
AC 2009-10: DISTANCE LEARNING AND COGNITIVE LOAD THEORY TO
IMPROVE TRADITIONAL AND NON-TRADITIONAL STUDENT LEARNING OF
COMPUTER PROGRAMMING FOR MECHANICAL ENGINEERS:
QUANTITATIVE ASSESSMENT

Thomas Impelluso, San Diego State University
Dr. Impelluso received his BA in Liberal Arts from Columbia University. This was followed by
two MS degrees in Civil Engineering and Biomechanics, also from Columbia. He received his
doctorate in Computational Mechanics from the University of California, San Diego. Following
this, he worked for three years in the software industry, writing code for seismic data acquisition,
visualization, and analysis. He then commenced post-doctoral studies at UCSD, wherein he
secured grants in physics-based virtual reality. He is now a tenured associate professor at San
Diego State University, revisiting and researching human bone remodeling algorithms and muscle
models using advanced tools of the cyberinfrastructure. He has created a curriculum in which
students learn mechanics not by using commercial simulation software, but by creating their own.
His interests include opera, sociology, and philosophy. He is currently enjoying teaching his two
young children how to ride bicycles. 

© American Society for Engineering Education, 2009 

P
age 14.495.1



   

Distance Learning and Cognitive Load Theory  

to Improve Traditional and Non-Traditional Student Learning  

of Computer Programming  

for Mechanical Engineers: Quantitative Assessment 

 
 

 

ABSTRACT 

 

This paper reports on the re-design of a computer programming class for students of mechanical 
engineering.  The content was re-designed using Cognitive Load Theory; the delivery was re-
designed using on-line technologies.  Student learning was objectively assessed; it improved and 
the drop-out rate reduced.  A previous paper reported on greatly improved student attitudes and 
instructor reviews.  This paper reports on objective data: comparing student performance on 
identical final exams.  Note is made of improved learning by non-traditional engineering 
students.  This paper also reports on two additional teaching strategies that were deployed to 
improve learning.  Finally, this work points to the next step in this evolving redesign. 
 

 

Introduction 

 
 Cognitive Load Theory (CLT) provides guidelines to present information in a manner 
that encourages learning and optimizes intellectual performance [1].  As an example, consider 
the obstacles in learning new material in a non-native language.  Clearly, there is an overload: 
learners must master both the new material and the language itself.  Interestingly, this is resonant 
with the challenge of learning to program a computer which faces those students not in the 
computer science major.  Such learners must master both extraneous issues such as the operating 
system and the compiler and then the intrinsic issues such as the syntax of the language and 
application areas.  CLT can mitigate challenges in such cases when learning loads are diverse 
and high.   
 
 According to CLT, information can be stored in long term memory after first being 
properly integrated, by working memory, into a mental structure that represents the schema of 
the material.  However, the faculty of working memory has limits and this, unfortunately, can 
hinder learning, especially when many extraneous and ancillary facts compete to challenge the 
cognitive learning loads (which, in the case of programming, encompasses text editing, operating 
systems and compilers).  CLT posits that there are three basic types of cognitive loads placed on 
a learner:   
 
 

≠ “Intrinsic cognitive load” was first described in 1991 [2] as the essential material to be 
learned.  Accordingly, all instruction has an inherent difficulty associated with it and 
this intrinsic material may not be altered by an instructor.  In learning a foreign 
language, this includes the vocabulary and syntax. 
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≠ “Extraneous cognitive load” is generated by the manner in which information is 
presented to learners [3] and, in the case of a programming language (and, specifically 
here: for non-computer scientists), the ancillary information regards text editors, 
compilers, and operating systems.  (In the case of a spoken language, information is 
presented using technologies that must be mastered, such as laboratories with recorders.) 

≠ “Germane cognitive load” was first described by Sweller, van Merrienboer, and Paas in 
1998 [4].  It is that load devoted to the processing, construction, and automation of 
schemata necessary to integrate knowledge into consciousness.  This includes 
motivations to learn and how the knowledge is conveyed in the rest of the curriculum 
such as reading novels, or programming mathematical algorithms. 

