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Abstract

The problem of determining the parameters of dynamical systems often reduces to developing some notion
of a “distance” between observed and simulated system trajectory data. The best parameter fit can then be
found by adjusting the parameters that generate the simulated trajectory until the distance is minimized.
However, in the case of chaotic dynamical systems, traditional distance measures such as the Mean Square
Error (MSE) often fail to produce good results, a consequence of these systems’ inherent sensitivity to changes
in parameters and initial conditions. In this paper, we adopt the perspective that more robust distance con-
cepts can be formulated when the trajectories of these chaotic systems are treated as samples from probability
distributions, rather than as time series data. Within this framework, we evaluate the efficacy of three candi-
date distance measure concepts and their parameter likelihood functions: The correlation integral likelihood
(proposed by Haario et al.), the Wasserstein metric, and finally a novel family of information-theoretic metrics
based on the Kullback-Leibler divergence. We give particular emphasis to the performance of these methods
on the Lorenz63 system, a canonical chaotic system with applications in modeling atmospheric convection.

1 INTRODUCTION

In order to reliably estimate the parameters of dynamical systems that produce a given system trajectory, one
must first determine a robust measure of “similarity” or “dissimilarity” between the data generated by any two
systems. With such a distance measure, the parameters of a model that best fit a set of observed data can
be inferred by minimizing the distance between the observed data and the data generated by simulating that
model. However, in the case of chaotic systems, traditional distance measures such as the mean square error fail
to provide reliable parameter estimations, especially when the initial conditions of the model are unknown [2, 1].

Figure 1: An example of the instability of the mean square error (MSE) metric as the time interval of a chaotic
system trajectory increases. The MSE of a 60-point trajectory (left) is compared to a 3000-point trajectory
(right)

For well-behaved dynamical systems, it has become standard procedure to use some notion of a residual
between a time series data set and a time series model’s response to variation in parameters. If one can quantify
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the error statistics of the data set, then one can formulate a likelihood function and generate samples from that
likelihood using Markov Chain Monte Carlo (MCMC) or Approximate Bayesian Computation (ABC) methods
to estimate statistics such as mean, mode, and variance. These methods are often effective, so long as one can
show that the trajectories produced by the model are insensitive to slight variations in parameters and initial
conditions. However, chaotic dynamical systems are very sensitive to changes in parameters and initial conditions
[2]. As these systems evolve, the trajectories produced by similar parameters and initial conditions often diverge
from one another, making time-based inference methods ineffective.

In this paper, we disregard the time axis altogether and instead examine the time-invariant attracting sets of
these systems and how their shape varies with respect to their parameters. In the case where the attracting sets
are isolated points, say a set X = {x0, x1, ..., xn}, one can compare the limit points of simulated trajectories with

those of a data set using a standard Euclidean distance metric, i.e: d(X,X′) =
∑N
i=1 ‖xi − x′i‖. However, not all

attracting sets of chaotic systems can be described as the union of discrete mass points; rather, there exist many
well-studied examples of multidimensional attractors. One canonical example is the Lorenz63 system, given by
(1), with nominal parameters (σ, ρ, β) = (10, 28, 8/3).

dx1

dt
= σ(x2 − x1),

dx2

dt
= x1(ρ− x3)− x2,

dx3

dt
= x1x2 − βx3, (1)

Under initial conditions perturbed slightly from the origin, we observe that integrating this system produces
an attractor with two disk-shaped “wings” as seen in Figure 2.

Figure 2: A flattened view (left) and 3D view (right) of the Lorenz63 attractor structure.

Because the trajectory orbits along the surface of one of the two wings seemingly at random, we can see that
any attempt to use a time-dependent notion of “distance” between any two isochronous trajectories is hopeless.
This provides the motivation for interpreting the state space data as samples from a time-independent probability
distribution rather than as time series data. In this paper we will analyze the efficacy three candidate distance
measures that use this time-independent approach. The first we will examine is one proposed by Haario et al,
which assumes that attractors produced by similar sets of parameters exhibit similar Gaussian behavior in the
correlation integral domain [2]. We will also examine a method that approximates the Wasserstein distance metric
between distributions. Finally, we will propose new family of metrics based on the Kullback-Liebler divergence
between distributions.

2 METHODS

2.1 The Correlation Integral Likelihood

The first method we investigate employs some fractal dimension concepts in statistical physics, as proposed by
Haario et al. [2]. In particular, it uses the correlation integral given by (2), which is used to estimate the
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dimension of some manifold embedded in a high-dimensional space.

