then advanced forward in the axial position, considering boundary conditions set at 

the inner walls of the pipe. As students have been introduced to 1-D transient variations in the 

course, this serves as a direct connection to that previous material. Presently, the model is 

developed in MATLAB, but provisions are made to adapt to other programming languages, such 

as Python. 

The model’s reliance on the core thermal energy equation for fluid transport enables it to be 

adapted to a wide set of fluid parameters, boundary conditions, and can consider different forms 

of internal heat generation, such as viscous dissipation. The only notable limitations to the model 

are that (1) constant fluid properties are assumed, and (2) the flow remains laminar, since the 

effects of turbulence from the equation are not considered and would serve to enhance the heat 

transfer via additional mixing in other directions. 

This paper primarily serves as a basic outline of the model, its uses, and illustrates sample sets of 

temperature variations in the model. The radial and axial variations in temperature can both be 

used to determine the Nusselt number relating convective and conductive forms of heat transfer. 

As uniform heat flux (UHF) and uniform wall temperature (UWT) are commonly cited boundary 

conditions for Nu which can be developed without the need for experiments, these values will be 

confirmed first. Then, alternative cases such as employing external convective conditions (i.e. 

heating/cooling of the pipe), and the effects of internal heat generation on the Nusselt number will 

also be explored. Future modifications to the model will include annular flow with an internal 

boundary condition, useful in examining the performance of mapping temperature distribution in 

heat exchangers. While existing CFD software can serve as much more powerful means of 

illustrating all of the work that has been developed, here we demonstrate that nearly the same can 

be done using simpler tools building on and reinforcing existing concepts of the heat transfer 

fundamentals that have already been developed in the classroom. 

Theoretical Development: 
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The model developed is based on the heat equation for a cylindrical geometry, which is covered 

in the earlier stages of the heat transfer course (ME 3525 at Missouri S & T). The general heat 

equation for a constant property fluid undergoing laminar flow is given by: 

 

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑃𝑢 ∙ ∇𝑇 = 𝑘∇2𝑇 + 𝑞𝑔𝑒𝑛

′′′ + 𝜇𝛷    (1) 

 

where ρ is the density, cp is the specific heat capacity, u is the velocity vector, k is the thermal 

conductivity µ is the viscosity, qgen’’’ represents any internal heat generation, and Φ is the viscous 

dissipation term, which is quite complicated [20]. It should be noted that when velocity terms are 

removed, this simplifies to the axial conduction equation for solids [21]. This equation, combined 

with appropriate boundary and initial conditions, allows us to simulate the temperature distribution 

within the pipe. 

 

Although this model can have lots of different variable properties, some system constants were 

selected to investigate. The constants used for all simulation investigations are present in Table 1 

below. Room temperature liquid water was used for the simulations, and its properties were 

assumed to remain constant with temperature during the experiments. 

 
Table 1. Parameters used for numerical model. 

 

Parameter   Symbol   Value   Units   Description   

Length   L   50   m   Length of the pipe   

Radius   R   0.01   m   Radius of the pipe   

Average Velocity   UAvg   0.1   m/s   Average velocity of the fluid   

Density   ρ 1000   kg/m3 Density of water   

Specific Heat   cp 4200   J/kg*K   Specific heat capacity of water   

Thermal 

Conductivity   k   0.6   W/(m*K)   Thermal conductivity of water   

Viscosity   µ 0.001   Pa*s   Dynamic viscosity of water   

Radial Nodes M 50 - Number of discrete axial nodes 

Axial Nodes N 50000  Number of discrete axial nodes 

 

Here, the fluid flow will be considered steady and hydrodynamically fully-developed, in order to 

maintain the focus on temperature variations. For laminar flow, this will yield a parabolic profile 

for the velocity distribution, with the maximum value occurring in the center of the pipe at a value 

of double the average velocity specified in Table 1. 

