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Abstract 

 

This paper provides an introduction to three dimensional image edge detection and its 

relationship to partial derivatives, convolutions and wavelets. We are especially 

addressing the notion of edge detection because it has far reaching applications in all 

areas of research including medical research.   A patient can be diagnosed as having an 

aneurysm by studying an angiogram.  An angiogram is the visual view of the blood 

vessels whereby the edges are highlighted through the implementation of edge detectors.  

This process is completed through convolution, wavelets and matrix techniques. Some 

illustrations included will be vertical, horizontal, Sobel and wavelet edge detectors. 

 

I. Introduction 

 

To help motivate this paper, we provide an introduction to some interesting problems in 

image processing implementing matrix techniques, partial derivatives and convolutions. 

Section (2) provides an introduction to matrix and partial derivatives and how they are 

applied to the pixels to obtain the gray level value.  Section (3) introduces a few specific 

examples such as the vertical, horizontal and Sobel edge detectors.  Section (4) provides 

the reader with a series of illustrations that demonstrate edging techniques in three-

dimensional image processing. 

 

II. Some Notions and Notations 

 

A monitor displaying an image may contain approximately 1024 rows and 512 columns 

of pixels.  Of course the number continues to grow everyday as technology progresses.  

Then each pixel location designated by the coordinates, (x1, y1), contains a gray level 

value indicating the shade of gray within the image at that point.  The values are usually 

on a scale of 0 to 255 whereby 0 corresponds to pure white and 255 correspond to black.  

The value of the gray level at this lattice point, (x1, y1), will be designated by f(x1, y1).   

However before we continue with the edge detection analysis, we first review a few 

matrix and calculus techniques.  We first recall the familiar dot product for two vectors, 

x, y, to be x••••y= i

i

i yx∑
=

2

1

.  From this dot or inner product we define the norm to be 

i

i

i yxx ∑
=

=

2

1

2
. Then we obtain the familiar and very important result to many 

applications that the cosine of the angle between the two vectors, x and y, satisfy the 
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equation that cos(θ)=x•y/( yx ).  We know the maximum value for the cosine occurs 

when the two vectors coincide giving a value, cosine(0)=1.  This is an important 

observation in edge detection and will latter be brought forward.   

We now introduce the partial derivative formulas, 
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The distance between pixel locations will be defined to be 1 so all of the increments in 

the partial derivative formulae will be equal to one.  This then gives, 
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We now denote the function, f(x,y), to be the gray level values between neighboring 

pixels in the horizontal and vertical directions respectively giving us the formulas,  

 f(x1+1,y1) –f(x1,y1) and f(x1,y1+1) –f(x1,y1).  The spatial locations, xi and yi can only take 

on integer values given by their integer locations. 

 

III.  Convolution and Edge Detectors 

 

We first introduce the usual calculus definition for convolution given by the formula, 
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and its discrete version by the formula, 
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We now reduce the discrete convolution to be a 3 by 3 matrix, which will play the role of 

a convolute and select our function, h(n1,n2), to have the matrix values, 
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The arguments (n1,n2) in h(n1,n2) of the first array are easily remembered by noting that 

they are the needed lattice point coordinates referred to as a Cartesian coordinate system.  

This is illustrated in Figure 1.  Clearly the reduced array for h(n1,n2) is part of the 

complete array where h(n1,n2) is part of the complete array and is equal to zero whenever 

1n or 2n >1.  We next use the indexing shown in Figure 1 and convolve the function, 

h(n1,n2) with the function, f(n1,n2), and obtain 

   

  ),(),(),(),( 22112

1

1

1

1

12121

1 2

knknfkkhnnfnnh
k k

−−=∗ ∑ ∑
−= −=

 

 

  =f(n2-1,n2+1)-f(n1+1,n2+1)+ f(n1-1,n2)-f(n1+1,n2+1)+ f(n1-1,n2+1)-f(n1+1,n2-1). 

 

We now investigate this last result only to find that it gives the difference of three 

columns of pixel values in the horizontal direction.  If one checks the literature
6,7

, we find 

that this is the approximation used in the horizontal direction in several leading software 

image-processing packages.  The function, h(n1,n2), is called the kernel of the 

convolution and when we change its values, we obtain different edger’s.  The edge is the 

portion of the image where there is a sudden change in gray levels.  The edger 

implemented selects a particular feature in the image, which is beneficial to the particular 

application.  The kernel for vertical edging is given by 
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A more sophisticated edger is the Sobel edger, which uses the gradient to approximate 

the edges.  Since the gradient includes both horizontal and vertical components, two 

kernels are employed given by the matrices, 
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IV Illustrations using Edge Detectors 
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Figure 2 and 8 illustrates the alphabets O and N respectively in three dimensions.  We 

then employ a vertical edge detector on the alphabets O and N respectively in Figures 3 

and 9.  Again horizontal edge detectors are applied and illustrated on O and N in Figures 

4 and 10 respectively.  The Sobel edge detector is then applied to O and N and illustrated 

in Figures 5 and 11.  We conclude the illustrations with a wavelet constructed using the 

Gaussian together with its application on the letter  N and again illustrated in Figure12.  
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As seen, Figures 2 and 8 show the alphabets O and N respectively.  We realize that edges 

of images contain much of the recognizable content for any image.  A house versus a 

water tank is clearly visible to human eyesight by looking at its geometrical shape.  The 

edges dictate the shape.  Thus if we have a vertical edger the vertical edges will be 

emphasized and a horizontal edger will emphasize horizontal edges.  Mathlab using the 

default window for graphics will show the vertical edges somewhat “choppy” on the 

letter O and also somewhat “obscure” on the letter N.  A horizontal edger also “obscures 

the letter O with better viewing on the letter N.  However the Soble edger does better on 

the letter O and very good on the letter N.  The wavelet transform does very well on the 

letter N.  Thus the particular edger selected will dictate the content of the photo. 

 

We conclude these applications with the realization that the type of image can yield 

results that are clearly visible for human sight.  The Sobel edge detector on the letters O 

and N are clearly visible to our eyesight.  However adjustments not readily apparent to 

human sight such as the wavelet transform on the letter O can have far reaching 

consequences when compared to “normal” vs. “abnormal” physical phenomenon such as 

the aneurysm situation. 
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