C(r,X) =
1

|X|(|X| − 1)

 ∑
xi,xj∈X; xi 6=xj

# (‖xi − xj‖ < r)

 (2)

For example, if one were to calculate the correlation integral about a sufficiently large data set X that is uni-
formly distributed within the unit d-hypercube (i.e. [−1, 1]d ⊂ Rd), one would expect that limr→0 [log(C(r,X))/ log(r)] =
d. Likewise, if X is sufficiently large and distributed uniformly on the surface of the unit d-hypersphere in Rd,
one would expect the limit of the same log ratio to be d− 1. Intuitively, we can interpret the correlation integral
as an exponential function of the global dimensionality of the data set at a given scale. In order to extract a
meaningful measure of “distance” between two datasets, Haario et al. generalize the calculation of (2) into (3):

C(r,X,X′) =
1

|X||X′|

 ∑
(xi,xj)∈(X×X′)

#(‖xi − xj‖ < r)

 (3)

With this pairwise definition of the correlation integral, we can assume that for some nominal data set X and
a candidate data set X′, C(r,X) ≈ C(r,X,X′) for every r > 0 if the parameters that produced X′ are a good fit
for X. We note, however, that this definition produces a slightly different result than the standard correlation
integral applied to the union of the two datasets (i.e. C(r,X ∪X′)). This is not only computationally cheaper,
but also produces a lower correlation integral value for data frmtwo manifolds that have the same dimension,
yet are orthogonal to each other. Haario et al. also argues that because the correlation integral is bounded
(i.e. 0 ≤ C(r,X,X′) ≤ 1) the correlation integral of independently observed attractor datasets is asymptotically
normal for every value of r under the Central Limit Theorem. More generally, because C is dependent on the
radius at which it is evaluated, we can construct a correlation integral vector given by (4), where we sample the
correlation integral at several different radii:

cr(X) = [C(r1,X) C(r2,X) ... C(rn,X)]
T
, where r = [r1 r2 ... rn]

T
(4)

By the Central Limit Theorem, the distribution of this vector must converge to a multivariate normal. Supposing
that the size of the datasets X and X′ are sufficiently large such that cr(X) ∼ Norm(µcr ,Σcr), we can construct
an empirical likelihood function, given by (5) and (6):

L(X′|X, r) ∝ exp

[
−1

2
(µcr − c̃r(X,X

′))TΣcr

−1(µcr − c̃r(X,X
′))

]
, (5)

where c̃r(X,X
′) = [C(r1,X,X

′) C(r2,X,X
′) ... C(rn,X,X

′)]
T

(6)

In (5), Haario et al. estimate the quantities µcr and Σcr , as the mean and covariance respectively of the set
of correlation integral vectors {cr(X∗(i1),X

∗
(i2)) | i ∈ 1, 2, ..., N}, in which each trajectory pair (X∗(i1) and X∗(i2)) is

generated with the estimated best fit parameters for the nominal data set X, but with initial conditions selected
at random, ideally from a distribution that covers known canonical parameters. For example, in the Lorenz63
system the initial conditions (x1, x2, x3) were selected from the distribution Norm(µ = (0, 0, 0), σ = 0.5), exclud-
ing the degenerate point (0, 0, 0).

We remark that although this method makes relatively few assumptions about the data, it does require a
careful choice of the sampling radii r for the correlation integral calculation. If the elements of r are too high,
then the features of the attractor dataset at smaller scales will not be captured; likewise, if they are too low, then
the large scale features will not be captured. We recommend the heuristic (7) for a nominal data set X and a
desired number of correlation samples N :

r̂i = (rmin)1−i/N (rmax)i/N , where rmin = min
xj 6=xk∈X

‖xj − xk‖ and rmax = max
xj 6=xk∈X

‖xj − xk‖ (7)

3



2.2 The Wasserstein Distance Likelihood

The Wasserstein metric, or “Earth Mover’s Distance” (EMD) has been shown to be a robust metric that provides
an intuitive notion of distance between probability distributions. Physically it can be interpreted as the minimal
amount of “work” required to transform one “pile of dirt” into another, where “work” is defined as an amount
of mass moved times the distance it is moved. Suppose we have two piles of dirt given by the functions p(x) and
q(x) defined on some set X , where

∫
X p(x) dx =

∫
X q(x) dx > 0, then we could devise any number of strategies

by which we could transform the mass under the curve of p(x) into that of q(x). Let Γ(p, q) denote the space of
all such strategies. We define each strategy γ ∈ Γ(p, q) as a function γ : (X × X )→ R≥0 such that:

q(s) =

∫
X
γ(x, s) dx, and conversely: p(s) =

∫
X
γ(s, x) dx.