 
These three loads are additive in the learning process and research suggests [4] that when 

courses are redesigned with due respect paid to the interaction of cognitive loads, learning is 
improved.  For example, while intrinsic load is thought to be immutable, instructional designers 
can exercise the option to manipulate extraneous and germane loads.  With complex material, it 
is best to strive to minimize the extraneous cognitive load and maximize the germane load.   

 
Table 1 

The Three Types of Cognitive Loads Placed on Learners of Computer Programming 
Load Examples 

Intrinsic Syntax: data types, loops, logical tests, arrays, functions 
Extraneous Ancillary tools including: text editor, operating system and the compiler 
Germane  Numerical algorithms in computational mechanics 

  
Table 1 presents this author’s view of the various learning loads experienced in computer 

programming.  The intrinsic learning load is generally high in computer programming – it 
involves logic and syntax.  Thus, if one also employs methods that add an extraneous load (such 
as complex compiler interfaces), it is very likely that there will be little capacity left for germane 
load that might be used to motivate students of mechanical engineering to learn programming; 
and the ensuing overload would then hinder their learning.    
 
 Furthermore, other research has shown that complete, thorough, and fully commented 
programming examples provide greater motivation for novices than simply working out 
problems from scratch [5][6].  Although this may seem counterintuitive, tests have demonstrated 
that studying complete examples facilitates learning more effectively than actually solving the 
equivalent problems [7].  Additionally, in many cases, a variation of worked examples, balanced 
with assignments, has been used and studied [8].  Students can be urged to complete the solution, 
which is only possible with the careful study of the partial example provided in the completion 
task.  As with providing completely worked examples, this serves to decrease extraneous 
cognitive load [9]. 
 
 In this course redesign, distance technology was used to minimize extraneous load.  
Scaffolding was used to enhance the germane load.  Scaffolding is an instructional method 
wherein layered material is presented to the student and then removed later as students develop 
their own learning strategies.  Scaffolding was an essential ingredient in this CLT-based 
redesign, and this approach is supported by existing research that has been successfully applied 
to the domain of computer programming [10]. 
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2. Course prior to redesign 

 

2.1 Course content 

 

 The course under discussion is SDSU: ME203—Programming.  In this class, the C 
programming language is taught in a UNIX environment.  The course presents a procedure 

oriented language (as opposed to object oriented language such as Java or C++), because 
mechanical engineers are more concerned with the process of applied mathematical algorithms 
(solids, fluids, thermal studies) than with objects to be manipulated (computer graphics, 
bioinformatics).  Of the procedure oriented languages, C was selected because it is the language 
in which most operating systems are written, as are network, math and graphics libraries.   
 
 Thus, the focus of the class was on the syntax of the C language.  However, advanced 
syntax techniques such as “data structures” were also taught.  Secondary attention was paid to 
the Gauss Reduction method and various algorithms to multiply matrices: the exclusive focus 
was syntax.  Mechanical engineering coding examples were not integrated into the course; they 
were presented without instructional design forethought.   
 
2.2 Course delivery 

 

 Prior to Fall 2006, the class met physically and the exclusive method of content delivery 
was through face-to-face lecture.  Instruction was provided in a workstation laboratory.  This 
laboratory was a dedicated computational resource cluster of 30 UltraSPARC models 170 and 
170E workstations using the Sun Grid Engine software from Sun Microsystems.  Each station 
in the cluster had 128MB of physical memory, and contained one 167MHz US-I CPU.  The 
workstations were interconnected using high-speed network infrastructure from Myricom. 
 

The instructor taught at one workstation and displayed his monitor on an overhead 
projector.  Students were able to watch the instructor discuss the code line-by-line, compile it, 
and run it. Then, students would work on their own code in separate lab sessions.  This model of 
instruction had weaknesses.  First, the size of the class was limited to the number of 
workstations.  Furthermore, the workstations had to be upgraded every few years at considerable 
expense.  Third, the students often expressed frustration as to why they were learning the 
material – the course was not taught specifically for mechanical engineers.  Student reviews 
consistently mentioned that there was no reason for mechanical engineers to learn programming.  
Thus, course redesign was initiated. 
 