 

𝑢(𝑟) = 𝑢𝑚𝑎𝑥(1 − (
𝑟

𝑅
)
2

)         (2) 

 

Neglecting variations in time as well as the effects of axial conduction, the energy equation in (1) 

can be simplified to: 
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𝜌𝐶𝑃𝑢(𝑟)
𝜕𝑇

𝜕𝑥
= 𝑘 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
)) + 𝑞𝑔𝑒𝑛

′′′ + 𝜇 (
𝜕𝑢

𝜕𝑦
)
2

      (3) 

 

The energy equation in (3) is then discretized into a grid of different nodes each representing radial 

and axial locations within the pipe (Figure 1). As all problems considered up to this point are 

axisymmetric, the setup is essentially a 2-D numerical model. Equation (3) can then be rearranged 

to isolate the axial temperature derivative, as this will be used as a pseudo time step to progress 

along the length of the pipe. 

 
𝜕𝑇

𝜕𝑥
 =

𝑘

𝜌𝐶𝑃𝑢(𝑟)
(
𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
) +

𝑞′′′

𝜌𝐶𝑃𝑢(𝑟)
+  

𝜇𝛷

𝜌𝐶𝑃𝑢(𝑟)
      (4) 

 

 

 

 
Figure 1. Illustration of grid setup. 

 

Under the constants taken from Table 1, a grid with N axial nodes and M radial nodes bound. N is 

bound to x=0 to x=L, and M is bound to y=0 to y=R Boundary conditions were applied to the top 

and bottom surfaces of the grid. On x=0 to x=L when M=0, the temperature of the N’th node is 

equal to the M=1 Nth node in the same N column. This exploits the axisymmetric properties of the 

system to reduce computational costs. The top M layer is under a separate set of boundary 

conditions. Three sets of boundary conditions are investigated here: UHF (Uniform heat flux), 

UWT (uniform wall temperature), and external convection. Table 2 summarizes how the boundary 

conditions are developed in the model. 

 
Table 2. Summary of boundary conditions used in model. 
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Inside 

Boundary 

Condition 

Differential Form Discretized Form 

Theoretical 

Nusselt 

Number 

Constant 

Temperature 
T(x,r=𝑹𝒐)=Ts 𝑻𝒊,𝑴−𝟏 = 𝑻𝒔 3.66 

Constant 

Heat Flux 𝒌
𝝏𝑻(x,r=𝑹𝒐)

𝝏𝒓
= 𝒒" 𝒌

𝑻𝒊,𝑴−𝟏 − 𝑻𝒊,𝑴−𝟐

∆𝒓
= 𝒒" 4.36 

Convective 𝒌
𝝏𝑻(x,r=𝑹𝒐)

𝝏𝒓
= 𝒉(𝑻(𝒙, 𝒓=𝑹𝒐)-𝑻∞) 𝒌

𝑻𝒊,𝑴−𝟏 − 𝑻𝒊,𝑴−𝟐

∆𝒓
= 𝒉(𝑻𝒊,𝑴−𝟏-𝑻∞) - 

 

The scaling of M and N affects the amount of error acquired thought the course of the simulation. 

However, the values must be selected carefully to prevent stability errors (15) while optimizing 

computational time. As M scales linearly, N must grow at an exponential rate to reach stability 

within the system and produce a Nusselt number for the last N node. As both M and N increase, 

the calculated Nusselt number approaches the values in Table 2 for each boundary condition.  

 

Here, a combination of a second order central difference and single order forward difference 

scheme is used to solve for the N middle nodes. This, combined with the first-order implementation 

of the boundary conditions are used to solve for the remaining nodes. This is continued axially 

down the pipe creating the temperature distribution. The use of the central difference solving 

method is something that when implemented decreases the difference between the known Nusselt 

numbers and the calculated Nusselt numbers. Figure 2 summarizes the procedure for performing 

the numerical calculation. 

 

 
Figure 2. Summary of numerical model procedure 
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In the model, Nusselt number is taken only as a function of the axial position x of the pipe. 