We can interpret the quantity γ(x1, x2) as the amount of mass moved from x1 to x2 under the strategy γ. From
this formulation of the function space Γ, the Wasserstein metric arises naturally under the Euclidean distance
metric as (8):

W (P,Q) = inf
γ∈Γ(p,q)

∫∫
(X×X )

γ(x1, x2)‖x1 − x2‖ dx1dx2 (8)

If p and q are both probability distributions, then by definition they must comprise the marginals of every
γ ∈ Γ(p, q). Thus, we can reinterpret the optimal transport formulation of the Wasserstein distance as the
minimal expected distance between two random variables in (9).

W (P,Q) = inf
γ∈Γ(p,q)

Eγ [ ‖P −Q‖ ] (9)

Unfortunately, this distance metric does not lend itself to an intuitive likelihood function, so we resort to
embedding it in a Gaussian kernel to produce an empirical likelihood function given by (10).

L(P |Q) ∝ exp

[
−(W (P,Q))2

α

]
(10)

Due to the Central Limit Theorem, we claim that W (P,Q) is asymptotically normal, so long as the random
variable P is produced with initial conditions and parameters similar to that of Q. This justifies the use of the
Gaussian kernel. We also observe that if L(P |Q) is normally distributed, then the quantity 2W (P,Q)2/α must
follow a chi-squared distribution with an unknown degree of freedom ν. In (11), we reformulate this relationship
in terms of just (W (P,Q))2 and see that we obtain the form of a gamma distribution with scale parameter θ = α:

(W (P,Q))2 ∼ α

2
X 2

(ν) ≡ Γ
(
κ =

ν

2
, θ = α

)
(11)

In order to estimate the value of α, we use a similar approach as we used to estimate the values of µcr and
Σcr in (5). First, we construct a set of trajectories {X∗(Qi) | i ∈ 1, 2, ..., N}, which are generated from the set
of parameters that best fit the distribution of Q, but with randomized initial conditions. We then evaluate
the Wasserstein distance of these trajectories from our nominal attractor distribution Q. This gives us the set
DQ = {W (X(Qi), Q)2 | i ∈ 1, 2, ..., N}, which we fit to the gamma distribution in (11). Because we only need
to determine the scale parameter, however, we can estimate α in terms of the closed form consistent unbiased
estimator for θ given by (12):

α̃ = θ̃, where θ̃ =
1

(N − 1)

 ∑
x∈DQ

ln(x)(x− µDQ
)

 , µDQ
=
∑
x∈DQ

x

N
(12)

2.3 KL Divergence Likelihoods

The Kullback-Liebler (KL) divergence is a measure of difference between probability distributions that derives
from the loss in information between distributions. Suppose we have a nominal random variable P and a
candidate random variable Q that is intended to approximate P . The natural log KL divergence of P from Q is
given by (13):
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DKL(P |Q) =

∫
supp(P∩Q)

p(x) ln

(
p(x)

q(x)

)
dx (13)

From an information theory perspective, we can interpret DKL as measuring the expected loss of self-
information when P is used as a surrogate for Q (14). Using the notation of Shannon’s entropy and cross
entropy function (H and Hcross respectively), we can also interpret DKL as the difference of entropy in P and
cross entropy of P given Q (15). Both of these equivalent interpretations of DKL are shown below:

DKL(P |Q) = −
∫

supp(P∩Q)

p(x) ln(q(x)) dx+

∫
supp(P∩Q)

p(x) ln(p(x)) dx

= EP [I(Q)]− EP [I(P )] (14)

= Hcross(P |Q)−H(P ) (15)

DKL also has the desirable property of additivity; we can evaluate it separately on disjoint subregions of the
support of its operands and sum the results to obtain the correct divergence. However, DKL only attains finite
nonzero values on the intersection of the supports of P and Q. If we were to extend the domain of integration
in (13) to the union of the supports of P and Q, we would obtain a divergence of 0 over the subregions wherever
p(x) = 0 and an infinite divergence wherever q(x) = 0. Furthermore, DKL is not a symmetric quantity and thus
fails to conform to an intuitive notion of “distance”. We can force DKL to be symmetric as given in (16), yet
this still only attains meaningful values on the intersection of the supports of its operands:

DsymKL(P,Q) =
1

2
DKL(P |Q) +

1

2
DKL(Q|P ) (16)

One way we can resolve the support issue is to calculate the divergence of both distributions from their mean
distribution M , which is supported over the union of both distributions. This quantity is referred to as the
Jensen-Shannon Divergence and is given in (17).

