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Abstract

A number of metrics exist for quantifying the complexity of academic program curricula. Com-
plexity in this case relates the extent to which the structure of a curriculum impacts a student’s
ability to progress through that curriculum towards graduation. The ability to quantify curricular
complexity in this manner allows us to order programs according to their complexity, and to com-
pare and contrast similar programs at different institutions according to these complexity measures.
When sharing this type of information with faculty and program administrators, those at programs
at the higher end of the complexity scale often speculate that high complexity implies a higher
quality program. Which leads to the more general question, what does curricular complexity tell
us about program quality? In cursory investigations of this conjecture, a surprising relationship
emerged. Specifically, anecdotal review provided significant evidence to support the proposition
that higher quality engineering programs have lower complexity curricula. It is worth noting that if
this proposition is indeed true, then the contrapositive proposition, that higher complexity curricula
imply lower quality programs also holds. In this study we collected a sufficient amount of data to
determine the veracity of this proposition for undergraduate electrical engineering programs.

The methodology employed in this study involved partitioning a large set of undergraduate elec-
trical engineering curricula into three categories (top tier, mid tier and bottom tier) according to
their quality. The curricular complexity variance within and between these groups was then ana-
lyzed using ANOVA methodologies. Because program quality is a subjective measure, we used the
2018 U.S. News & World Report Best Undergraduate Engineering Program rankings as a proxy
for quality. The first group included schools in the top decile of this ranking, the medium group
included schools from the fourth and fifth deciles, and the low group included those schools that
were grouped together at the bottom of the list (approximately the bottom decile). The null hypoth-
esis was that there are no significant differences between the intragroup and intergroup curricular
complexity measures. This analysis found that with a low margin of error, and a 95% confidence
interval, the null hypothesis should be rejected. Furthermore, the most significant difference was
between the set of highly-ranked programs and the lowest-ranked programs, with a less pronounced
difference between the medium- and lowest-ranked programs.



It is generally the case that higher ranked schools admit better prepared students, and they have
more resources available to support these students than do lower ranked schools. Thus, we expect
the students at higher ranked schools to graduate at higher rates than those at lower ranked schools.
The study reported in this paper shows that electrical engineering undergraduate students at higher
ranked schools receive another student success advantage; namely, they encounter less complex
curricula.

Introduction

Over the past few years we have developed a number of metrics for quantifying the complexity
of academic program curricula.5, 7, 11 This has led to the development of a curricular complexity
metric that directly relates how the structure of a curriculum impacts a student’s ability to progress
through that curriculum to graduation. We refer to the general study of how program curricula
impact student academic success as curricular analytics. Research in this area demonstrates that
according to these complexity metrics, engineering programs tend to be among the most complex
curricula at a university. This is attributed to the large number of prerequisites that accompany
many of the courses in engineering programs, as well as the long prerequisite chains that tend to
exist in these curricula.

To gain a better understanding of the aforementioned factors, consider the electrical engineering
degree plan shown in Figure 1, offered by a university in the southwest of the United States that has
a high curricular complexity score. The analysis provided in this figure was created by utilizing
the Curricular Analytics Toolbox, an open source framework created for the purpose of analyzing
university curricula.6 The complexity associated with a given course c is a function of the number
of courses that are “blocked” by c (i.e., the number of courses that cannot be attempted until c
is successfully completed), and the longest path in the curriculum that c is on. The complexity
associated with a term is given by the sum of the complexities of the courses in the term, and the
complexity of a curriculum is given by the sum of the complexities of the courses in the curriculum.
We previously demonstrated a direct relationship between the complexity of a curriculum and a
student’s ability to complete that curriculum.5

Curricular analytics metrics have been used by curriculum committees to assess the potential im-
pact of particular curricular reforms, and to compare similar programs at different schools. These
analyses reveal that in many disciplines there exist significant variances in curricular complexity
between the curricula implemented at different institutions. For instance, in Figure 2 we show
the electrical and computer engineering degree plan at a university located in the northeast of the
United States, a program with a low curricular complexity score.