3.  Course after redesign 

 

3.1 Course content  
 

 Two levels of course material were scaffolded by themselves and with each other: (1) the 
syntax of the language, and (2) the applied mathematical algorithms (vector, matrix 
manipulation, Gauss Reduction and Newton-Raphson methods).  The goal was to avoid previous 
student criticisms of seeing no purpose to learning programming.  The scaffolding more tightly 
connected the syntax to the algorithm and gave motivation for mechanical engineering students. 

P
age 14.495.4



 
3.1.1 Vertical Scaffolding 

 

 The left column of Table 2 provides the syntax structures that were discussed in the 
redesigned class.  Complete and commented code syntax examples were scaffolded on the 
skeleton of preceding ones: loops were discussed in the context of logical structures, and arrays 
were discussed in the context of loops.  As the students progressed through the material, their 
understanding of vector manipulation, became essential to subsequent material.  The right 
column indicates the mathematical algorithms that were discussed in class: Complete and 
commented algorithms were scaffolded on previous ones.  Thus, Newton-Raphson relied on the 
Gauss Reduction code; Gauss-Reduction relied on matrix manipulation, and matrix manipulation 
relied on vectors.  The same code “grew” and “evolved” in each example and with deliberation 
and consistency. 

 
Table 2 

The Scaffolding of Algorithm and Syntax After Redesign of the Course 
Syntax Algorithm 

Data types and logic Temperature conversion 

Logic & loop formality Bisection method 

Logic & loop formality Newton’s method 

Logic & loop formality Numerical integration 

Input/Output Repeat of all algorithms 

Arrays  Matrix-vector manipulation 

Arrays, files Gauss reduction 

Arrays, files, functions Gauss reduction with functions 

Arrays, files, functions, memory Newton Raphson method 

 
3.1.2 Horizontal Scaffolding  
 
 The driving focus of the content in this class was the algorithm rather than the syntax.  
Thus, this inverts the way programming has traditionally been taught, in which syntax rules are 
presented and are the focus—as often happens when programming classes are farmed out to 
computer science departments in which either the theory of coding, or operating systems, is more 
the focus.  This in no way is intended to disparage those departments; rather, it is to indicate that 
such approaches to programming may not be suitable for mechanical engineers.  Furthermore, 
there were no coding examples of sorting, alphabetizing, or interest rate problems that plague 
introductory computer programming courses for mechanical engineers.   
 
 Table 2 presents the algorithms in the first column, followed by the programming syntax 
in the second.  Vertically, the table demonstrates the order in which both topics were addressed.  
It is important to note that numerical algorithmic convergence and stability issues were ignored, 
in lieu of the most simple algorithm implementation.  This table also demonstrates the horizontal 
scaffolding that occurred in the class.  By connecting algorithm to construct, the redesign 
invigorated the germane load of the student learners.   
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 Initially, the instructional goal was to challenge the students to read codes as if they were 
a new language.  It was not expected that the students master the code’s nuances and reproduce 
them at this stage.  Rather, the goal was to immerse the students in a new language and expect 
them to follow the general idea of how the language implements the logic of a games and 
algorithms. In this way, a syntax construct was linked to an algorithm construct.  As the student 
mastered each level, it was subsumed into the subsequent ones. 
 
 After that initial introduction, the course progressed into a series of code examples 
involving matrix manipulations.  Next, it moved on to the two core concepts of the course.  In 
fact, students were often reminded that these two algorithms were the core algorithms in 
mechanics.  The Gauss Reduction is one algorithm used to solve a system of linear equations, 
while Newton-Raphson is implemented for a system of non-linear equations; both are critical 
components in mechanics analysis.  However, there is serendipitously something more profound 
which was exploited here: The Newton-Raphson method builds upon the Gauss Reduction 
method.  This creates an overarching structure to the class as it drives toward the study of very 
simple non-linear systems: everything was built upon the previous codes. 
 