DJS(P,Q) =
1

2
DKL(P |M) +

1

2
DKL(Q|M), where m(x) =

p(x) + q(x)

2
(17)

Of the three divergence measures we have discussed (DKL, DsymKL, and , DJS), we give preference to the
use of the JS divergence due to the fact that it is additive, symmetric, and attains meaningful values over the
union of the support of its operands. However, one additional property of DJS that we must keep in mind is that
it is bounded. Since DKL ≥ 0, a consequence of Gibb’s inequality, we observe that DJS ≥ 0 also. Using Gibb’s
inequality again as well as the Shannon entropy bound (0 ≤ H(X) ≤ ln(2)), we obtain the upper bound on DJS

as shown by (18):

DJS(P,Q) =
1

2

∫
supp(P∪Q)

p(x) ln

(
p(x)

m(x)

)
+ q(x) ln

(
q(x)

m(x)

)
dx

=
1

2

∫
supp(P∪Q)

p(x) ln(p(x)) + q(x) ln(q(x))− 2m(x) ln(m(x)) dx

=
1

2
(H(P ) +H(Q)− 2H(M))

≤ 1

2
(ln(2) + ln(2) + 0)

= ln(2) (18)

Because 0 ≤ DJS ≤ ln(2), constructing an intuitive likelihood function poses some challenges. Foremost, we
would like L(P |Q) to approach 0 as DJS → ln(2). We would also like to be able to scale L so as to prevent the
distribution becoming degenerate or uniform as the size of the parameter space increases or decreases respectively.
To satisfy these two conditions, we propose the JS divergence empirical likelihood given in (19):

L(P |Q) ∝
[
1− DJS(P,Q)

ln(2)

]1/α

(19)
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In order to select the value of α, we follow the same method as we did in selecting α for (10), observing that
we can re-write (19) in the form of a Gaussian kernel:

L(P |Q) ∝ exp

(
−1

2

[
− 2

α
ln

(
1− DJS(P,Q)

ln(2)

)] )
(20)

In a manner analogous to (11), we observe that we can fit − ln(1−DJS/ ln(2)) to a gamma distribution:

− ln

(
1− DJS(P,Q)

ln(2)

)
∼ α

2
X 2

(ν) ≡ Γ
(
κ =

ν

2
, θ = α

)
(21)

Like we did in the Wasserstein likelihood, we can estimate α by constructing a set of trajectories and corre-
sponding distances DQ = {DJS(X(Qi), Q)|i ∈ 1, 2, ..., N}, which we fit to the gamma distribution in (21). Using

the closed form unbiased estimator θ̃ given in (12), we get the same estimator, α̃ = θ̃.

3 Experiments and Results

3.1 Correlation Integral Likelihood

We recall that the Correlation integral method proposed by Haario et al. employs the idea that samples from
the same attractor probability distribution exhibit similar statistics in the correlation domain. We assume that
the correlation integral vector of an attractor is distributed (asymptotically) according to a Gaussian distribution
given by (5), whose mean and covariance are selected empirically according to the observed distribution of the
correlation integral vector about the parameters that provide the best fit for the model. If these parameters are
known and we only want to produce an estimate of the uncertainty of the parameters, then we simply follow the
procedure outlined above. However, if we cannot even supply an educated guess of the best fit parameters, we
must use another method that provides some guarantee of of a global minimum at the optimal fit. Because this
method provides a measure of likelihood about a proposed model fit, not of a distance from it, we caution the
reader against using this method to “bootstrap” the way to an optimal fitting.

Assuming that we can produce a set of parameters that optimally fit the data, we remark that the Haario
method makes few additional assumptions about the data in the process of formulating the parameter space
likelihood function. Being a data-driven approach, the likelihood function is calculated in terms of the data itself,
not in terms of its underlying probability distribution. To better understand the efficacy of this approach, we
performed several experiments that show how the likelihood given in (5) varies with the parameters of chaotic
systems. In this method as well as the methods below, we focus on the Lorenz63 system (1).