What is remarkable about the two programs shown in Figures 1 and 2 is that they have nearly iden-
tical student learning outcomes. In particular, both programs list the eleven ABET student learning
outcomes, and they both include the additional program requirements ABET stipulates should
accompany electrical, computer, communications, telecommunication(s) and similarly named pro-
grams.4 Furthermore, both programs have ABET accreditation. Thus, experts in the discipline have
independently certified the quality of these programs and have determined that both programs pro-
duce graduates who successfully attain the required learning outcomes. However, from a structural



Figure 1: The eight-term degree plan for the electrical engineering bachelor of science program
at a university located in the southwest for the 2017-18 academic year. The eighth-term Senior
Design course (ECE 4336) is selected in this degree plan. The highlighted courses, 25 in total,
must all be successfully completed before a student may attempt ECE 4336. The longest path in
this curriculum, shown as a dashed blue line, starts at Calculus I (MATH 1431), terminates at ECE
4336, and includes twelve total courses. The complexity of a course is given by the number inside
the course vertex and the complexity of a term is shown beneath each term. The complexity of the
entire curriculum is 487. This visualization was created using the Curricular Analytics Toolbox.6



Figure 2: The eight-term degree plan for the electrical and computer engineering bachelor of sci-
ence program at a university located in the northeast for the 2017-18 academic year. The fifth-term
Intelligent Physical Systems course (ECE 3400) is selected in this degree plan. In this curriculum,
there are ten courses that must be successfully completed before a student may attempt ECE 3400,
and ECE 3400 is on one of the longest paths in the curriculum, which includes five courses. The
complexity of a course is given by the number inside the course vertex and the complexity of a term
is shown beneath each term. The complexity of the entire curriculum is 118. This visualization
was created using the Curricular Analytics Toolbox.6



perspective, it is readily apparent that these two curricula are significantly different. Indeed, the
structural arrangement of the courses and the prerequisites produce a curricular complexity metric
for the electrical engineering program shown in Figure 1 that is more than four times the curricular
complexity metric of the electrical and computer engineering program shown in Figure 2.

When sharing curricular analyses of the type shown in Figures 1 and 2 with engineering program
faculty and administrators, some at programs with higher curricular complexity have speculated
that higher complexity may be an indicator of higher program quality. The experiments described
in the following sections were designed to address this speculation. More specifically, in the fol-
lowing sections we describe a set of experiments that addresses this question for the case of under-
graduate electrical engineering programs at doctoral-granting institutions.

An interesting feature of this study is that nearly every program considered has the same ABET
accreditation. Thus, as mentioned above, they share the same set of student learning outcomes,
and are therefore equivalent in the sense that they all produce competent engineers. Furthermore,
the courses that are offered appear very similar across these curricula. For instance, they all appear
to include Calculus I in the first term of the freshman year, and a Circuits course in the sopho-
more year, etc. There is, however, extreme variability in the way different electrical engineering
programs structure their curricula. Some programs include a larger number of courses (and credit
hours) and are tightly prescribed in that they stipulate a larger number of prerequisites for key
courses, as exemplified by the curriculum in Figure 1. Other programs have fewer courses (e.g.,
they meet the 120-credit-hour minimum that regional accreditors expect) and they provide more
freedom by having fewer prerequisites for key courses, and a proportionally larger number of elec-
tive courses, as exemplified by the curriculum in Figure 2.

Methodology

A formal and rigorous assessment of the “quality” of engineering programs that could be used as
a basis for fine-grained comparisons of programs requires one to establish a set of quality metrics,
as well as a means for fairly and accurately assessing them. Even arriving at agreement on a set
of quality metrics is problematic, as most programs would argue for the creation of metrics (and a
weighting of these metrics) that align with their particular institutional values and emphases. Thus,
no agreed upon nationally or internationally normed quality rubric that can be used to compare
engineering programs at a sufficient level of detail is likely to be developed. ABET accreditation
standards, on the other hand, have been created to ensure that engineering programs operate above
a certain quality threshold. An engineering program either receives ABET accreditation or not,
there are no “degrees” of ABET accreditation that might be used to constitute a ranking. An
opinionated ranking of engineering programs according to their quality is therefore the best that
we can hope for.