Therefore, the average temperature along the length of the pipe must first be computed. This 

calculation is given by: 

 

𝑇𝑎𝑣𝑔 =
∫𝑇(𝑟)𝑢(𝑟)𝑑𝐴

∫𝑢(𝑟)𝑑𝐴
          (5) 

 

where the integrals can be computed by simply using a set of Reimann sums for the number of 

radial positions M available. The Nusselt number can be computed from the equation: 

 

𝑁𝑢𝐷 =
ℎ𝐷

𝑘
           (6) 

 

where in this equation only, h is an internal convection coefficient for the fluid, and is determined 

by solving: 

 

−𝑘
𝜕𝑇(𝑟=𝑅)

𝜕𝑟
= ℎ(𝑇(𝑟 = 𝑅) − 𝑇𝑎𝑣𝑔)        (7) 

 

where the temperature gradient  
𝜕𝑇

𝜕𝑟
 in the conduction term is taken as an approximation between 

the two node values closest to the wall. 

 

Results & Discussion: 

Verification of established Nusselt numbers: 

 

The first and most important step to verify the model is to compare the results it produces with 

known theoretical values. This is most effectively done by computing Nusselt numbers for the 

UHF and UWT conditions. In order to set up for this, temperature contours for all cases are 

provided first, to provide visual cues for how temperature varies in the pipe along both radial and 

axial position. From there, the average temperature along the axial position of the pipe can be 

better understood prior to plotting it explicitly on a linear graph, and subsequently the Nusselt 

number evaluated following the set of equations outlined previously. 

 

The temperature contours for the UWT and UHF conditions were first investigated. The heat 

generation term in the equation was set to zero and the viscosity is kept at .001 Pa*s which accounts 

for a negligible amount of energy addition into the system. When wall temperature is kept constant 

(Figure 3A), the contour shows that the internal fluid temperatures approach that temperature along 

the pipe length, but the approach becomes more gradual as the distance between the lines grows 

larger. On the contrast, the UHF condition (Figure 3B) demonstrates a nearly linear temperature 

increase past the initial 5-10 meters for most of the fluid, as the gap between the lines stays nearly 

consistent. In both graphs, the constant temperature lines will always align parallel at the center of 

the pipe; this is in order to account for the necessary symmetry condition in which the radial 

temperature gradient must disappear. 
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Figure 3. (A) Uniform wall temperature contour (50°C), (B) Uniform heat flux plot (1 kW/m2).  

The axial temperature gradients can be more clearly visualized when averaging the pipe 

temperature’s radial position. Here, the trends align with what had been previously shown. For 

UWT, the average pipe temperature gradually approaches that of the set wall condition, while for 

UHF, the increase continues linearly (Figure 4A). As water would reach a phase change should its 

temperature exceed 100°C, here the model is limited in the maximum possible heat flux or length 

that could be used. For both conditions, the Nusselt number (Figure 4B) starts high but begins to 

approach a constant value as the flow thermally develops. The explanation for the high initial 

Nusselt number is that in both cases, the higher wall temperature accelerates the rate of convection 

between the rest of the fluid, while at the wall itself, temperature gradients are considerably 

smaller. Further downstream, the convective effects inside the pipe are less pronounced, and the 

steady-state values can be deduced. These are indeed the 3.66 for UWT and 4.36 for UHF, 

confirming that the model can effectively replicate the established theoretical values for laminar 

pipe flow. 

