Digital Technology Education Collaborative Second Year Progress Report

Dr. Nasser Alaraje, Michigan Technological University

Dr. Alaraje is an Associate Professor and Program Chair of Electrical Engineering Technology in the School of Technology at Michigan Tech. Prior to his faculty appointment, he was employed by Lucent Technologies as a hardware design engineer, from 1997-2002, and by vLogix as chief hardware design engineer, from 2002-2004. In 2009, Alaraje was awarded the Golden Jubilee by the College of Engineering at Assiut University, in Egypt. He has served as an ABET/IEEE-TAC evaluator for electrical engineering technology and computer engineering technology programs. Dr. Alaraje is a 2013-2014 Fulbright scholarship recipient at Qatar University, where he taught courses on Embedded Systems. Additionally, Dr. Alaraje is recipient of an NSF award for a digital logic design curriculum revision in collaboration with College of Lake County in Illinois, and NSF award in collaboration with University of New Mexico, Drake State Technical College and Chandler-Gilbert Community College, the award is focusing on expanding outreach activities to increase the awareness of potential college students about career opportunities in electronics technologies.

Prof. Aleksandr Sergeyev, Michigan Technological University

Aleksandr Sergeyev is currently an Associate Professor in the Electrical Engineering Technology program in the School of Technology at Michigan Technological University. Dr. Aleksandr Sergeyev earned his bachelor degree in Electrical Engineering at Moscow University of Electronics and Automation in 1995. He obtained the Master degree in Physics from Michigan Technological University in 2004 and the PhD degree in Electrical Engineering from Michigan Technological University in 2007. Dr. Aleksandr Sergeyev’s research interests include high energy laser propagation through the turbulent atmosphere, developing advanced control algorithms for wavefront sensing and mitigating effects of the turbulent atmosphere, digital inline holography, digital signal processing, and laser spectroscopy. Dr. Sergeyev is a member of ASEE, IEEE, SPIE and is actively involved in promoting engineering education.

Mr. Craig J. Kief, COSMIAC at UNM

Mr. Craig Kief (PI) is the Deputy Director of COSMIAC and the Program Manager for the ORS Squared Satellite. Kief is a Research Scholar on the faculty at the University of New Mexico. Mr. Kief has more than 32 years of experience in computer and satellite communications, including voice and data networks, testing, troubleshooting, debugging, system administration, embedded software development, software/hardware integration, and network monitoring. Mr. Kief has an extensive background in the design of systems based upon microcontrollers and FPGAs. Kief retired from the Air Force in 1998 following 20 years of military service. His final military assignment was at the Air Force Operational Test and Evaluation Center (AFOTEC) at Kirtland Air Force Base. Kief holds a B.S. and M.S. in Computer Engineering from the University of New Mexico. He has published and taught in the areas of digital and programmable logic, satellite design, and system verification and validation. He is also an IEEE senior member.

Dr. John Reutter III, Drake State Community and Technical College

Dr. John Reutter is Director of Planning and Research for Drake State Community and Technical College with responsibility for guiding the College’s strategic planning process and developing grant projects. Over the past five years, Dr. Reutter has secured more than $20 million in grant funds for the college. Previously, he served as Dean of Instruction for two Alabama community colleges and also taught computer science classes for over 28 years at various colleges and universities in California and Alabama. He is a Senior Fellow of the IEEE Society and the founder of two Silicon Valley software companies. Dr. Reutter began employment at Drake State in 2006 as Dean of Instruction and assisted the President in spearheading the campus efforts to achieve regional accreditation with the Southern Association of Colleges and Schools Commission on Colleges. He was previously involved in SACSCOC reaffirmation efforts at three other Alabama colleges before joining the Drake State family. He is the author of Data...

