
AC 2009-10: DISTANCE LEARNING AND COGNITIVE LOAD THEORY TO
IMPROVE TRADITIONAL AND NON-TRADITIONAL STUDENT LEARNING OF
COMPUTER PROGRAMMING FOR MECHANICAL ENGINEERS:
QUANTITATIVE ASSESSMENT

Thomas Impelluso, San Diego State University
Dr. Impelluso received his BA in Liberal Arts from Columbia University. This was followed by
two MS degrees in Civil Engineering and Biomechanics, also from Columbia. He received his
doctorate in Computational Mechanics from the University of California, San Diego. Following
this, he worked for three years in the software industry, writing code for seismic data acquisition,
visualization, and analysis. He then commenced post-doctoral studies at UCSD, wherein he
secured grants in physics-based virtual reality. He is now a tenured associate professor at San
Diego State University, revisiting and researching human bone remodeling algorithms and muscle
models using advanced tools of the cyberinfrastructure. He has created a curriculum in which
students learn mechanics not by using commercial simulation software, but by creating their own.
His interests include opera, sociology, and philosophy. He is currently enjoying teaching his two
young children how to ride bicycles.

© American Society for Engineering Education, 2009

P
age 14.495.1

Distance Learning and Cognitive Load Theory

to Improve Traditional and Non-Traditional Student Learning

of Computer Programming

for Mechanical Engineers: Quantitative Assessment

ABSTRACT

This paper reports on the re-design of a computer programming class for students of mechanical
engineering. The content was re-designed using Cognitive Load Theory; the delivery was re-
designed using on-line technologies. Student learning was objectively assessed; it improved and
the drop-out rate reduced. A previous paper reported on greatly improved student attitudes and
instructor reviews. This paper reports on objective data: comparing student performance on
identical final exams. Note is made of improved learning by non-traditional engineering
students. This paper also reports on two additional teaching strategies that were deployed to
improve learning. Finally, this work points to the next step in this evolving redesign.

Introduction

 Cognitive Load Theory (CLT) provides guidelines to present information in a manner
that encourages learning and optimizes intellectual performance [1]. As an example, consider
the obstacles in learning new material in a non-native language. Clearly, there is an overload:
learners must master both the new material and the language itself. Interestingly, this is resonant
with the challenge of learning to program a computer which faces those students not in the
computer science major. Such learners must master both extraneous issues such as the operating
system and the compiler and then the intrinsic issues such as the syntax of the language and
application areas. CLT can mitigate challenges in such cases when learning loads are diverse
and high.

 According to CLT, information can be stored in long term memory after first being
properly integrated, by working memory, into a mental structure that represents the schema of
the material. However, the faculty of working memory has limits and this, unfortunately, can
hinder learning, especially when many extraneous and ancillary facts compete to challenge the
cognitive learning loads (which, in the case of programming, encompasses text editing, operating
systems and compilers). CLT posits that there are three basic types of cognitive loads placed on
a learner:

≠ “Intrinsic cognitive load” was first described in 1991 [2] as the essential material to be
learned. Accordingly, all instruction has an inherent difficulty associated with it and
this intrinsic material may not be altered by an instructor. In learning a foreign
language, this includes the vocabulary and syntax.

P
age 14.495.2

≠ “Extraneous cognitive load” is generated by the manner in which information is
presented to learners [3] and, in the case of a programming language (and, specifically
here: for non-computer scientists), the ancillary information regards text editors,
compilers, and operating systems. (In the case of a spoken language, information is
presented using technologies that must be mastered, such as laboratories with recorders.)

≠ “Germane cognitive load” was first described by Sweller, van Merrienboer, and Paas in
1998 [4]. It is that load devoted to the processing, construction, and automation of
schemata necessary to integrate knowledge into consciousness. This includes
motivations to learn and how the knowledge is conveyed in the rest of the curriculum
such as reading novels, or programming mathematical algorithms.

These three loads are additive in the learning process and research suggests [4] that when

courses are redesigned with due respect paid to the interaction of cognitive loads, learning is
improved. For example, while intrinsic load is thought to be immutable, instructional designers
can exercise the option to manipulate extraneous and germane loads. With complex material, it
is best to strive to minimize the extraneous cognitive load and maximize the germane load.