 

Figure 4. (A) UWT and UHF axial average temperature, (B) UWT and UHF axial Nusselt number. 
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Nusselt number for external convection boundary condition: 

With the theoretical values confirmed, the Nusselt number can then be evaluated for the one 

remaining condition: the external convective boundary condition. Here, the model can be set up in 

the same way, with the only difference that now an external convective coefficient and ambient 

temperature must be selected. Here, to simulate a realistic condition, we will consider a heated 

stream of water, initially at a uniform temperature of 80°C, which is exposed to an ambient 

temperature of 20°C with a convection coefficient of 5 W/m2*K. This is an example best shown 

in the earlier stages of the Heat Transfer course when considering 1-D transient conduction through 

a wall. In that example, students generally understand that the outside will cool first since it is 

directly exposed to the ambient, and the insides will cool gradually afterward due to the natural 

tendency of heat to flow in the direction opposite temperature gradients according to Fourier’s 

law. This is confirmed in Figure 5A and is visualized in the temperature contour. The center of the 

pipe is more capable of retaining its heat, but eventually will begin to cool as the outer layers of 

the fluid lose heat to the ambient. The average temperature along the pipe (Figure 5B) follows a 

similar predicted exponential trend as in the case with uniform wall temperature, only here the 

case is that the approached temperature is cooler rather than hotter. For the Nusselt number (Figure 

5C), an interesting trend emerges: There appears to be a thermal development as a constant value 

is reached, but the constant value in this case is 4.24. Nusselt numbers for this configuration for 

laminar flow have not been as extensively reported, although this type of boundary condition is 

generally much more common in nature than either a UWT or UHF condition. This prompts a 

further investigation into the effect of whether the external convection coefficient or the outside 

temperature will significantly affect this Nusselt number. 

 

Figure 5. Convective boundary condition (5 W/m2*K, 20C ambient). (A) Temperature contour, (B) Average axial 

temperature °C, (C) Nusselt number. 

The convective boundary condition, governed by the selection of the convection coefficient with 

the ambient temperature, and said ambient temperature, were plotted on a two-dimensional contour 

to demonstrate effects of the end-range (exit) temperature. Here, a range of convection coefficients 

and ambient temperature values are selected, with h ranging from 5 to 500 W/m2*K, and T∞ 

ranging from -10 to 50°C, to best simulate a range of outside conditions. The contour (Figure 6) 

shows that Nusselt number is more immediately affected by the external convection coefficient 

than by the outside temperature. The Nusselt number is maximized if the external convection 

coefficient is lower, despite what one might think about greater convection enhancing heat transfer. 

This is attributed to a lower radial heat transfer rate at the pipe wall when the convection coefficient 
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is lower, since heat cannot escape the pipe as quickly. Therefore, conduction effects will shrink, 

and a greater portion of the heat transfer will be due to the motion of the fluid instead. It should 

also be noted that the difference is notable but not extremely significant: Higher convection 

coefficients will only decrease Nusselt number from 4.78 to 4.24, or about 12%. It is interesting 

to note this range is still reasonably close to the previously studied boundary conditions, with 

convection coefficients of around 250 W/m2*K nearly equaling the Nu for the UHF boundary 

condition. While the results shown here may need to be more carefully investigated for other 

properties and conditions involving laminar flow, they can nonetheless serve as a good first 

approximation to laminar heat transfer pipe flow problems under this boundary condition. 

 

 

Figure 6. Ending Nusselt Number and its relation between houter and T∞. 

 

Heat generation and viscous dissipation: 

The effect of heat generation within the system have also been studied and investigated. Present 

in Figure 7 are graphs displaying the relationships the qgen’’’ term and its value have on the ending 

Nusselt number, average temperature, and ending temperature contour. These tests were run with 

a outer convection coefficient of 70 W/m2 and a ambient temperature of 20°C. 

Three different cases for heat generation are considered: 0 W/m3, 50000 W/m3, and 75000 W/m3. 

Here, the pipe enters at 25°C and is exposed to an ambient at 20°C, so the case of zero heat 

generation will result in the fluid cooling, the intermediate heat generation rate maintain the same 

temperature, and the higher heat generation rate will raise the temperature. 