The first experiment we conducted examined the shape of the likelihood function, varying only one parameter
at a time from the nominal values of Lorenz63. Both the nominal data set and each candidate data set (X and
X′) were produced by integrating the Lorenz63 system from t = 0 to t = 500 to produce a trajectory. 3000 points
were sampled from each trajectory at uniform time intervals from t = 20 to t = 500 so that the time interval
where the trajectory is converging to the attractor is excluded. The correlation integral mean and covariance (µcr

and Σcr in (5)) were estimated as the mean and covariance of 600 independently sampled trajectory datasets.
These trajectory datasets were produced under the nominal conditions, but with initial conditions selected from
a 3D Gaussian distribution with µ = (0, 0, 0) and σ = 0.5. The results are plotted in Figure 3:
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Figure 3: The correlation integral likelihood under variations of each parameter from the nominal values of
Lorenz63

Although the likelihood is maximized at the nominal parameters and appears to be unimodal, we can see that
it is not entirely smooth. We observe the most noise in the likelihood as we vary the value of σ. In Figure 4,
we vary two parameters at once. Although we still see noise in the posterior, the covariances between variables
emerges:

Figure 4: 2D slices of the Lorenz63 correlation integral likelihood function. For each slice, the invariant parameter
is fixed at the nominal value.

Finally, we produced samples from this likelihood through Hamiltonian Monte Carlo (HMC) sampling with
a uniform prior. Due to the expensiveness of integrating the system to produce each proposal likelihood in the
sampling process, we used a 3D linear interpolation surrogate which approximated the value of the correlation
integral vector likelihood. To construct this interpolation, the correlation integral likelihood was calculated
exactly across a regular 25x25x25 grid centered at the nominal parameters. Values outside this regular grid were
treated with likelihood 0 under a uniform prior, which was restricted to the support of the grid. We opted for
the linear surrogate because it was computationally inexpensive to fit, and the gradient of the likelihood function
could be calculated easily. Also, it allowed us to increase the sampling resolution without needing to recompute
the entire surrogate. The marginals of the posterior samples obtained through the sampling procedure are plotted
in Figure 5.
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Figure 5: Posterior of Lorenz63 generated from HMC sampling of the Correlation integral likelihood with a
uniform prior.

We observe that the posterior is distinctively Gaussian, with the means and modes attained close to the
Lorenz63 nominal values (σ, ρ, β) = (10, 28, 8/3). Of particular note are the covariances, which are positive on
the sigma-beta marginal, negative on the rho-beta marginal and slightly negative on the sigma-rho marginal.

3.2 Wasserstein Distance Likelihood Approximation

Recalling the definition of the Wasserstein metric given by (9), we see that attempting to find a strategy function
γ with marginals P and Q that minimizes Eγ [ ‖P −Q‖ ] is difficult without making some simplifying assumptions
about P and Q. In this paper, we shall assume that the density of both P and Q are continuous and bounded
in the state space such that they can be expressed as a uniform limit of the finite union of N disjoint regions of
uniform density, as written in (22):

P = lim
N→∞

N∑
i=1

(ρCN i)1{CNi}, where: supp(P ) =

N⊔
i=1

CNi,
N∑
i=1

ρCNi
= 1 (22)

While (22) seems to be a straightforward assumption to make, it does not hold under all parameter sets of
chaotic systems. In the case of Lorenz63, there exist some parameter configurations that produce limit points
and limit cycles, both of which have degenerate distributions in the state space [4]. For the remainder of this
paper, we will assume that the parameters being estimated are not degenerate and that (22) holds.

Once we can produce a discretization of both P and Q, we can more easily determine the Wasserstein distance
by formulating it as a discrete optimal transport problem. Suppose for some sufficiently large N we decompose
the support of P and Q into connected regions CPi and CQi

, with respective means µPi and µQi and respective
densities ρCP i and ρCQi. Let p and q be the vectors of all N respective region densities (e.g. p = [ ρCP 1 ρCP 2 ... ]T ).
This simplifies the original function space Γ(P,Q) to be a set GP,Q of N ×N matrices with entries on [0, 1], such
that for every G ∈ GP,Q, the column vectors sum to p and the row vectors sum to qT . Finally, let K represent
the kernel distance matrix where Kij = ‖µPi − µQj‖. We can now formulate the discrete approximation of
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the continuous Wasserstein metric, which we refer to by its more common name as the discrete “Earth Mover’s
Distance” (EMD) problem given in (23):

EMD(p,q; K) = min
G∈GP,Q

N∑
i=1

N∑
j=1

GijKij (23)

This discrete EMD problem can be solved through traditional constrained linear optimization methods, such
as linear programming, or constrained gradient descent [1]. We will not provide a detailed discussion of these dif-
ferent methods here, however we will remark that the linear programming formulation provides an exact solution
with an asymptotic run time of O(N3), while constrained gradient descent provides a close approximation with
varying run time [1].