Table 1

The Three Types of Cognitive Loads Placed on Learners of Computer Programming
Load Examples

Intrinsic Syntax: data types, loops, logical tests, arrays, functions
Extraneous Ancillary tools including: text editor, operating system and the compiler
Germane Numerical algorithms in computational mechanics

Table 1 presents this author’s view of the various learning loads experienced in computer

programming. The intrinsic learning load is generally high in computer programming – it
involves logic and syntax. Thus, if one also employs methods that add an extraneous load (such
as complex compiler interfaces), it is very likely that there will be little capacity left for germane
load that might be used to motivate students of mechanical engineering to learn programming;
and the ensuing overload would then hinder their learning.

 Furthermore, other research has shown that complete, thorough, and fully commented
programming examples provide greater motivation for novices than simply working out
problems from scratch [5][6]. Although this may seem counterintuitive, tests have demonstrated
that studying complete examples facilitates learning more effectively than actually solving the
equivalent problems [7]. Additionally, in many cases, a variation of worked examples, balanced
with assignments, has been used and studied [8]. Students can be urged to complete the solution,
which is only possible with the careful study of the partial example provided in the completion
task. As with providing completely worked examples, this serves to decrease extraneous
cognitive load [9].

 In this course redesign, distance technology was used to minimize extraneous load.
Scaffolding was used to enhance the germane load. Scaffolding is an instructional method
wherein layered material is presented to the student and then removed later as students develop
their own learning strategies. Scaffolding was an essential ingredient in this CLT-based
redesign, and this approach is supported by existing research that has been successfully applied
to the domain of computer programming [10].

P
age 14.495.3

2. Course prior to redesign

2.1 Course content

 The course under discussion is SDSU: ME203—Programming. In this class, the C
programming language is taught in a UNIX environment. The course presents a procedure

oriented language (as opposed to object oriented language such as Java or C++), because
mechanical engineers are more concerned with the process of applied mathematical algorithms
(solids, fluids, thermal studies) than with objects to be manipulated (computer graphics,
bioinformatics). Of the procedure oriented languages, C was selected because it is the language
in which most operating systems are written, as are network, math and graphics libraries.

 Thus, the focus of the class was on the syntax of the C language. However, advanced
syntax techniques such as “data structures” were also taught. Secondary attention was paid to
the Gauss Reduction method and various algorithms to multiply matrices: the exclusive focus
was syntax. Mechanical engineering coding examples were not integrated into the course; they
were presented without instructional design forethought.

2.2 Course delivery

 Prior to Fall 2006, the class met physically and the exclusive method of content delivery
was through face-to-face lecture. Instruction was provided in a workstation laboratory. This
laboratory was a dedicated computational resource cluster of 30 UltraSPARC models 170 and
170E workstations using the Sun Grid Engine software from Sun Microsystems. Each station
in the cluster had 128MB of physical memory, and contained one 167MHz US-I CPU. The
workstations were interconnected using high-speed network infrastructure from Myricom.

The instructor taught at one workstation and displayed his monitor on an overhead
projector. Students were able to watch the instructor discuss the code line-by-line, compile it,
and run it. Then, students would work on their own code in separate lab sessions. This model of
instruction had weaknesses. First, the size of the class was limited to the number of
workstations. Furthermore, the workstations had to be upgraded every few years at considerable
expense. Third, the students often expressed frustration as to why they were learning the
material – the course was not taught specifically for mechanical engineers. Student reviews
consistently mentioned that there was no reason for mechanical engineers to learn programming.
Thus, course redesign was initiated.

3. Course after redesign

3.1 Course content

 Two levels of course material were scaffolded by themselves and with each other: (1) the
syntax of the language, and (2) the applied mathematical algorithms (vector, matrix
manipulation, Gauss Reduction and Newton-Raphson methods). The goal was to avoid previous
student criticisms of seeing no purpose to learning programming. The scaffolding more tightly
connected the syntax to the algorithm and gave motivation for mechanical engineering students.