When comparing temperature contours (Figure 7), the convective boundary condition plot 

resembles the temperature contour established in Figure 3A. If the heat flux is selected to maintain 

the inlet temperature, an interesting pattern emerges (Figure 7B): Initially, not enough heat is 

generated from the fluid, and the temperature distribution in the inner half of the pipe remains 
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mostly consistent at axial positions to about 5 m. After 10 m, the heating effect from the inside of 

the pipe is more clearly pronounced, and a clear gradient in the temperature is established through 

the pipe radially. In effect, this resembles a 1-D temperature distribution within a solid when 

uniform heat generation is considered. The value is maximum at the center, but this maximum is 

slowly approached and maintains a symmetry boundary condition, while the outside is coolest and 

rapidly loses heat to ambient. When the heat generation value is doubled, the horizontal 

temperature lines are no longer present, and the temperature increases further. 

 

Figure 7. Temperature contours of convective boundary conditions. (A) No heat generation, (B) 50000 W/m3, (C) 

75000 W/m3. 

The axial temperature values (Figure 8A) follow the predicted trends for each heat generation case, 

but the Nusselt number (Figure 8B) yields a more increased result: A higher heat generation rate 

will enhance heat transfer, but the enhancement does not appear to be linear. The steady-state 

values for 0, 50000, and 75000 W/m3 are 4.41, 6.19, and 6.51 respectively. Here, the heat transfer 

rates begin to reach values beyond typically expected for laminar flow. If the heat generation rate 

is raised further, it is possible that an asymptote value for the Nusselt number could be reached. 

Looking at the theoretical relations (Eq. 1), and the development for the UHF and UWT conditions, 

a relation between heat generation rate and Nusselt number could possibly be developed under 

these two boundary conditions, but the value would likely be property/geometry dependent as 

these terms would not disappear in the derivation. 

 

Figure 8. (A) Heat generation axial average temperature, (B) Heat generation axial Nusselt number. 



2024 ASEE Midwest Section Conference 

 

© American Society for Engineering Education, 2024 

 
 

For viscous dissipation, three different cases are considered: 0.001 Pa*s, 25 Pa*s, and 50 Pa*s. 

The temperature contours (Figure 9) reveal the gradual increase in temperature when viscosity in 

the fluid is increased; this is generally the “lost” energy for any type of fluid flow along the pipe. 

It should be noted that this temperature contour is a different shape than they are shown for 

arbitrary heat generation; here, the rise in temperature due to viscosity is proportional to the square 

of the velocity gradient (Eq. 1). Therefore, heating would occur more directly closer to the wall 

than to the center, although heat generated at the wall by friction is also lost to convection in this 

scenario. The generated heat then mostly accumulates at the center. 

 

Figure 9. Temperature contours of convective boundary conditions. (A) 0.001 Pa*s, (B) 25 Pa*s, (C) 50 Pa*s. 

 

In the examples considered here, the viscosity is not high enough to compensate for external 

convection losses, so higher viscosities essentially equate to a lower heat loss (Figure 10A). As 

was done with generation, viscosity could be increased further to determine the minimum value 

necessary to offset convection losses, and a plot similar to the one shown in Figure 8A could be 

obtained.  

For the Nusselt number, the values once again converge, and the higher viscosity enhances the 

heat transfer quite substantially (Figure 10B). At 25 Pa*s, the Nusselt number reaches 6.3, and at 

50 Pa*s, the value nearly doubles from the base case with negligible dissipation to nearly 8.2. 

Here, the effect is similar to that seen previously for heat generation, where a higher viscosity 

creates shallower temperature gradients. At the wall, this decreasing rate of conductive heat 

transfer and enhancing the amount of heat transfer must be caused by advection. The result is 

somewhat counter to traditional heat transfer logic, as higher viscosities would slow down the rate 

of heat transfer, but for laminar flow, convection coefficient is not directly affected by 

dimensionless numbers. Since the viscosity in these examples is higher, velocity could be altered 

to examine changes in the trends while maintaining laminar flow. Like with heat generation, this 

effect could be examined theoretically for the UWT and UHF conditions, to determine if some 

dependence or convergence to a steady-state Nusselt number with viscosity is reached. 
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Figure 10. (A) Viscous dissipation axial average temperature, (B) Viscous dissipation axial Nusselt number. 