Mr. Bassam H Matar, Chandler Gilbert Community College

Bassam Matar started his career at Glendale Community College (GCC) teaching engineering, electronics and semiconductor classes. Through his eleven years teaching at GCC, Bassam developed a variety of courses in these fields. He served on several committees, such as budget, computer technology, advanced technology partnership and industry advisory. Also, he served as assistant chair for the last five years before transferring to Gilbert-Chandler Community College (GCC). He implemented GCCC’s engineering program in Fall 2001 and is responsible for its success. He has served as a PI or Co-PI on seven NSF-funded grants. Mr. Matar is also a lecturer faculty for the Electrical Engineering Department at Arizona State University. Bassam Matar, has taught for more than 25 years. Mr. Matar received the following awards: (Summer 1999) Motorola Educator of the Year award; (Spring 2000) National Institute for Staff and Organizational Development award; (Fall 2009) Gilbert Community Excellence Awards; (Spring 2010) Electronic Engineering Times (EE Times) – Educator of the Year Award. Mr. Matar is a member of Engineering Articulation Task Force, and the American Association of Engineering Education.
Digital Technology Education Collaborative Second Year Progress Report

Abstract

The electronics world is undergoing a transformation in the underlying technologies used to create new products for the world’s consumers. The movement to reconfigurable digital systems using Field Programmable Gate Arrays (FPGAs) and microcontrollers is sweeping the electronics world in the rush to create smaller, faster and more flexible consumer and industrial devices. J. F. Drake State Technical College has put together a team of educational partners spanning the country with the background and skills necessary to create a vibrant virtual center. Team members include colleges and universities with a history of reaching out to minority and under-served student populations. Partners on this project have years of successful National Science Foundation project implementations educating and training hundreds of instructors and introducing thousands of students to advanced technologies. The goal of this project is to offer an unprecedented opportunity to bring America’s technicians directly to this cutting edge of reconfigurable electronics technology. This project will substantially update digital logic courses by providing the tools and curricular materials needed to replace the now outdated materials most commonly used. The updated curriculum will greatly enhance competitiveness for community college graduates seeking to enter the job market or undergraduate engineering programs. Secondly, the project will provide colleges with educational equipment up-to-date with current technological solutions. Most importantly, the project will bring new excitement to education by introducing reconfigurable electronics with a new world of possibilities for student projects, such as robot competitions, video game design, embedded systems and more. Finally, the project will develop industry, K-12 and university partnerships to facilitate pathways to careers in the exciting field of reconfigurable electronics for first-generation, minority and other under-served populations, including veterans. In summary, this project will provide the training and educational resources and promote best practices for community college, university, and high school instructors to enable them to teach new hardware technologies to a broad range of students, including those who have not previously had access to this level of training and career choice.

The paper will address second year project activities including the Faculty Professional Development workshop on VHDL and FPGA design, assessment results and lessons learned, the summer outreach activity happened at partner institutions, and finally, the undergraduate research experience.

I. Introduction

Programmable Logic Devices in general and FPGA-based re-programmable logic design became more attractive as a design media during the last decade, and as a result, industrial use of FPGA in digital logic design is increasing rapidly. Considering the following technology trend in industry, the need for highly qualified logic designers with FPGA expertise is increasing rapidly. According to the United States Department of Labor, the job outlook is on the rise and will continue to expand for at least the short- to medium-term future [1]. To respond to the industry needs for FPGA design skills, universities are updating their curriculum with courses in
hardware description languages and programmable logic design. Although most traditional electrical and computer engineering programs have updated their curriculum to include topics in hardware description language and programmable logic design (FPGA/CPLD), only 19.5% of 4-year and 16.5% of 2-year electrical and computer engineering technology programs at US academic institutions currently have a curriculum component in hardware description language and programmable logic design [2]. To effectively meet the next generation’s workforce needs, the electrical and computer engineering technology curriculum must be current, relevant, and teach technology that is widely used in industry. Responding to this need, J. F. Drake State Technical College and its partner institutions (including Michigan Technological University, University of New Mexico, and Chandler-Gilbert Community College) proposed to utilize highly-qualified academic and industry-experienced resources to develop and implement online and technology-enabled courses and learning projects that will be scaled up to reach significant numbers of diverse instructors and students over a large geographic area. These collaborative efforts will satisfy this critical need for trained instructors and students in the technology of reconfigurable solutions. Additionally, the project will expand and improve the delivery of education and training material, and provide students and workshop participants with the critical skills sought by diverse electronics industries across the United States. Strategic partnerships in key geographic areas will help underrepresented and unemployed populations advance their skills and training to become eligible for high-wage, high-demand positions in reconfigurable electronics systems. The participating universities and community colleges serve large minority populations (Hispanic, Native Americans, and African-American) in the Southwest and Southeast regions of the United States.

