
Paper ID #35773

Development of Dynamic Modulus Predictive Model Using Artificial Neural
Network (ANN)

Mr. Prashanta Kumar Acharjee, University of Texas at Tyler

Prashanta Kumar Acharjee is currently working as a graduate research assistant at the University of Texas
at Tyler. After graduating from Bangladesh University of Engineering and Technology he is perusing
his Masters at UT Tyler. His research interest is broadly in transportation engineering. Currently, he is
working on applying machine learning in transportation engineering.

Dr. Mena Souliman, The University of Texas at Tyler

Dr. Souliman is an Associate Professor in Civil Engineering at the University of Texas at Tyler. He
received his M.S. and Ph.D. from Arizona State University in Civil, Environmental, and Sustainable
Engineering focusing on Pavement Engineering. His fourteen years of experience are concentrated on
pavement materials design, Fatigue Endurance Limit of Asphalt Mixtures, Reclaimed Asphalt Pavement
(RAP) mixtures, aggregate quality, field performance evaluation, maintenance and rehabilitation tech-
niques, pavement management systems, cement treated bases, statistical analyses, modeling, and com-
puter applications in civil engineering.

Dr. Souliman has participated in several state and national projects during his current employment at the
University of Texas at Tyler including ”Documenting the Impact of Aggregate Quality on Hot Mix As-
phalt (HMA) Performance, Texas Department of Transportation” for TxDOT, ”Mechanistic and Economic
Benefits of Fiber-Reinforced Overlay Asphalt Mixtures” for Forta Corporation as well as ”Simplified Ap-
proach for Structural Evaluation of Flexible Pavements at the Network Level” which was funded by the
US Department of Transportation via Tran-SET University Transportation Center.

Dr. Souliman has more than 100 technical publications, conference papers and reports in the field of
pavement and aggregate testing, characterization, and field monitoring. He is the recipient of the lifetime
International Road Federation Fellowship in 2009. In 2017, his research work on pavement engineering-
related projects earned recognition as his college’s recipient of the Crystal Talon Award, sponsored by the
Robert R. Muntz Library, recognizing outstanding scholarship and creativity of faculty from each college
as determined by their dean. He also was awarded with the Crystal Quill award in 2018 by the University
of Texas at Tyler for his research efforts and achievements.

c©American Society for Engineering Education, 2022



1 

 

Proceedings of the 2022 ASEE Gulf-Southwest Annual Conference 

Prairie View A&M University, Prairie View,  TX 

Copyright © 2022, American Society for Engineering Education 

 
 

Session XXXX 

 

Development of Dynamic Modulus Predictive Model Using Artificial Neural 

Network (ANN)  
 

Prashanta Kumar Acharjee, Mena I. Souliman 

Department of Civil and Environmental Engineering 

The University of Texas at Tyler. 

  

Abstract  
 

In Mechanistic-empirical Pavement Design Guide (MEPDG), dynamic modulus |E*| is identified as 

a key property for Hot Mix Asphalt (HMA). Determining |E*| in the laboratory requires several days 

of sophisticated testing procedures and expensive instruments. To bypass the long testing time, 

sophisticated testing procedure, and expense, several multivariate regression analysis-based models 

have been developed to predict the dynamic modulus from simpler materials properties and 

volumetrics. Witczak 1999 and Modified Witczak 2006 are the two most widely used dynamic 

modulus predictive models in the asphalt community. Several other regression-based models have 

been developed earlier such as the Hirsch Model, the Law of Mixtures Parallel Model, and the 

Resilient Modulus-based Model. The highest R2 value among all regression-based models is 0.87. 

Using Artificial Neural Network (ANN) a |E*| prediction model is developed in this study. To train 

the ANN model a dataset with 7400 data points is used, which is the same dataset used in the 

Modified Witczak 2006 model development. The overall R2-value for the ANN model is 0.9 and is 

better than other regression-based models. The weights and biases’ matrixes are reported to 

reproduce the model for future use. This model can replace the existing regression-based model for 

quick prediction of |E*| without performing any sophisticated test. 