P
age 14.495.4

3.1.1 Vertical Scaffolding

 The left column of Table 2 provides the syntax structures that were discussed in the
redesigned class. Complete and commented code syntax examples were scaffolded on the
skeleton of preceding ones: loops were discussed in the context of logical structures, and arrays
were discussed in the context of loops. As the students progressed through the material, their
understanding of vector manipulation, became essential to subsequent material. The right
column indicates the mathematical algorithms that were discussed in class: Complete and
commented algorithms were scaffolded on previous ones. Thus, Newton-Raphson relied on the
Gauss Reduction code; Gauss-Reduction relied on matrix manipulation, and matrix manipulation
relied on vectors. The same code “grew” and “evolved” in each example and with deliberation
and consistency.

Table 2

The Scaffolding of Algorithm and Syntax After Redesign of the Course
Syntax Algorithm

Data types and logic Temperature conversion

Logic & loop formality Bisection method

Logic & loop formality Newton’s method

Logic & loop formality Numerical integration

Input/Output Repeat of all algorithms

Arrays Matrix-vector manipulation

Arrays, files Gauss reduction

Arrays, files, functions Gauss reduction with functions

Arrays, files, functions, memory Newton Raphson method

3.1.2 Horizontal Scaffolding

 The driving focus of the content in this class was the algorithm rather than the syntax.
Thus, this inverts the way programming has traditionally been taught, in which syntax rules are
presented and are the focus—as often happens when programming classes are farmed out to
computer science departments in which either the theory of coding, or operating systems, is more
the focus. This in no way is intended to disparage those departments; rather, it is to indicate that
such approaches to programming may not be suitable for mechanical engineers. Furthermore,
there were no coding examples of sorting, alphabetizing, or interest rate problems that plague
introductory computer programming courses for mechanical engineers.

 Table 2 presents the algorithms in the first column, followed by the programming syntax
in the second. Vertically, the table demonstrates the order in which both topics were addressed.
It is important to note that numerical algorithmic convergence and stability issues were ignored,
in lieu of the most simple algorithm implementation. This table also demonstrates the horizontal
scaffolding that occurred in the class. By connecting algorithm to construct, the redesign
invigorated the germane load of the student learners.

P
age 14.495.5

 Initially, the instructional goal was to challenge the students to read codes as if they were
a new language. It was not expected that the students master the code’s nuances and reproduce
them at this stage. Rather, the goal was to immerse the students in a new language and expect
them to follow the general idea of how the language implements the logic of a games and
algorithms. In this way, a syntax construct was linked to an algorithm construct. As the student
mastered each level, it was subsumed into the subsequent ones.

 After that initial introduction, the course progressed into a series of code examples
involving matrix manipulations. Next, it moved on to the two core concepts of the course. In
fact, students were often reminded that these two algorithms were the core algorithms in
mechanics. The Gauss Reduction is one algorithm used to solve a system of linear equations,
while Newton-Raphson is implemented for a system of non-linear equations; both are critical
components in mechanics analysis. However, there is serendipitously something more profound
which was exploited here: The Newton-Raphson method builds upon the Gauss Reduction
method. This creates an overarching structure to the class as it drives toward the study of very
simple non-linear systems: everything was built upon the previous codes.

3.1.3 Temporal Scaffolding and Motivation

There was, however, a third type of scaffolding. Students of mechanical engineering

traditionally learned programming to implement the algorithms (Gauss Reduction, Newton-
Raphson) that are critical to their sub-disciplines (Finite Element Methods, Multi-Body
Dynamics Methods, Computational Fluid Mechanics). There are a wealth of sites on the internet
where one can view mpgs of these algorithms functioning. Thus, each class session in this
redesigned course began by viewing one of these films. In this way, students were introduced to
how programming is critical to the discipline of mechanical engineering.

.
The author refers to this as “temporal scaffolding” and it was used to introduce has

motivational pieces were used in the course: during the roll-out of the course, students
experience professional programs that implemented each algorithm and syntax they encountered.
In this process, each day of the class is scaffolded back to the first day, and forward to the last.
In this way, the class takes on an integral architecture in which students realize that every aspect
of programming and every algorithm they encounter is not only related to each other, but to what
precedes it and what follows it; and also to their discipline.