To expand their capacities and create a sustainable educational system for developing electronics technicians, partner institutions will be equipped with reconfigurable electronics laboratories dedicated to delivering curriculum, professional development, and outreach activities that will draw high school students into programs to expand the number and diversity of highly-skilled workers for the targeted industries and accelerate the introduction of qualified workers into the pool of skilled technicians needed by electronics firms. This pool of highly-skilled technicians will be built and sustained by strengthening and expanding community college and university partnerships with K-12 systems, affiliate community colleges, and established industry partners. The partnering universities will assist the community college partners in implementing this already successful workforce development model into their local geographic areas, leveraging the impact of ATE funds, expanding the geographic reach of the proposed program, and developing a nationwide model of successful partnership.

II. Faculty Professional Development Workshop

Hardware Description Languages (HDL), microcontrollers and FPGAs have revolutionized the way digital logic design should be taught and implemented. Traditional ways of teaching logic design using discrete components (e.g., TTL and CMOS) have been replaced by Programmable Logic Devices. Today, a more standard development process is widely used in industry, incorporating HDL as a design entry to describe the digital systems. In the past 20 years electronic devices have gone from thousands of logical gates to millions of logic gates. Similarly, solutions that used to require boards full of electronics are now available through single-chip solutions. The two largest FPGA manufacturers are the Xilinx and the Altera Corporations. The
Project team has subject matter experts on all forms of FPGA technology, including system-on-a-chip and embedded processor capability.

It is clear that the old way of teaching digital electronics, with 7400 series logic gate chips, needs to adapt to the influx of new technology. This cost effective path of reconfigurable electronic development is not going away. It proves to be the most efficient and adaptable components within every embedded system. For these reasons, industry will continue to employ these tools for years to come. Community college and 4-year technical program graduates must be prepared to work with these devices throughout their career. It is imperative that they receive the proper training on these devices to draw employment opportunities back to this country. By providing a state-of-the-art learning environment, technicians and technologists can become more competitive within the workplace. The project will help community colleges and 2- and 4-year university-based technical programs to update curricula to meet the expectations of industry by supplying qualified technicians and technologists who have extensive hands-on experience with current design tools. By developing a curriculum that includes hands-on re-configurable electronics laboratories, we will be able to provide students in these programs state-of-the-art training tools that match the expectations of industry.

FPGAs

FPGAs were created approximately 15 years ago by the Xilinx Corporation [3]. Xilinx is still the largest manufacturer of this technology in the world [10]. FPGAs are not only programmed through a traditional schematic fashion, they are also programmed using HDL. HDL is used to describe the behavior of the circuits that are being created. Although HDLs describe nearly all advanced circuits, certain circuits can be automatically synthesized, meaning that HDL code can be rendered from a computer directly into a working design. This is particularly true of “reconfigurable logic,” which includes structured Application Specific Integrated Circuits (ASICs) and the highly versatile FPGA. Many types of FPGAs are reprogrammable, so it is possible for a talented designer to change a digital circuit with instantaneous results. Government and industry have great interest in the many uses of FPGAs; applications range from telecommunications to
automotive. Additionally, FPGAs are an ideal teaching tool; they are well-suited as an introduction to the basic digital logic design skills required from today’s technician. Inexpensive FPGAs can train students in these exciting digital design concepts while allowing them to rapidly move toward advanced design subjects. All the while, students can be exposed to the latest and most useful techniques that they will encounter in industry upon graduation. FPGAs are rapidly assuming the role of the new “breadboard.” They are inexpensive enough ($59 design board; free software) that students can have their own hardware at home.