The most well-known rankings in higher education are conducted by the U.S. News & World
Report. In this study we used the rankings provided by the U.S. News & World Report 2018
Best Undergraduate Engineering Programs survey as a proxy for program quality. That is, for the
purpose of this study, we assume that the “best” engineering programs are synonymous with the
highest quality engineering programs. We acknowledge the concerns routinely expressed regard-



ing these rankings.1, 2 However, it should be noted that this study uses aggregations of schools
within tiers, and the statistics associated with these aggregations. Thus, the specific rankings of
the schools within the tiers are irrelevant, all that matters is the tier in which a school is placed.
Upon inspection of the schools within each tier, we believe that knowledgable and impartial ob-
servers would agree that the three tiers constructed in this study are highly correlated with program
quality.

To appear on a U.S. News & World Report undergraduate engineering survey, a school must have
at least one undergraduate engineering program that is accredited by ABET. Two surveys are con-
ducted, one for schools whose highest engineering degree offered is a doctorate and another for
schools whose highest engineering degree offered is a bachelor’s or master’s. For this study we
consider the ranking provided by the former; that is, the ranking of doctoral institutions. This
ranking is based solely on the peer assessment provided by deans and senior faculty members at
doctoral institutions, and involves asking these survey participants to rate each program they are fa-
miliar with on a scale from 1 (marginal) to 5 (distinguished). Two peer assessment surveys are sent
to each ABET-accredited engineering program at these schools, with a response rate of approxi-
mately 58%. U.S. News & World Report uses the two most recent years’ responses to calculate
weighted average scores of programs, which determines the ranking. The U.S. News & World
Report 2018 Best Undergraduate Engineering Programs rankings for doctoral institutions lists 205
schools, with a formal ranking designation given to the programs in the 1-177 range. Programs
ranked lower than 177 are listed alphabetically and lumped into a ranking category.

Experiment Design

The question of interest in this study is whether or not curricular complexity is related to pro-
gram quality. In order to answer this question, we constructed an analysis of variance (ANOVA)
experiment that involved partitioning the schools in the U.S. News & World Report 2018 Best
Undergraduate Engineering Programs rankings according to their decile within the ranking. From
these deciles, three tiers were created as follows. A top tier of schools defined as those in the first
decile of the ranking. A mid tier, defined as the set of schools in the fifth and sixth deciles of the
ranking that are equidistant from first to last ranked schools. A bottom tier of schools comprised
of the schools ranked below 177, which spans a little more than one decile at the bottom of the
ranking. The null hypothesis is, “there is no difference between the mean values of the curric-
ular complexities of those schools belonging to the top, mid and bottom tiers.” The alternative
hypothesis is then, “at least one of the curricular complexity mean values of a school tier differs
significantly from the means of the other two tiers.”

The ANOVA analysis involves random sampling of schools within each of the three tiers. In
order to ensure the analysis is able to distinguish between actual curricular complexity differences
among the tiers, and random variation, sufficient sample sizes must be determined. Under the
assumption that the curricular complexity distributions within the tiers are approximately normal,
with variance σ2, the number of samples that should be selected from each tier is given by

n =

(
σZ

E

)2

, (1)



where Z is the confidence interval expressed using deviation within the standard normal distri-
bution, and E is the margin of error. To obtain an estimate of σ, pilot samples from each of the
three tiers were taken, yielding the estimate σ̂ = 90. For a 95% confidence interval, which cor-
responds to Z = 1.96, the margin of error will be 40 curricular complexity points, i.e., 20 points
on either side of the mean for a tier. Using these values in Equation (1) leads to sample sizes of
n1 = n2 = n3 = 20, where n1, n2 and n3 are the sample sizes for the top, medium and bottom tiers,
respectively. Thus, by sampling at least 20 schools from each tier, we can have 95% confidence
that the error in this analysis will be by no more than 40 curricular complexity points.

In order to test the null hypothesis using ANOVA, we must assume the curricular complexity
values of the schools within each tier are normally distributed, and that all three tiers have the
same variance σ2. It should be noted that these conditions can be moderately relaxed (particularly
the normality assumption) and the analysis will remain valid.9

The ANOVA method partitions the total sum of squares of the deviations in curricular complexity
across all schools into two independent parts, one that is attributed to the independent variable (pro-
gram quality in this case), and a remainder that is attributed to random errors arising from other
factors not accounted for in this experiment. That is,

TSS = SST + SSE, (2)

where TSS denotes the total sum of squares of deviations, SST represents the sum of squares of
the deviations between the tiers, and SSE is the sum of squares attributed to errors or noise. More
specifically, if we let ccij denote the curricular complexity of the j th school sampled from the ith

tier, then

TSS =
3∑
i=1

ni∑
j=1

(ccij − cc)2 , (3)

where cc is the sample mean for all samples drawn over all tiers. The sum of squares deviation
between the tiers is given by

SST =
3∑
i=1

ni
(
T i − cc

)2
, (4)

where Ti is the total curricular complexity of the schools sampled from the ith tier, and T i =
Ti/ni, i = 1, 2, 3, are the tier sample averages. Note that when the sample means for the three tiers
are the same, SST = 0.