3.2 Course Delivery

With regard to delivery, two modes were used in equal parts: (1) face-to-face, and (2)
interactive, online desktop sharing. Half the classes were face-to-face, and this is when and
where the algorithm and syntax were taught. Extensive PowerPoint slides were developed and
they were tied to each item in Table 2. Face-to-face lectures focused on the interplay of intrinsic
and germane learning loads.

P
age 14.495.6

Figure 1. Student-instructor connections for online class sessions.

 Horizon Wimba was the method used to conduct on-line, synchronous instruction.
However, this was not a passive use in which students simply observed lectures over the internet.
Application sharing technology was used—the instructor took control of student laptops as if
working with the student, side-by-side, while also demonstrating the effort to the rest of the
class. The schematic for an online session is indicated Figure 1. Students were able to work on
their assignments from home (during or after class lab-time), regardless of their operating
system, by first establishing a network connection through a secure shell (SSH) to the server on
campus using a monitor prompt. Once connected to the server, students are able to write,
compile, and debug their codes.

The instructor also maintained an SSH connection – again, a simple terminal window
which enabled remote logins – to the same server and exploited the application sharing interface
of the instructional des. The instructor shared his desktop (which contained an SSH connection
to the server) with the class and demonstrated the process of writing, compiling, debugging, and
running example codes. Occasionally, whether during a class session or during on-line office
hours, a particular student would request assistance with an assignment (indicated by the laptop
with the “?” mark and his SSH connection by the largest black monitor window external to his
laptop). At those times, the instructor activated the Wimba application sharing interface and
asked the student to share his or her desktop with him and the rest of the class. Then, the
instructor addressed the student’s questions, while also sharing the information with all of the
students. And, of course, the session was recorded and archived for all to play at their leisure.

 All the students in the class used the same operating system on which to compile and run
their code examples—this added a layer of homogeneity to the instruction and this was
reassuring to the students. The students used an SSH tool to connect to the common server on
which they all studied and learned. This statement warrants focused reiteration. All the writing
and compiling occurred in a common workstation environment, unencumbered by the nuances of
diverse compilers. This consistency—this common computational environment—reduced the
extraneous load of learning operating systems, compilers, and text editors; students were able to
focus attention on the syntax of the language and the mathematical algorithms.

Server: on campus

Instructor: at home

Students: at home

?

P
age 14.495.7

4. Student Learning Outcomes: Objective Student Performance Data

This course redesign was subjected to two levels of assessment. Student attitudinal
assessment was conducted first. Students were extremely receptive to the redesign: both content
and delivery. Surveys indicated that this excited the students and motivated them to learn.
However, this data has been reported elsewhere [11]. Furthermore, as a result of this redesign, it
had also been reported that the class size was increased—there was no longer a need for a
physical workstation laboratory—the computer laboratory became virtual. Thus, the enrollment
was able to triple and this reduced instruction cost. This brings us now to objective assessment.

 Successful course redesign should, in principle, result in higher instructor reviews by
students and improved grades. The risk, of course, is that instructors could be accused of grade
inflation to secure improved student attitudes. For example, the designer/instructor of this class
knew, from the outset, that student learning and student attitudes were improving and that if he
gave a final exam of consistent caliber to that given before the redesign, the grades would
improve. So, to avoid the risk of the accusation that the improved attitudes resulted from grade
inflation, the instructor kept making the final exam increasingly difficult during the four
semesters of this redesign. It was for this period that student evaluations of the instructor were
assessed—so clearly, the reviews were not based on easy grading. This has also been reported
elsewhere [11].