Conclusion: 

This paper discusses in detail the development a 2-D asymmetric numerical model for laminar 

pipe flow. The setup serves to balance introducing students to the benefits and wide range of 

options offered by the numerical modeling, while also maintaining core principles of heat transfer 

and the energy equation that have been previously developed. The model produces temperature 

contours for both radial and axial positions, average temperature along the axial length, and 

Nusselt number along the axial length. The calculation of Nusselt number is used to verify that the 

model produces the familiar values for uniform wall temperature (UWT) and uniform heat flux 

(UHF) conditions, confirming the accuracy of the model. From there, the more realistic external 

convection boundary condition is applied, and it shown that the Nusselt number falls within a close 

range relative to the UWT/UHF conditions, but is actually enhanced when the convection 

coefficient is lower, which can be useful for first estimates of the value under this condition. 

Finally, as they are included in the generalized form of the energy equation, heat generation and 

viscous dissipation are each explored under three different cases. The cases highlight how 

increases in temperature occur primarily in the center of the fluid, and also show that increases in 

both values will enhance the Nusselt number for heat transfer, in some cases exceeding double the 

values for the case with negligible heat generation.  

In summary, the numerical pipe flow model has been developed for a set of simple cases to better 

bridge the gap between computational modeling and familiar theoretical principles, which can be 

circumvented if only graphical software such as computational fluid dynamics is used, with 

minimal condition to the underlying equation. Here, it is shown that with only the energy equation 

and a set of boundary conditions, several key heat transfer characteristics can be examined, and a 

range of customizable parameters and conditions can be explored. This initial exposure can serve 

as a benefit to students who will go into advanced CFD modeling in more detail, as well as those 

who may continue to do similar numerical modeling or programming. In the future, the model will 

be expanded to consider configurations more useful in research or in industry, such as annular flow 

with an internal boundary condition or double-pipe flow for analysis of temperature distribution 

in a heat exchanger. 



2024 ASEE Midwest Section Conference 

 

© American Society for Engineering Education, 2024 

 
 

 

Bibliography: 

 

[1] J. Swart, "Theory versus practical in a curriculum for engineering students—A case study," in AFRICON 

2009, 2009: IEEE, pp. 1-4.  

[2] P. C. Wankat and F. S. Oreovicz, Teaching engineering. Purdue University Press, 2015. 

[3] X. Le, R. L. Roberts, and A. W. Duva, "Teaching Finite Element Analysis for mechanical undergraduate 

students," in 2019 ASEE Annual Conference & Exposition, 2019.  

[4] A. Callejo and J. Garci´ a de Jalo´ n, "Teaching undergraduate numerical methods through a practical 

multibody dynamics project," in International Design Engineering Technical Conferences and Computers 

and Information in Engineering Conference, 2011, vol. 54815, pp. 657-665.  

[5] G. Zhu, L. Li, M. Xue, and T. Liu, "An effective educational tool for straightforward learning of numerical 

modeling in engineering electromagnetics," Computer Applications in Engineering Education, vol. 29, no. 

6, pp. 1554-1566, 2021. 

[6] J. Hu, L. Zhang, and X. Xiong, "Teaching computational fluid dynamics (CFD) to Design Engineers," in 

2008 Annual Conference & Exposition, 2008, pp. 13.1151. 1-13.1151. 11.  

[7] E. Tempelman and A. Pilot, "Strengthening the link between theory and practice in teaching design 

engineering: an empirical study on a new approach," International journal of technology and design 

education, vol. 21, pp. 261-275, 2011. 

[8] M. Andriychuk, Numerical Simulation: From Theory to Industry. BoD–Books on Demand, 2012. 

[9] J. Červeňová, "OPTIMAL BALANCE OF ANALYTICAL AND NUMERICAL METHODS IN TEACHING 

OF ELECTROMAGNETISM," DISTANCE LEARNING, SIMULATION AND COMMUNICATION 2013, p. 