To determine how well the solution to the discrete EMD problem approximates the true Wasserstein distance,
we first observe that we can use the triangle inequality to bound the Wasserstein metric from below by the
difference in distribution means (∆µ) and from above by the discretized EMD plus the sums of the region radii
(e.g: R(CPi)), as shown in (24):

∆µ ≤W (P,Q) ≤ EMD(p,q; K) +

N∑
i=1

[
R(CPi)ρCPi

+R(CQi)ρCQi

]
,

where ∆µ = ‖E[P ]− E[Q]‖ =

∥∥∥∥∥
( N∑
i=1

µPi(ρCPi
)

)
−
( N∑
i=1

µQi(ρCQi
)

)∥∥∥∥∥ (24)

and R(CPi) = sup
x∈CPi

‖µPi − x‖

From the perspective of a physical transport problem, we can interpret the lower bound of the EMD as being
the amount of “work” required to shift the center of mass of P to be that of Q. We can also interpret the upper
bound as the discrete EMD plus an upper bound amount of “work” required to convert P and Q into degenerate
mass point distributions located at the means of their respective regions. If we let Pδ and Qδ be the Dirac
delta mass point approximations of P and Q respectively, where they discretely attain the mean of each region
(e.g. µPi) with probability equal to the region’s density (e.g. ρCPi

). Having defined these distributions we can
generalize the righthand side of (24) as the pair of inequalities in (25), recalling that the Wasserstein distance is
a metric:

W (P,Q) ≤W (P, Pδ) +W (Pδ, Qδ) +W (Qδ, Q)

and W (Pδ, Qδ) ≤W (Pδ, P ) +W (P,Q) +W (Q,Qδ) (25)

Since W (P, Pδ) + W (Q,Qδ) ≤
∑N
i=1

[
R(CPi)ρCPi

+R(CQi)ρCQi

]
, and by definition W (Pδ, Qδ) = EMD(p,q; K),

we get (26):

|W (P,Q)− EMD(p,q; K)| ≤
N∑
i=1

[
R(CPi)ρCPi

+R(CQi)ρCQi

]
(26)

This gives us an approximation error bound of the discrete EMD with respect to the actual Wasserstein
distance between P and Q. So long as we can guarantee that the right side of (26) decreases to 0, then our
approximation converges to the actual value of the Wasserstein metric. However, in practice we will be working
with samples from the attractor random variables P and Q instead of the distributions themselves. We will also
have to produce the regions CPi and CQi in such a manner that as N →∞, the righthand side of (26) vanishes.
In order to meet this condition, we must ensure that the radii of the disjoint regions are approximately equal,
which we can achieve through k-means clustering on the observed trajectories.

Because the k-means algorithm minimizes the mean square distance of each point to its respective cluster
mean, it produces clusters with approximately the same maximal radii. Furthermore, when we increase the num-
ber of clusters discovered (k = N), we decrease the average estimated density of each cluster. Since these two
conditions are satisfied through k-means clustering, the righthand side of (26) vanishes and we attain convergence
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to the actual Wasserstein distance given sufficiently large attractor samples and a sufficiently large value of N .

We now shift our attention toward employing this approximation as a notion of distance between Lorenz63
attractors. In the first experiment we conducted, we varied one parameter at a time from the nominal values
of Lorenz63 and plotted the corresponding EMD metric approximation for N = 256 and N = 1024 clusters
respectively. In order to solve each discrete EMD problem, we used a linear programming formulation to obtain
an exact solution. The results of this initial experiment are given in Figure 6:

(a) EMD Metric (256 clusters)

(b) EMD Metric (1024 clusters)

Figure 6: EMD approximation metric under variations of single parameters from the nominal values of Lorenz63.

We can see that there exists a significant amount of noise in the EMD discretization; however, the noise
decreases as the number of clusters increases. As we vary two parameters at once from the nominal values, we
obtain the likelihood plots shown in Figure 7:
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Figure 7: 2D slices of the Lorenz63 Wasserstein likelihood function as given in (10) for fixed α = 1. To approximate
the actual Wasserstein distance, 1024 clusters were used. In each slice, the invariant parameter is fixed at the
nominal value.

Although we observe a distinct correlation among the parameters in the figures above, we note that there
is also significant noise the likelihood function, even under the 1024-cluster approximation of the Wasserstein
metric. We also observe that the EMD approximation tends to produce small “pockets” of high likelihood in the
likelihood function. We can see examples of this close to the bifurcation region where β ≈ 4.0 and ρ ≈ 29.2.