Substituting Equations (3) and (4) into Equation (2) and solving for SSE yields:

SSE =
3∑
i=1

ni∑
j=1

(
ccij − T̄i

)2
. (5)

The unbiased estimator of σ2 based on n − 3 degrees of freedom is given by the mean square
error,

MSE =
SSE

n− 3
, (6)



where n = n1 + n2 + n3. The mean square for the tiers has 2 degrees of freedom, i.e., one less
than the number of tiers, and is therefore

MST =
SST

2
. (7)

In order to assess the statistical significance of a decision to reject the null hypothesis, an F -test is
conducted to compare the deviation among the tier variances. The F -test statistic is given by

F =
MST

MSE
.

Note that the F -test is a ratio that compares the mean square variability between the tiers to the
mean square variability within the tiers. Thus, as F -test values increase above 1, the data are
increasingly inconsistent with the null hypothesis, and the null hypothesis should be rejected when
F > Fα, where Fα is the critical value of F where the probability of a type I error is α.

For the F distribution with (2, 65) degrees of freedom, F0.05 = 3.15. That is, if the F -test for
the experiment yields a value greater than 3.15, we can reject the null hypothesis with only a 5%
chance of doing so in error.

Results

According to the sample size analysis provided above, at least 20 schools were randomly sam-
pled from each tier. From the top decile of the News & World Report ranking, 21 schools were
sampled, which constitute nearly the entirety of the schools in this tier, and include: California
Institute of Technology, Carnegie Mellon University, Columbia University, Cornell University,
Duke University, Georgia Institute of Technology, Johns Hopkins University, Northwestern Uni-
versity, Princeton University, Purdue University, Rice University, Stanford University, Texas A&M
University–College Station, University of California–Berkeley, University of California–Los An-
geles, University of California–San Diego, University of Illinois–Urbana-Champaign, University
of Michigan–Ann Arbor, University of Texas–Austin, University of Wisconsin and Virginia Poly-
technic Institute and State University.

A total of 21 schools were sampled from the middle tier of the U.S. News & World Report
ranking, including: Brigham Young University, Clarkson University, Embry-Riddle Aeronautical
University, George Washington University, Indiana University-Purdue University–Indianapolis,
Louisiana State University–Baton Rouge, New Jersey Institute of Technology, Oklahoma State
University, San Diego State University, Southern Methodist University, Texas Tech University,
University of Alabama, University of California–Riverside, University of California–Santa Cruz,
University of Cincinnati, University of Houston, University of Kentucky, University of Miami,
University of Missouri, University of North Carolina–Charlotte and University of Oklahoma.

Finally, 21 schools were sampled from the bottom tier of the News & World Report ranking.
These schools include: Florida Atlantic University, Jackson State University, Lamar University,
Morgan State University, Oakland University, Prairie View A&M University, South Dakota State



Figure 3: The curricular complexity histogram for all schools included in the study. The average
complexity value of these schools is 273.6, with a standard deviation of 104.2.

top bottommid

Curricular Complexity

Figure 4: The curricular complexity histograms of the schools in the study, disaggregated by tier.
Note that these are approximately normal with similar variances. The top tier sample has an av-
erage curricular complexity of 188 with a standard deviation of 90. The mid tier sample has an
average curricular complexity of 285 with a standard deviation of 81. The bottom tier sample has
an average curricular complexity of 337 with a standard deviation of 76.

University, Tennessee State University, Texas A&M University–Kingsville, Texas State Univer-
sity, Tuskegee University, University of Bridgeport, University of Denver, University of Detroit
Mercy, University of Louisiana–Lafayette, University of Missouri–Kansas City, University of
New Orleans, University of North Dakota, University of North Texas. University of Tennessee–
Chattanooga, Western Michigan University.