27, 2013. 

[10] A. J. Hughes and C. Merrill, "Solving Concurrent and Nonconcurrent Coplanar Force Systems: Balancing 

Theory and Practice in the Technology and Engineering Education Classroom," Technology and Engineering 

Teacher, vol. 80, no. 1, p. 16, 2020. 

[11] W. Mokhtar, "Project-based learning (PBL): an effective tool to teach an undergraduate CFD course," 2010. 

[12] J. D. Eldredge et al., "A best practices guide to CFD education in the undergraduate curriculum," 

International Journal of Aerodynamics, vol. 4, no. 3-4, pp. 200-236, 2014. 

[13] A. Fedyushkin and A. Puntus, "Revisiting the need to combine educational and scientific-research processes 

in teaching CFD modelling to students," in Journal of Physics: Conference Series, 2021, vol. 1809, no. 1: 

IOP Publishing, p. 012006.  

[14] M. Rodríguez-Martín, P. Rodríguez-Gonzálvez, A. Sánchez-Patrocinio, and J. R. Sánchez, "Short CFD 

simulation activities in the context of fluid-mechanical learning in a multidisciplinary student body," Applied 

Sciences, vol. 9, no. 22, p. 4809, 2019. 

[15] H. J. Kwon, "Use of comsol simulation for undergraduate fluid dynamics course," 2013. 

[16] S. Verma, Z. Mansouri, and R. P. Selvam, "Incorporating two weeks open source software lab module in CFD 

and fluids courses," in 2021 ASEE midwest section conference, 2021.  

[17] M. N. SARIMURAT, "Integrating Theory and Practice: A CFD Education Approach," in 2024 ASEE Annual 

Conference & Exposition, 2024.  

[18] X. Li and S. C. Cheung, "A learning-centred computational fluid dynamics course for undergraduate 

engineering students," International Journal of Mechanical Engineering Education, p. 03064190231224334, 

2024. 

[19] T. L. Bergman, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011. 

[20] S. M. Ghiaasiaan, Convective heat and mass transfer. CRC Press, 2018. 

[21] D. W. Hahn and M. N. Özisik, Heat conduction. John Wiley & Sons, 2012. 

 

 



2024 ASEE Midwest Section Conference 

 

© American Society for Engineering Education, 2024 

 
 

Biography: 

 

Stone Simpson 

Stone is a senior completing his Mechanical Engineering degree, driven by a passion for helping 

and providing for the community. Whether selling shoes or working on sewer maintenance, 

ensuring the people he serves are well informed and taken care of is his top priority.  Beyond his 

studies, he leads projects with local cities to build websites in support of the EPA’s Lead Service 

Inventory Project. On a never ending quest to learn the intricacies that lie in the world we live in,  

Stone dreams of advancing sustainable energy through algae research, envisioning a future where 

the world embraces this green resource. 

Daniel Moreno 

Dr. Daniel Moreno is an Assistant Professor of Mechanical Engineering at Missouri State 

University's Cooperative Engineering Program, with a joint appointment in the PAMS (Physics, 

Astronomy, Materials Science) department and a courtesy appointment at Missouri University of 

Science & Technology. He received his Bachelor’s degree in Mechanical Engineering at the 

Cooper Union for the Advancement of Science and Art in New York City. He received his Master’s 

and Ph.D. at Georgia Institute of Technology, also in Mechanical Engineering. Dr. Moreno’s 

teaching expertise is in the thermal sciences. At Georgia Tech, Dr. Moreno served as President for 

the institution’s chapter for the American Society for Engineering Education. He presently teaches 

courses in thermal science in the Cooperative Engineering Program, where he hopes to incorporate 

relevant technical examples and ideas from his research into his teaching. His research integrates 

thermodynamics concepts in ME with the multi-disciplinary field of electrochemistry to promote 

renewable energy technologies. 