In order to obtain information about the posterior distribution, we must first estimate the true value of α in
(10), which we obtain by producing data sets under the fixed nominal parameters with varying initial conditions.
Taking the squares of the observed approximate Wasserstein distances from the nominal data set, we obtain the
density plot given in Figure 8b. Using the estimator α̃ = θ̃, where θ̃ is given in (12) we obtain our estimate of α:

(a) (b)

Figure 8: Posterior samples of Lorenz63 generated from HMC sampling of the 1024-cluster EMD likelihood with
a uniform prior (a) and the gamma distribution used to select the parameter α in the likelihood function (b).
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After producing 1000 samples under random initial conditions, we obtained the estimate of α̃ = θ̃ = 4.425
for the nominal parameters of Lorenz63. Using this value of α, we produced samples from the likelihood func-
tion given in (10) through HMC sampling. We used the same linear likelihood function surrogate as with the
correlation integral sampling. In contrast to the correlation integral posterior, we see that the noise in the EMD
approximation resulted in a high value of α being selected, which in turn resulted in the high degree of variance
observed in the posterior samples in Figure 8a.

3.3 Divergence Likelihood Approximations

We recall that the family of KL divergence distance measures all have the desirable property of additivity. That
is, we are able to split up the domain of integration on which the KL divergence in (13) is evaluated. Like the
Wasserstein metric, it is difficult to evaluate exactly, so we resort to an approximation that takes advantage of this
additivity property. However, we also must be careful about the assumptions that we make in this approximation
scheme, as some parameter configurations produce degenerate attractor structures as discussed earlier. Thus,
we proceed once again under the assumption that (22) holds. After making this assumption, we can produce a
discrete approximation of the KL divergence (DKL) and consequently produce approximations for the family of
KL divergence distance measures (DKL, DsymKL, DJS). Suppose we have two attractor random variables P and
Q and the intersection of their support can be decomposed into N disjoint regions, Ci for i ∈ 1, 2, ..., N . For each
region we calculate uniform densities respective to both distributions (ρPi and ρQi, for i ∈ 1, 2, ..., N) such that
they sum to unity. The discretization of the KL divergence is given by (27):

DKL(P |Q) ≈
N∑
i=1

ρPi ln

(
ρPi
ρQi

)
(27)

We observe that because DKL is unbounded it can be sensitive to the selection of the regions Ci, particularly
if there are regions of Q with a very small density ρQi . This can be problematic because we are in fact working
with samples from P and Q (X′ and X respectively). To remedy this issue, for each region Ci we estimated the
density of the attractor distributions using Gaussian kernel density estimates (KDEs) with bandwidths selected
according to Scott’s Rule [3]. For each cluster, we sampled the density of the KDE at points on a regular mesh
containing each cluster and computed an average density weighted by the volume of each cluster. Letting GCi
denote the set of points in each regular mesh, ρXi(g) for g ∈ GCi denote the density at a mesh point g, and
V (GCi) denote the volume of Ci, we can produce a better approximation with (28):

DKL(X′|X) =

N∑
i=1

V (Ci)
Z

 ∑
g∈GCi

ρX′i(g) ln

(
ρX′i(g)

ρXi(g)

) , where Z =

N∑
i=1

V (Ci) (28)

In terms of (28) the JS divergence can be approximated by (29):

DJS(X′,X) =
DKL(X′|M) +DKL(X|M)

2
, where ρMi(g) =

ρX′i(g) + ρXi(g)

2
(29)

Using this definition of the JS divergence, we performed some simple experiments in which one parameter of
the Lorenz63 system was varied at a time. As mentioned above, we gave preference to the use of the JS divergence
over the other KL divergence-based metrics, due to its symmetry and nondegeneracy. To approximate the JS
divergence, 8 clusters were identified and regular 25x25x25 meshes were used to sample the KDE in each cluster.
The results of this experiment are summarized in Figure 9:
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Figure 9: The KDE approximation of the JS divergence under variations of each parameter from the nominal
values of Lorenz63.

We note that the JS divergence provides a smooth distance metric that decreases nearly monitonically as the
parameters approach the nominal values. In particular, we note that the divergence maintains its monotonicity
even at the point β = 3.5 where the Lorenz63 attractor bifurcates. We see the same smoothness when we
embed the JS divergence approximation given by (29) into the empirical likelihood function (19) for a fixed scale
parameter α. Some 2D slices of this likelihood function are shown in Figure 9:

Figure 10: 2D slices of the Lorenz63 empirical likelihood function. For each slice, the invariant parameter is fixed
at the nominal value.