3.1.3 Temporal Scaffolding and Motivation 

 
There was, however, a third type of scaffolding.  Students of mechanical engineering 

traditionally learned programming to implement the algorithms (Gauss Reduction, Newton-
Raphson) that are critical to their sub-disciplines (Finite Element Methods, Multi-Body 
Dynamics Methods, Computational Fluid Mechanics).  There are a wealth of sites on the internet 
where one can view mpgs of these algorithms functioning.  Thus, each class session in this 
redesigned course began by viewing one of these films.  In this way, students were introduced to 
how programming is critical to the discipline of mechanical engineering.  

. 
The author refers to this as “temporal scaffolding” and it was used to introduce has 

motivational pieces were used in the course: during the roll-out of the course, students 
experience professional programs that implemented each algorithm and syntax they encountered.  
In this process, each day of the class is scaffolded back to the first day, and forward to the last.  
In this way, the class takes on an integral architecture in which students realize that every aspect 
of programming and every algorithm they encounter is not only related to each other, but to what 
precedes it and what follows it; and also to their discipline. 
  
3.2 Course Delivery 

 

With regard to delivery, two modes were used in equal parts: (1) face-to-face, and (2) 
interactive, online desktop sharing.  Half the classes were face-to-face, and this is when and 
where the algorithm and syntax were taught.  Extensive PowerPoint slides were developed and 
they were tied to each item in Table 2.  Face-to-face lectures focused on the interplay of intrinsic 
and germane learning loads. 
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Figure 1. Student-instructor connections for online class sessions. 

 
 Horizon Wimba was the method used to conduct on-line, synchronous instruction.  
However, this was not a passive use in which students simply observed lectures over the internet.  
Application sharing technology was used—the instructor took control of student laptops as if 
working with the student, side-by-side, while also demonstrating the effort to the rest of the 
class.  The schematic for an online session is indicated Figure 1.  Students were able to work on 
their assignments from home (during or after class lab-time), regardless of their operating 
system, by first establishing a network connection through a secure shell (SSH) to the server on 
campus using a monitor prompt.  Once connected to the server, students are able to write, 
compile, and debug their codes.   
 

The instructor also maintained an SSH connection – again, a simple terminal window 
which enabled remote logins – to the same server and exploited the application sharing interface 
of the instructional des.  The instructor shared his desktop (which contained an SSH connection 
to the server) with the class and demonstrated the process of writing, compiling, debugging, and 
running example codes.  Occasionally, whether during a class session or during on-line office 
hours, a particular student would request assistance with an assignment (indicated by the laptop 
with the “?” mark and his SSH connection by the largest black monitor window external to his 
laptop).  At those times, the instructor activated the Wimba application sharing interface and 
asked the student to share his or her desktop with him and the rest of the class.  Then, the 
instructor addressed the student’s questions, while also sharing the information with all of the 
students.   And, of course, the session was recorded and archived for all to play at their leisure. 
 
 All the students in the class used the same operating system on which to compile and run 
their code examples—this added a layer of homogeneity to the instruction and this was 
reassuring to the students.  The students used an SSH tool to connect to the common server on 
which they all studied and learned.  This statement warrants focused reiteration.  All the writing 
and compiling occurred in a common workstation environment, unencumbered by the nuances of 
diverse compilers.  This consistency—this common computational environment—reduced the 
extraneous load of learning operating systems, compilers, and text editors; students were able to 
focus attention on the syntax of the language and the mathematical algorithms. 

Server: on campus 

Instructor: at home 

Students: at home 

? 
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4. Student Learning Outcomes: Objective Student Performance Data 

 

This course redesign was subjected to two levels of assessment.  Student attitudinal 
assessment was conducted first.  Students were extremely receptive to the redesign: both content 
and delivery.  Surveys indicated that this excited the students and motivated them to learn.  
However, this data has been reported elsewhere [11].  Furthermore, as a result of this redesign, it 
had also been reported that the class size was increased—there was no longer a need for a 
physical workstation laboratory—the computer laboratory became virtual.  Thus, the enrollment 
was able to triple and this reduced instruction cost.  This brings us now to objective assessment. 
 