Once student anecdotal evidence had been gathered, and the course redesign had
undergone two iterations, the instructor gave the same final exam in Fall 2008 that he had given
in Fall 2006 (before the redesign)—realizing that this might lead to grade inflation, but taking the
risk. Table 2 presents the final exam grades for Fall 2006 (column 2) and Fall 2008 (column 3).
Row 1 presents the average final exam grade for all students who registered for the class. Row 2
removes from the average those students who scored a perfect 0.0 on the final (i.e., they did not
take the exam, or dropped the class). Such data is repeated in row 3 and 4 for Hispanic students:
row 3 for all Hispanic students, and row 4 for all Hispanic students who also received a perfect
0.0 on the final exam. This data is repeated again in rows 5 and 6 for female students: row 5 for
all female students, and row 6 for all female students who received a 0.0 on the final exam. The
parenthetical in all cells represents the sample number.

 Table 3

 Comparative Objective Student Performance on Identical Final Exams

Row Category of Student Fall 2006 Fall 2008

1 All students 39.44 (27) 66.41 (85)

2 All students who did not score a 0.0 53.25 (20) 76.28 (74)

3 All Hispanic students 30.62 (8) 69.16 (25)

4 All Hispanic students who did not score a 0.0 61.25 (4) 82.33 (21)

5 All female students 35.00 (4) 88.25 (5)

6 All female students who did not score a 0.0 70.00 (2) 88.25 (5)

P
age 14.495.8

The author reiterates that the final exam and the instructor were the same for both classes.
Overall, the average grade increased as a result of the course redesign: For those students who
took the final exam, grades increased by 43.24%. In addition, before the redesign, a drop-out
rate of 25.9% (as occurred in Fall 2006) was typical. After the redesign, the drop-out rate
decreased to 13%.

The performance of Hispanic students was noticeably improved as a result of this course

redesign: For students who took the final exam, scores increased by 34.41%. However, the data
tells an additional story; the dropout rate changed dramatically. Before the redesign, 50% of the
Hispanic students failed to take the final exam, while after the redesign, only 16% dropped out.
Thus, this group also performed better and their drop-out rate was greatly reduced.

Although the numbers were smaller, there is still data regarding female student

performance. Female student performance was also noticeably improved as a result of this
course redesign: For female students who took the final exam, average scores increased by
26.07%. Here too, a closer inspection of the data in the table reveals even more. Prior to the
redesign, the instructor was losing half the female students. After the redesign, all female
students finished the course. Thus, for this group too, the overall performance increased and
their drop-out rate vanished.

When coupled with the previous research [11] and the current paper, it is clear that this

course redesign has invigorated the learning process for students. It is now incumbent upon the
author to engage in a more formal student questionnaire to assess what specific aspect of the
redesign led to improved learning, reduction in drop out rate, and greater student excitement
(perhaps the solitude of distance learning is more appealing to non-traditional students). The
next phase in this redesign should reveal this.

5. Discussion and Conclusions

The on-line learning helped reduced the extraneous load while, at the same time, saving

money on the up-keep of a laboratory. By using desktop sharing, the instructor was able to guide
students through nuances extraneous details – operating system, compiler, text editor – while
sharing with all eight students, simultaneously. Rather than help one student by a workstation,
the instructor was able to help all. At the same time, this also reduced infrastructure cost.

5.1 Online for a Purpose

SDSU has a policy that a course is “hybrid” if 45% of instruction occurs online. This

compelled the course designer to initially hold physical sessions (55%) and online sessions
(45%) indiscriminately and one after the other. In the second roll-out, however, the instructor
began using the online sessions for laboratories to diminish extraneous load. The author advises
adopters of distance learning to seek out which aspects of a course are suitable for distance
learning and deploy those with the technology. Distance learning can be a powerful tool when
used with purpose and not simply as another vehicle to deliver content; and, in this case, delivery
was guided by CLT as a pedagogical theory.

P
age 14.495.9

 As a result of this experiment with distance learning, student learning improved
dramatically. But there is more: The workstation cluster once used to instruct the class in
exclusive face-to-face lectures is no longer needed. This has already amounted to nearly $40,000
in savings to the department. Furthermore, the distance delivery has enabled the class to
overcome the enrollment limitation dictated by the available workstations. Enrollment has
progressed from under 30 students to now over ninety in one session, obviating the need to hire a
lecturer to support additional sections. As of this writing, the original laboratory has been
removed and the space is now utilized for other classrooms.