We remark that this approximation if the JS divergence produces a distance measure between probability
distributions that is much smoother and less computationally expensive to approximate than the Wasserstein
metric. We also observe in Figure 10 that while the β-ρ relationship in the likelihood function is approximately
Gaussian, the other bivariate relationships appear to be non-Gaussian and significantly differ from those observed
in the correlation integral likelihood and the Wasserstein likelihood. We conjecture that this is due to the fact
that information-based distance measures are agnostic toward the relative positions of points of high and low
likelihood. Indeed, the KL divergence can be shown to be invariant under affine transformations, which eliminates
any bias and variance that may be induced from scaling and normalizing the data.

In order to select the value of α in the likelihood function, we use the estimator given in (12). Fixing the
parameters at the nominal values, we generated 1000 trajectories by selecting initial conditions close to the origin
and approximated their JS divergence from the nominal dataset. Calculating − ln(1−DJS(X′,X)/ ln(2)) for each
sample as described in (20), we obtained the pdf given in Figure 11b. Fitting the pdf to a gamma distribution,
we obtained α̃ = θ̃ = 2.31 ·10−3. Finally, we used HMC sampling to obtain the posteriors as shown in Figure 11a.
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(a) (b)

Figure 11: Posterior samples of Lorenz63 generated from HMC sampling of the JS divergence likelihood (a) and
a uniform prior and the gamma distribution used to select the parameter α in the likelihood function (b).

In contrast to the the correlation integral posteriors, the JS divergence likelihood produced samples that are
distinctively non-Gaussian, with positive correlations among all pairs of parameters. The means and modes of
the posterior were close to the Lorenz63 nominal values (σ, ρ, β) = (10, 28, 8/3) and were comparable the means
and modes of the posterior samples obtained from the correlation integral likelihood.

3.4 Comparison of Methods

In Figure 12, we give some summary statistics of the three distance measures studied in this paper:

Method Nominal Value Mean Covariance Matrix
Sigma Rho Beta

Correlation Sigma 10.00 10.13 0.120 0.046 0.001
Integral Rho 28.00 28.07 0.046 0.063 −0.006

Beta 2.67 2.66 0.001 −0.005 0.001
Wasserstein Sigma 10.00 10.22 ∗ 1.237 −0.042 0.065
Metric Rho 28.00 28.04 ∗ −0.042 0.523 0.059

Beta 2.67 2.645 ∗ 0.065 0.059 0.053
JS Divergence Sigma 10.00 10.08 0.025 −0.012 0.003

Rho 28.00 27.98 −0.012 0.020 −0.003
Beta 2.67 2.68 0.003 −0.003 0.001

Figure 12: A table of statistics of the HMC posterior samples.

We remark that all three methods produced means close to the nominal values of the parameters. However,
the means produced by the Wasserstein metric (marked with ∗) may be a result of influence from the uniform prior
used in the HMC sampling, and thus they may not accurately reflect the true expected value of the distribution.
This is a consequence of the noise in the 1024-cluster EMD approximation as seen in Figures 6b and 7, which
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resulted in a high value of α being selected. Of the remaining two metrics, we note that the JS divergence method
performed slightly better than the correlation integral method, producing a mean closer to the nominal value
with slightly less variance.

4 CONCLUSION

In this paper we evaluated the efficacy of three candidate distance measure concepts that can be employed in
determining the parameters of Lorenz63. We first investigated the use of the correlation integral method (5)
as proposed by Haario et al. We then proposed an approximation scheme for both the Wasserstein distance
metric and the Kullback-Leibler divergence. We adapted the KL divergence approximation to estimate the
Jensen-Shannon divergence. These two distance measures were converted into empirical likelihood functions by
embedding them in a Gaussian kernel (see (10), (19)) and selecting the scale parameter α according to (12). Each
of these three methods were evaluated on the canonical Lorenz63 System given by (1). Although the Wasserstein
metric proved difficult to approximate without significant error, both the JS divergence method and correlation
integral method produced good estimates with low variance. In comparison, the JS divergence method produced
a slightly better parameter estimate with slightly less variance in all of the parameters.

Future directions of this work include the analysis of these methods to other canonical chaotic systems and
eventually to high-dimensional chaotic systems. The use of information-based metrics in the KL divergence family
seems to be a promising avenue of exploration for modeling chaotic dynamical systems.
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