A histogram showing the curricular complexity distribution of all schools included in the study
(i.e., the schools sampled to form all three tiers) is provided in Figure 3. The distribution of
school complexities in this figure appears approximately Gaussian with µ = 273.6 and σ = 104.2.
However, when the school complexities are disaggregated by the previously defined tiers, as shown
in Figure 4, possible differences appear.

Box-and-whisker diagrams for each of the three samples, provided in Figure 5, shows the differ-
ences between the various statistics associated with these samples. These diagrams again indicate
that there are possible curricular complexity differences between the tiers. The question is whether



Figure 5: Box-and-whisker diagrams for each of the three samples taken from each of the three
defined tiers. The box for each tier encompasses the upper (75%) and lower (25%) quartiles, i.e.,
the interquartile range, of the curricular complexities of the schools in the sample, the line inside
the box is the median value of the sample, and the whiskers show the extreme curricular complexity
scores (excluding outliers) within each sample. Outliers (a curricular complexity score greater/less
than 1.5 times the upper/lower quartile) are shown as dots in the diagrams.

Sum of Squares Deg. of Freedom Mean Square F

Tiers 238494 2 119247 17.45
Error 409932 60 6832
Total 648426 62

Table 1: The results of the ANOVA analysis associated with the samples selected from the three
tiers of schools. The F -test statistic is 16.38.

or not the curricular complexity differences between the tiers are statistically significant. The
ANOVA analysis described in the prior section was applied to answer this question. Table 1 shows
the ANOVA statistics that resulted from applying the sampled data, including the outliers. Notice
that the F -test statistic obtained from this analysis is 17.45. Because

17.45 > F0.05 = 3.15,

the null hypothesis should be rejected. That is, with a low probability of error, the samples collected
from each tier indicate that the mean curricular complexity values of the tiers are different. This
result, along with the evidence given in Figures 4 and 5, provide strong evidence that higher quality
electrical engineering programs have lower curricular complexity, and that lower quality electrical
engineering programs have higher curricular complexity.

Discussion

We have demonstrated that an inverse relationship exists between the complexity of the curricula
in undergraduate electrical engineering programs and the perceived quality of these programs.



Specifically, at doctoral-granting engineering schools the complexity of the electrical engineering
undergraduate curricula at the highest quality schools (where quality is subjectively determined
by a survey proved to all schools in this category) is drastically less than the complexity of the
curricula at those schools judged to be at the lower end of this quality ranking. The average
complexity of those schools at the bottom of the raking is almost twice the average of those schools
in the top decile of the ranking. In addition, we demonstrated that this difference is statistically
significant; that is, this difference is due to something other than chance. Because the complexity
of a curriculum is a measure of the difficulty that students are expected to have completing that
curriculum, this difference has important student success implications. In particular, if we were
to equalize instructional factors (e.g., the difficulty of the courses in the curriculum, the support
services provided to students, etc.) and student background preparation, we would expect students
to graduate at a higher rate from the lower complexity curricula. This is indeed what we observe,
and the fact that this benefit is most pronounced in the highest quality programs deserves further
investigation. It is possible to produce arguments for both sides of a possible cause-and-effect
relationship between curricular complexity and program quality. Below we consider a few.

One might argue that because the top tier schools admit better prepared students they can offer
less complex curricula, as their students can more easily overcome any knowledge gaps that may
exist due to having fewer prerequisites prior to attempting a given course, as well as fewer total
courses in their curricula. It should be noted, however, that there are a number of schools out-
side the tier that have created pathways in the first year of their curricula that substantially reduce
curricular complexity.7 These curricular innovations have been demonstrated to significantly im-
prove graduation rates, as well as the attainment of program learning outcomes.8 That is, it is
possible to reduce the complexity of engineering programs that serve less-prepared students, while
actually improving program quality (as judged by outcomes). More generally, we note that the
principle of Occam’s razor is often applied to guide engineering designs towards the simplest and
therefore best solutions. One of the most popular versions of this principle states, “Entities are
not to be multiplied without necessity.” We posit that this study indicates this principle applies to
curricula. Namely, the simplest curriculum (in terms of complexity) that allows students to attain
a program’s learning outcomes yields the best student success outcomes and therefore the highest
quality program.
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