 Successful course redesign should, in principle, result in higher instructor reviews by 
students and improved grades.  The risk, of course, is that instructors could be accused of grade 
inflation to secure improved student attitudes.  For example, the designer/instructor of this class 
knew, from the outset, that student learning and student attitudes were improving and that if he 
gave a final exam of consistent caliber to that given before the redesign, the grades would 
improve.  So, to avoid the risk of the accusation that the improved attitudes resulted from grade 
inflation, the instructor kept making the final exam increasingly difficult during the four 
semesters of this redesign.  It was for this period that student evaluations of the instructor were 
assessed—so clearly, the reviews were not based on easy grading.  This has also been reported 
elsewhere [11].   
 

Once student anecdotal evidence had been gathered, and the course redesign had 
undergone two iterations, the instructor gave the same final exam in Fall 2008 that he had given 
in Fall 2006 (before the redesign)—realizing that this might lead to grade inflation, but taking the 
risk.  Table 2 presents the final exam grades for Fall 2006 (column 2) and Fall 2008 (column 3).  
Row 1 presents the average final exam grade for all students who registered for the class.  Row 2 
removes from the average those students who scored a perfect 0.0 on the final (i.e., they did not 
take the exam, or dropped the class).  Such data is repeated in row 3 and 4 for Hispanic students: 
row 3 for all Hispanic students, and row 4 for all Hispanic students who also received a perfect 
0.0 on the final exam.  This data is repeated again in rows 5 and 6 for female students: row 5 for 
all female students, and row 6 for all female students who received a 0.0 on the final exam.  The 
parenthetical in all cells represents the sample number. 
  
      Table 3 

  Comparative Objective Student Performance on Identical Final Exams 

Row Category of Student Fall 2006 Fall 2008 

1 All students 39.44    (27) 66.41    (85) 

2 All students who did not score a 0.0 53.25    (20) 76.28    (74) 

3 All Hispanic students 30.62    (8) 69.16    (25) 

4 All Hispanic students who did not score a  0.0 61.25    (4) 82.33    (21) 

5 All female students 35.00    (4) 88.25    (5) 

6 All female students who did not score a 0.0 70.00    (2) 88.25    (5) 
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The author reiterates that the final exam and the instructor were the same for both classes.  
Overall, the average grade increased as a result of the course redesign: For those students who 
took the final exam, grades increased by 43.24%.  In addition, before the redesign, a drop-out 
rate of 25.9% (as occurred in Fall 2006) was typical.  After the redesign, the drop-out rate 
decreased to 13%. 

 
The performance of Hispanic students was noticeably improved as a result of this course 

redesign: For students who took the final exam, scores increased by 34.41%.  However, the data 
tells an additional story; the dropout rate changed dramatically.  Before the redesign, 50% of the 
Hispanic students failed to take the final exam, while after the redesign, only 16% dropped out.  
Thus, this group also performed better and their drop-out rate was greatly reduced. 

 
Although the numbers were smaller, there is still data regarding female student 

performance.  Female student performance was also noticeably improved as a result of this 
course redesign: For female students who took the final exam, average scores  increased by 
26.07%.  Here too, a closer inspection of the data in the table reveals even more.  Prior to the 
redesign, the instructor was losing half the female students.  After the redesign, all female 
students finished the course.  Thus, for this group too, the overall performance increased and 
their drop-out rate vanished. 

 
When coupled with the previous research [11] and the current paper, it is clear that this 

course redesign has invigorated the learning process for students.  It is now incumbent upon the 
author to engage in a more formal student questionnaire to assess what specific aspect of the 
redesign led to improved learning, reduction in drop out rate, and greater student excitement 
(perhaps the solitude of distance learning is more appealing to non-traditional students).  The 
next phase in this redesign should reveal this. 