 

Introduction  
 

Dynamic modulus is defined as the relation between the maximum stress and maximum strain of a 

viscoelastic material under continuous sinusoidal load. It is one of the most important properties to 

design, analyze and evaluate the performance of Hot Mix Asphalt (HMA). Several predictive 

models have been developed to predict the dynamic modulus from simple material properties and 

volumetric. The previous generation regression-based model performs well enough to be 

incorporated in the design manual. The equations developed through the regression-based model 

are easy to use. But they are underperforming in extreme temperature and extreme dynamic 

modulus values. The temperature also gets more importance in those multivariate regression-based 

models. The new generation machine learning-based models are showing promise and performing 

better in extreme. But they are not generating any equations to predict. To bridge the gap between 

these two methods, in this study an Artificial Neural Network (ANN) model has been developed to 

predict the dynamic modulus. Unlike the other ANN model, the wights and bias matrixes of the 

model are reported. Therefore, the model is reproducible and can be used for different data set. 
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Literature Review 
 

The total length of roads in the United States of America is 2.3 million miles. Approximately 96% of 

those roads have Hot Mix Asphalt (HMA) Surface1. Dynamic Modulus is an important property to 

design, analyze and evaluate the performance of HMA surface. Vander Poel of the Shell Oil 

Company introduced the term “stiffness” in the early 1950s2. As materials used in HMA are not 

purely elastic, the stiffness of HMA depends on loading time and the temperature of the mix. To 

represent the stiffness of HMA various parameters have been used, such as flexural stiffness, creep 

compliance, relaxation modulus, resilient modulus, dynamic modulus, etc.3. The universally used 

stiffness parameter is dynamic (complex) modulus (E*). One of the conclusions from the NCHRP 9-

19 project is that Dynamic Modulus (|E*|) is a good performance indicator for HMA design and was 

recommended for Simple Performance Test (SPT)4. It is also recommended as quality control and 

quality assurance parameter5. It is the key property for HMA in Mechanistic-empirical Pavement 

Design Guide (MEPDG). 

Dynamic Modulus |E*| is defined as the ratio between the amplitude of sinusoidal stress and 

amplitude of sinusoidal strain at the same time and frequency. HMA is a visco-elastic material. It’s a 

stress-strain relationship under continuous sinusoidal loading is defined by the dynamic modulus.  

Determining Dynamic Modulus (|E*|) in the laboratory requires time, sophisticated procedures, and 

an expensive testing machine. Therefore, various predictive model has been developed to predict 

dynamic modulus from simple material properties and volumetric. Witczak 1999 and Modified 

Witczak 2006 are the two most widely used dynamic modulus predictive models in the asphalt 

community. Modified Witczak model was incorporated in MEPDG software along with the original 

1999 Witczak equation6. Several other regression-based models have been developed earlier such as 

the Hirsch Model, the Law of Mixtures Parallel Model, and the Resilient Modulus-based Model. 

Several studies have concluded that regression-based multivariate models show significant scatter at 

low or high dynamic modulus |E*| values and the accuracy falls flat in low and high-temperature 

extremes7,8,9,10,11. Those models also tend to be dominated by the temperature as an input than the 

other input parameters12. Table 1 shows the R2 values for all the regression models. 

Table 1. Performance of Regression Bases Model for Predicting Dynamic Modulus13 

Regression Model R2 

Hirch (arithmetic scale) 0.871 

Revised Hirsch (arithmetic scale) 0.874 

Revised Bari-Witczak (arithmetic scale) 0.875 

Al-Khateeb 1 (arithmetic scale) 0.817 

Al-khateeb 2 (arithmetic scale) 0.869 

NCHRP 1-40D (on logarithmic scale) 0.332 

Simplified global (on logarithmic scale) 0.226 

Bari-Witczak (on logarithmic scale) 0.584 

Revised Bari-Witczak (on logarithmic scale) 0.856 
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 To overcome the shortcomings of the regression-based multivariate predictive model, Artificial 

Neural Network (ANN) based model is also developed14,15. Using the same input variables as used 

in the modified Witczak equation, the ANN models performed better in prediction. ANN models 

showed better prediction accuracy at extreme lows and highs than the regression-based models. 

They tend to have a better balance in giving priority to the temperature as an input than other input 

parameters.  Various other approaches have been developed like using machine learning and 

computational micromechanics16,17,18.  But all the models developed with machine learning worked 

as a black box. Sometimes their weights and biases’ matrixes are not reported. Those models are not 

reproducible. In this study, an ANN-based model is developed, and the weights and biases of the 

model are reported. The main goal is to develop an ANN-based model which performs better than 

the regression-based models. Therefore, the minimum number of hidden layers and neurons are 

employed to build the model. The weights and biases are also reported. Therefore, the model can be 

used on other datasets to predict dynamic modulus. 