Figure 1 shows the basic block diagram of an FPGA [11]. The FPGA has two main components. The input and output (I/O) blocks provide formatting and interconnection to the outside world. They handle a wide range of different voltage and data formats. The logic blocks are composed of three basic elements: a look-up table, a D flip-flop and the carry logic. There are hundreds of thousands of these on the even most inexpensive FPGA. Finally, the FPGA contains programmable interconnects that dynamically connect the I/O blocks to the programmable logic blocks. There are many ways to design for FPGAs. Figure 2 shows the standard design flow for working with these devices. The hardware and design flow for FPGAs will be explored during both the beginner and advanced workshops offered through this project.

Although FPGAs are only one type of reconfigurable logic, their importance can’t be overstated. According to the EE Times [4], “more than 90% of all ASICs today are either partially or completely prototyped as FPGAs before proceeding to creation of an ASIC.” FPGAs allow companies (large and small) to respond directly to the market with instant gratification in complex advanced circuitry with very low barriers to entry (the design tools introduced in the courses are free). Estimated sales of FPGAs reached $1.9B in 2005, with predictions showing growth of 20% through 2015 [5]. The demand in the FPGA field alone has created an enormous unsatisfied demand for engineers and technicians skilled in this modern art. Median salaries for FPGA designers with three years of experience are approximately $90,000 and technicians with these most modern skills are very rare and command starting salaries of $50,000 [6].
Recent research corroborates that the VHDL and FPGA design skills are industry-relevant. In one study, Furtner and Widmer conducted an employer survey to rank currently taught logic design concepts at Purdue University. The survey included questions about many topics that are heavily explained in logic design courses such as Boolean algebra, design simplifications using K-Maps or Quine-McCluskey, and design implementation using discrete gates. Each was given a low priority from the employer perspective. In contrast, topics covering design with hardware description language (such as VHDL or Verilog) received high-priority rankings [2].

Another very popular form of configurable electronics systems is the microcontroller. Microcontrollers are the ‘little brother’ to an FPGA. These low-power systems provide a cost-effective, simpler alternative to the thousand-pin high performance processing capability of FPGAs—this less-expensive technology can be used to control smaller systems. They are often the device of choice when teaching controls courses as they are easy to understand and less complicated to work with than traditional microprocessors.

Microcontrollers

Microcontrollers are rapidly becoming one of the most exciting devices in history. The average homeowner of the future will most likely have every aspect of their home designed around them. While an FPGA can serve as a control system, every other device in the home – from lights, home electronics and appliances – will be interfaced through microcontrollers. With these tools, a homeowner will be able to log into their “home” and control every electronic component from the convenience of their handheld device. This same analogy can be applied to cars, businesses and limitless other possibilities through the use of microcontrollers. One microcontroller can manage hundreds of sensors through a single I²C bus. A microcontroller is a small computer on a single integrated circuit, containing a processor core, memory, and programmable input/output peripherals, as shown in Figure 3. The microcontroller that the team proposes using for the courses is the TI ARM [7], which is based on an ARM processor. The ARM processor is an industry standard. Isuppli, a well-known market research firm, has confirmed that sales of ARM core processors are currently at 5 billion units per year and sales are predicted to increase as the demand for powerful, low-power electronics also increases [8, 9]. A technician’s exposure to and training in this new technology is critical in order to remain competitive in the ever-changing marketplace.

The benefits that microcontrollers have over FPGAs are their small size, low power consumption and analog capability. Figure 4 shows some of these capabilities. Microcontrollers can be mounted into everything from light switches to microwave ovens. Large, complex systems often have an FPGA as the main control system (a hub) and microcontrollers to control individual components (spokes). It isn’t necessary for technicians to be experts in all aspects of these two technologies; however, it is crucial for them to have at least a working knowledge of these new systems.