 
 

5. Discussion and Conclusions 

 
The on-line learning helped reduced the extraneous load while, at the same time, saving 

money on the up-keep of a laboratory.  By using desktop sharing, the instructor was able to guide 
students through nuances extraneous details – operating system, compiler, text editor – while 
sharing with all eight students, simultaneously.  Rather than help one student by a workstation, 
the instructor was able to help all.  At the same time, this also reduced infrastructure cost.   
 
5.1 Online for a Purpose 

 
SDSU has a policy that a course is “hybrid” if 45% of instruction occurs online.  This 

compelled the course designer to initially hold physical sessions (55%) and online sessions 
(45%) indiscriminately and one after the other.  In the second roll-out, however, the instructor 
began using the online sessions for laboratories to diminish extraneous load.  The author advises 
adopters of distance learning to seek out which aspects of a course are suitable for distance 
learning and deploy those with the technology.  Distance learning can be a powerful tool when 
used with purpose and not simply as another vehicle to deliver content; and, in this case, delivery 
was guided by CLT as a pedagogical theory. 
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 As a result of this experiment with distance learning, student learning improved 
dramatically.  But there is more: The workstation cluster once used to instruct the class in 
exclusive face-to-face lectures is no longer needed.  This has already amounted to nearly $40,000 
in savings to the department.  Furthermore, the distance delivery has enabled the class to 
overcome the enrollment limitation dictated by the available workstations.  Enrollment has 
progressed from under 30 students to now over ninety in one session, obviating the need to hire a 
lecturer to support additional sections.  As of this writing, the original laboratory has been 
removed and the space is now utilized for other classrooms. 

 

5.2 Surveys  
 

Lacking focused student assessment surveys at this time, the author can only surmise a 
the reason for the success with regard to non-traditional students of engineering, based upon 
informal conversations.  The online modules enable a modicum of privacy in the learning 
process and undermines the sense of an “old-boy” network in learning computer programming 
for non-computer scientists.  This will be specifically addressed in surveys of next semester’s 
students. 
 
 
5.3 Final Thoughts  

 
As the initial Captivate sessions rolled out in conjunction with Wimba, physical 

attendance began to drop.  It has occurred to the instructor that he is on the way toward a model 
of instruction wherein faculty become tutors guiding the advanced students and spending focused 
time guiding students having difficulty.  In due time, judicious blending of interactive and 
passive online modules, coupled with proper scaffolding of material, will result in a class 
attended only by those having difficulty.  More advanced students will pace themselves and the 
instructor will be able to extend focused instruction to students facing difficulty in the learning 
process. 

 
The purpose of this course redesign was to improve student learning, and also to 

demonstrate new reasons for mechanical engineering students to embrace computer 
programming.  Today’s software, such as Matlab, is relied upon to teach the algorithms of 
mechanics.  Unfortunately, such point-and-click environments with established interfaces add a 
layer of obfuscation around the simplicity of studying mechanics algorithms.  Despite this, 
departments are now opting out of teaching computer programming in favor of such math 
packages.  Perhaps the diversity of operating systems and compiler issues drives this motion.  
This paper (and its companion paper on attitudinal data [11]) demonstrates that it is possible to 
teach computer programming to mechanical engineers in a way that encourages their learning.   

 
Today’s machines do not simply think, they also communicate with each other.  Further, 

some mechanical engineers of tomorrow need to know the language of how machines 
communicate.  In addition, games and film are now adapting physics modules for more realistic 
animation, so again, it is in the interest of mechanicians to involve themselves with this 
discipline, too.  Programming is an essential skill, not only for machines and simulation science, 
but to understand the fundamentals of the algorithms that undergird the discipline of mechanical 
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engineering.  This course redesign re-developed a traditional course in programming and the 
result was improved student learning and excitement about the discipline of mechanical 
engineering by itself, and as it intersects other, emerging disciplines. 
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