Developing Model with Artificial Neural Network 

The dataset used in developing the Witczak-Bari model is also used in this study in the training, 

validation, and testing process of the model. 7400 input data is used to predict the output data. The 

7400-input data was collected from 346 mixes. The input variables were chosen as the same 

variables used in the Modified Witczak equation. The number of Input variables was eight and 

dynamic modulus was the target output in the training process. 7400 unique E* with eight input 

variables were fed into the network. Table 2 is showing all the variables in the training process.  

Table 2. Variables Used in the Model 

Variable Name Notation Unit 

Percentage of aggregates (by weight) retained on ¾ inch sieve  % 

Percentage of aggregates (by weight) retained on 3/8 inch sieve 38 % 

Percentage of aggregates (by weight) retained on #4 sieve 4 % 

Percentage of aggregates (by weight) passing through #200-inch sieve 

sieve 
200 % 

Percentage of air voids (by volume) Va % 

Percentage of effective asphalt content (by volume) Vbeff % 

Dynamic shear modulus of binder |Gb*| psi 

Phase Angle of binder associated with |Gb| (b).    degree 

Dynamic modulus E* psi 

Different interconnected neurons work together to solve complex problems in Artificial Neural 

networks. The greater number of neurons and hidden layers give better results. But an increased 

number of neurons and hidden layers produce an overfitted model which does not perform well 

outside the training database. Therefore, one hidden layer is typically sufficient to solve most non-

linear problems19. At first, the model was trained with one neuron in one hidden layer. The R2 value 

was not sufficient for the model with a single neuron. Then the number of neurons was increased. If 

the R2 value was not sufficient, then the number of neurons was increased again. After repeating this 

process for few times, the desired R2 was achieved with 20 neurons in one hidden layer.  

Out of the 7400 data points, 70% of the data was randomly selected and used as a training data set. 

The model was trained with the 5180 data points. The R2 is 0.91 for the training dataset. The R2 for 
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the validation dataset was 0.89. 15% of the data points, which is 1110 points were used in the model 

validation process. For model validation, the main target was to optimize the Mean Squared Error 

(MSE). When the MSE value reached the minimum value, the training was stopped. Figure 1 shows 

that the least MSE value was reached after 187 iterations. The least MSE value was 2.2x 1011. 

 
Figure 1. Validation of the ANN model in 187 epochs. 

After completing the training and validation process, the model was tested on the remaining 15% 

data points. These 1110 data points were unknown to the model. The testing data was kept away 

from the model before testing. This testing process made the model robust against unknown data. 

The R2 for testing was 0.90. Testing the model against unknown data protects the model from 

overfitting the model with the training dataset. Figure 2 shows that all three R2 values in the training, 

validation and testing process are fairly close. The overall R2 for the model is 0.9. This is better than 

any regression-based prediction model mentioned in Table1. 

 
Figure 2. R2 values in Training, Validation, Testing and Overall    
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The ANN-based model is run by matrixes of weights and biases. The normalized input variables are 

multiplied by the weight matrix Wih and the bias matrix bih is added with the product. After that, the 

product from the hidden layer is multiplied by the weight matrix Who, and bias bho is added with the 

product. In this step, a normalized out is gained from the model. After denormalizing the output, the 

model provides the target output. Figure 3 shows the architecture of the ANN model developed in 

this study. All the matrixes for weights and biases are also reported below. 

 