5.2 Surveys

Lacking focused student assessment surveys at this time, the author can only surmise a
the reason for the success with regard to non-traditional students of engineering, based upon
informal conversations. The online modules enable a modicum of privacy in the learning
process and undermines the sense of an “old-boy” network in learning computer programming
for non-computer scientists. This will be specifically addressed in surveys of next semester’s
students.

5.3 Final Thoughts

As the initial Captivate sessions rolled out in conjunction with Wimba, physical

attendance began to drop. It has occurred to the instructor that he is on the way toward a model
of instruction wherein faculty become tutors guiding the advanced students and spending focused
time guiding students having difficulty. In due time, judicious blending of interactive and
passive online modules, coupled with proper scaffolding of material, will result in a class
attended only by those having difficulty. More advanced students will pace themselves and the
instructor will be able to extend focused instruction to students facing difficulty in the learning
process.

The purpose of this course redesign was to improve student learning, and also to

demonstrate new reasons for mechanical engineering students to embrace computer
programming. Today’s software, such as Matlab, is relied upon to teach the algorithms of
mechanics. Unfortunately, such point-and-click environments with established interfaces add a
layer of obfuscation around the simplicity of studying mechanics algorithms. Despite this,
departments are now opting out of teaching computer programming in favor of such math
packages. Perhaps the diversity of operating systems and compiler issues drives this motion.
This paper (and its companion paper on attitudinal data [11]) demonstrates that it is possible to
teach computer programming to mechanical engineers in a way that encourages their learning.

Today’s machines do not simply think, they also communicate with each other. Further,

some mechanical engineers of tomorrow need to know the language of how machines
communicate. In addition, games and film are now adapting physics modules for more realistic
animation, so again, it is in the interest of mechanicians to involve themselves with this
discipline, too. Programming is an essential skill, not only for machines and simulation science,
but to understand the fundamentals of the algorithms that undergird the discipline of mechanical

P
age 14.495.10

engineering. This course redesign re-developed a traditional course in programming and the
result was improved student learning and excitement about the discipline of mechanical
engineering by itself, and as it intersects other, emerging disciplines.

REFERENCES

[1] Sweller, J. 1994. Cognitive load theory, learning difficulty and instructional design. Learning and

Instruction 4: 295–312.
[2] Kalyuga, S., P. Chandler, and J. Sweller.. 1998. Levels of expertise and instructional design. Human

Factors 40: 1–17.
[3] Pollock, E., P. Chandler, and J. Sweller. 2002. Assimilating complex information. Learning and

Instruction. 12, no.1: 61–86.
[4] Sweller, J., J. Van Merriënboer, and F. Paas. 1998. Cognitive architecture and instructional design.

Educational Psychology Review 10 no.3: 251–296.
[5] Renkl, A., and R. Atkinson. 2003. Structure the transition from example study to problem solving in

cognitive skill acquisition: A cognitive load perspective. Educational Psychologist 38 no. 1: 15–22.
[6] Renkl, A., R. Atkinson, and C. Grosse. 2004. How fading worked solution steps works: A cognitive load

perspective. Instructional Science: 59–82.
[7] Van Gerven, P., F. Paas, J. Van Merriënboer, and H. Schmidt. 2002. Cognitive load theory and aging:

Effects of worked examples on training efficiency. Learning and Instruction 12: 87–105.
[8] Van Merriënboer, J., and F. Paas. 1989. Automation and schema acquisition in learning elementary

programming: Implications for the design of practice. Computers in Human Behavior 6: 273–289.
[9] Van Merriënboer, J., J. Schuurman, M. de Croock, and F. Paas. 2002. Redirecting learners’ attention during

training: Effects on cognitive load, transfer test performance, and training efficiency. Learning and

Instruction 12: 11–37.
[10] Van Merriënboer, J. 1990. Strategies for programming instruction in high school: Program completion vs.

program generation. Journal of Educational Computing Research 6 no.3: 265.
[12] Lighter, S., M. J. Bober; and C. Willi. 2007. Team-based activities to promote engaged learning. College

Teaching 55: 5–18.

P
age 14.495.11