Course Format

All workshops were two days in duration and were taught on Friday and Saturday. This has proven over the years, to be the right amount of time for maximum instructor training without removing instructors from the classroom longer than necessary.
During Project Year 2, the project team presented three ARM Microcontroller Workshops. These workshops were held at J.F. Drake State Technical College in Huntsville, AL, Chandler-Gilbert Community College in Chandler, AZ, and Columbia Gorge Community College in Hood River, OR. Thirty-two educators attended these workshops. Approximately half of them were currently teaching microcontroller technology, albeit not an ARM processor. Over half of the faculty indicated that they plan to integrate workshop material and/or lab experiments in the courses that they teach.

Assessment is a vital part of any curriculum reform project and helps provide useful information for workshop enhancements and determining if the workshop has met its objectives. An evaluation plan has been implemented for the project that uses a value-creation evaluation framework to determine the merit or worth of the project. To date, evaluation activities have measured the “Immediate Value” and “Potential Value” of the project sponsored activities. Evaluation activities are now focusing on measuring the “Applied Value” by tracking students impacted by outreach activities and surveying educators who participated in the microcontroller workshops. The “Realized Value” produced by the project will focus on the number of students from outreach activities that enter two-year technical programs and the number of graduates from two-year technical programs who have a working knowledge of microcontroller technology.

Workshop attendees gain “immediate value” by participating in workshop activities. This immediate value is gained through the information presented and the activities, e.g. presentations and laboratory exercises. Immediate value is assessed through pre-workshop and post-workshop surveys. The post-workshop surveys will also point to “potential value,” i.e. the intent to integrate workshop material into the classes that they teach, or in other professional activities, if they don’t teach. For immediate value, 29 faculty attended (16 community college instructors, 13 four-year engineering technology professors). 16 out of 29 (55%) faculty currently teach microcontrollers in their classes. On the other hand, for potential values, 24 out of 29 (83%) faculty plan to incorporate workshop material into the classes that they teach, either during the 2013-14 academic year or the 2014-15 academic year.

“Applied value” will be measured through biannual follow-up surveys of all workshop participants. These surveys will use a two-step process: (1) A “Yes/No” survey to ask them if they used material from the workshop; and (2) If they responded, “Yes”, then they will be asked for class information and student demographics.

“Realized value” is the number of potential students who actually enroll in two-year technical programs and the number of graduates from two-year technical programs who enter the technician workforce. Enrollment data and graduate information will be obtained via surveys sent to partner sites and workshop participants.

III. Outreach
The project objective is to increase enrollment in electrical engineering technology programs to create growth in the number of electronics technicians entering the workforce. Partner institutions are addressing its role toward this goal by developing and implementing outreach programs that will not only stimulate greater interest in secondary students seeking electronics
technician careers but also in better preparing secondary students for successful entry into and retention and completion rates in electrical engineering programs at the postsecondary level. An outreach model has been developed that it expects to result in growth of enrollment in electrical engineering technology programs. The model has three parts: (1) university articulation, (2) high school student outreach, and (3) high school curriculum and teaching enhancement.

Summer Bridge in STEM Subjects for High School Students
In 2014, over 100 local high school juniors and seniors participated in this 64-hour program that integrates mathematics, physics, computer science, and biology into a summer experience in the fundamentals of STEM math and science. Students are organized into teams to do projects based on the principles learned during highly interactive classroom sessions. Students perform experiments, document the results of the experiments and perform presentations of their results using Microsoft Word, Excel, and PowerPoint. Students receive college credit for the Alabama Community College course in “Microcomputer Applications” which is transferable as a general education course to any college or university. The program also includes a day-tour of the US Space and Rocket Center, where the students are exposed to a myriad of STEM-related, space and rocket experiments, including hands on exposure to the effects of gravity, velocity, acceleration, and energy in a variety of forms. The program accomplished its goal of reaching and enthusing a significant number of minority and female students.