Figure 3.  Architecture of the ANN-based Dynamic Modulus Prediction Model 

 
        0.29215 2.85901 -0.07638 -1.24597 0.93330 3.33122 -0.08884 -0.26267 

        0.88552 3.74619 -6.54191 -2.04369 -1.19882 -7.72302 1.91874 -1.23025 

        -0.13862 0.78280 0.58535 -0.56057 2.39711 0.00381 0.44160 0.70837 

    Weights 

for 

Input to 

Hidden 

Layer 

  -0.87278 0.75418 1.05796 -1.54662 -0.50222 -1.58830 -0.62947 -0.37123 

     -6.59999 -6.11600 -16.45912 -12.85108 3.35584 5.13716 0.31735 -0.98884 

     -3.68108 0.32216 4.89963 -4.27105 -0.91915 -0.26141 0.58768 0.09217 

     -0.19185 -3.52012 0.11113 1.07106 -0.90254 -3.64307 -0.00770 0.22774 

     -1.31807 -9.47328 -3.66345 0.50221 0.22424 -6.62614 -0.55127 0.97766 

     Wih =   -2.17382 1.19072 7.19416 2.66379 4.36667 -1.84596 1.35009 -0.73111 

        -1.26529 -4.39237 7.08120 -5.04528 4.82078 -4.69730 -0.06433 -0.19913 

        -1.46441 -9.74722 9.28093 -6.63405 -0.73764 -4.63959 0.20348 0.38662 

        0.08794 -0.06233 -0.06126 -0.11862 0.10494 0.24015 0.71473 -1.33418 

        -1.92693 2.43979 -8.60489 -8.26152 -0.63829 0.43640 0.28198 0.01332 

        6.30896 6.44113 16.17857 13.19441 -3.35549 -4.95544 -0.30429 0.97204 

        16.55955 0.14000 -4.35588 2.37729 -2.96943 -4.73150 -11.73132 -0.21176 

        0.16664 -0.45681 5.49950 6.69828 2.22188 0.10980 -0.40303 0.13905 

        -19.41615 18.64156 -14.05268 2.14252 3.79068 1.08215 -0.55314 1.29301 

        -1.63538 14.18238 -2.40314 -0.77948 2.40239 -4.10070 0.79061 -2.16614 

        0.09570 -0.05574 -0.06413 -0.12570 0.11467 0.28183 1.04686 -1.43687 

        -0.09871 0.07992 0.06293 0.13594 -0.10934 -0.27419 -0.29971 1.62902 
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 3.62468
  
  
 -4.94848
  
 -0.16163
  
  
 0.91900
  
 -0.27898
  
  
 -0.22680
  
 0.42097
  
  
 -2.15554
  
 4.84602
  
  
 3.74964
  
 -0.62366
  
  
 0.32162
  
 3.58437
  
  
 0.07940
  
 -0.17146
  
  
 -0.80196
  
 0.11494
  
 -1.28448 
 -2.96723
  
 0.12440
  
  
 -5.81389
  
 -0.18644
  

-0.50427     3.624678       
  -4.94848     -0.16163       
  0.918998     -0.27898       
  
 
Biases for Input 

to Hidden Layer 

  
  
  
  

-0.2268   Weights 

for Hidden 

Layer to 

Output 

Layer 

  
  
  
  

0.42097   Biases for 

Hidden 

Layer to 

Output 

Layer 

  
  
  
  

  
-2.15554   4.846017     
3.749635   -0.62366     
0.321625   3.58437     
0.079402   -0.17146     

             bih = 
 B1 = 

-0.80196    Who = 0.114938    bho= -1.28448 
  -2.96723     0.124402       
  -5.81389     -0.18644       
  1.847841     23.7495       
  -0.0355     -0.22211       
  2.273769     4.895425       
  1.500197     -0.04863       
  0.303827     -0.27493       
  -0.90465     0.156574       
  -9.22379     0.213876       
  1.883526     -8.96053       
  -1.85333     13.29923       

 
The number of rows and columns in the first weight matrix Wih represents the size of the network. 

The number of columns represents the number of input variables used. Here it is 8. The number of 

rows represents the neurons, used in the network. Here, the number of neurons used is 20. The input 

variables are put into the network after normalizing every input between the [-1,1] range. 

Normalizing the input protects the training process from overweighing the variable with a large 

value. After normalization, all variables are in the range of [-1,1]. The input variables are multiplied 

by the first weight matrix Wih and the bias matrix bih is also added. The output from this process 

enters into the hidden layer and every value in the hidden layer is activated with the hyperbolic Tan 

function. From the hidden layer, the inputs are multiplied by the second weight matrix Who, and bias 

bho is also added. After that the value is denormalized and the model gives the outcome. All the 

wights and the model in this study can be reproduced. 

 

Summary and Conclusion 
 The ANN model in this study performed better than the existing regression-based models. The 

weights and biases’ matrixes can be used to reproduce the model for further use. Even an equation 

with hyperbolic Tangent function can be produced from the matrixes. But it will be a lengthy 

equation as the number of equations will represent the number of lines in the equation. Future 

studies will tackle this issue with less number of neurons. One of the limitations of ANN based-

model is that ANN can not extrapolate data. Therefore, it does not perform outside the range of the 

training dataset. Therefore, before applying this model on to any data, the range of the values of the 

variables should be checked first. But 7400 points cover a wide range. With R2 = 0.9, this model can 

be used to predict dynamic modulus without going through laboratory procedures.   
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