STEM Camp for Adult Learners
In 2014, approximately 30 adult learners (recent high school graduates as well as a broad age-spectrum of older adults) participate in a 64-hour program very similar to the High School Summer Bridge. The main difference is that the teaching styles employed are more applicable to the adult learner. These participants, likewise, receive college credit for the Microcomputer Applications course. The adult learners are encouraged to continue their studies in postsecondary STEM programs upon completion of their summer experience.

Summer Technology Institute (STI)
J. F. Drake State Technical College initiated this activity in 2014 with a Summer Technology Institute (STI) for secondary school math, science, and technology teachers and counselors. Twenty-four teachers and counselors participated in the STI this summer. The STI was designed to be a two-week immersion in the College’s technical programs. The teachers and counselors participated in two days of electrical technology classroom and laboratory experiences. They also toured three local industries who hire electronics technicians.

The Institute immerses the educators in the STEM discipline educational activities of the college, including visits to industries that hire STEM graduates, panel presentations by local and state economic and workforce development agencies and other governmental agencies, panel presentations by faculty, students, graduates, and industry professionals, classroom lecture and interaction activities and lab experiments performed by the Institute participants under the guidance of college faculty and students. The participants are required to develop a portfolio of ideas and lesson plans that can be implemented in their secondary school classes and counseling sessions during the following academic year. Each participant provides a brief impact statement.
at the end of the program that documents the personal impact and educational growth experienced during the two weeks of the Institute. In addition, each participant makes a 3-minute summary impact statement that is video-recorded for a permanent record maintained by the Institute.

The two day segment of Summer Technology Institute described above was conducted for the express purpose of exposing the secondary school instructors to digital electronics curriculum, careers, and laboratory experiments. The participants actually performed some “hands on” activities to enable them to better understand the mathematics and physics required in order for students to perform the tasks expected of them. The following two quotes from the post-institute survey are indicative of the immediate value gained by the attendees:

“I came to this program thinking it was just another ‘summer teacher workshop.’ I had been to another technology-for-teachers workshop and believed I knew what to expect. I quickly changed my thinking! This has been an eye-opening and paradigm changing Institute, and I am truly amazed at what I learned.”

“The Summer Technology Institute has dramatically impacted my perception of post-secondary education and the role Drake State plays in preparing Huntsville area residents to be productive citizens, producing skillfully-trained employees, and impacting lifelong learners in a very positive manner.”

Enrollment Services
A new enrollment services management function has been developed utilizing software and successful practices of colleges and universities with similar population demographics, where persistence, retention, and completion issues of first-generation and minority students prevent these students from completion their educational plans. This new function incorporates the Starfish student retention tracking software to expedite the identification of needs for intervention, streamline the communication among faculty members, counselors, academic advisors, and counselors, and provide quantitative and longitudinal data for analysis and summative evaluation of retention initiatives. The Enrollment Services function will integrate outreach, advising, counseling, and student coaching into a seamless service for at-risk students to help them deal effectively with academic and other barriers and thus improve their chances to complete their educational plans.

IV. Conclusion
Digital systems sit at the heart of the technologies that most enrapture the young. The objectives of this project is to substantially update digital logic courses by providing the tools and curricular materials needed to replace the outdated materials most commonly used. The updated curriculum will greatly enhance competitiveness for community college graduates seeking to enter the job market or undergraduate engineering programs. The objectives of this paper were to present the second year project activities including faculty professional development and outreach activities at partner institutions. This project in its following years will provide the training and educational resources and promote best practices for community college, university, and high school instructors to enable them to teach new hardware technologies to a broad range of students, including those who have not previously had access to this level of training and career choice.
Bibliography

Acknowledgments

The authors gratefully acknowledge the support for this project under the National Science Foundation – Advanced Technological Education Award No. DUE-1205169.