
AC 2007-1048: EDUCATIONAL COMPUTER SCIENCE FUN PROJECTS FOR
INTEGRATING MULTIDISCIPLINARY CONCEPTS OF MATHEMATICS,
SCIENCE, AND ENGINEERING

Mahmoud Quweider, University of Texas-Brownsville
Dr. M K Quweider is an Associate Professor and chair of the Computer Science/Computer
Information Systems at University of Texas at Brownsville/Texas Southmost College. He
received his Ph.D. in Engineering Science and an M.S. in Applied Mathematics, M.S. in
Engineering Science, and M.S. in Biomedical Engineering all from the University of Toledo,
Ohio. After graduation, he worked at several places including Pixera, a digital image processing
company in Cupertino, CA, and 3COM, a networking and communication company in
Schaumberg, IL. He joined the UTB/TSC in 2000. His areas of interest include Imaging,
Visualization and Animation, Web Design and Graphics.

Juan Iglesias, University of Texas-Brownsville
Dr. J R Iglesias is an Assistant Professor in the Computer Science/Computer Information Systems
at University of Texas at Brownsville/Texas Southmost College. He received his Ph.D. in
Computer Science from New Mexico State University (NMSU), New Mexico, USA, with
specialization in Databases, and the B.SC and M.S. in Computer Science from the National
Autonomous University of Mexico. He has worked as an Associate Director for the Federal
Electoral Institute (IFE), Mexico City, Mexico during the 1997 year. His areas of interest include
Databases, Programming Languages, Data mining, and Web Design, and e-Commerce Systems.

Amajd Zaim, University of Texas-Brownsville
Dr. A T Zaim is an Assistant Professor and the director of the VIB (Vision, Intelligence and
Bioinformatics) research group at University of Texas at Brownsville/Texas Southmost College.
He received his Ph.D. in Biomedical Engineering from the University of Toledo, Ohio and an
M.S. in Electrical Engineering, and M.S. in Biomedical Engineering Wright State University,
Dayton, Ohio. Having worked on multidisciplinary projects in 3D image-guided surgery early in
his PhD years, he developed a special research interest in medical image processing. Dr. Zaim
also led and managed two IT firms providing consulting for business and healthcare
organizations. He recently joined the computer science department of the UTB and is currently
conducting collaborative research with members of the VIB group as well as external healthcare
organizations.

© American Society for Engineering Education, 2007

P
age 12.573.1

Educational Computer Science Fun Projects for Integrating

Multidisciplinary Concepts of Mathematics, Science, and Engineering

Abstract

In our continuous efforts to increase recruitment, retention and graduation rates of our, mainly

minority, computer science and engineering students, we have recently embarked on an

ambitious and comprehensive transformation of a major sector of our Computer Science and

Engineering curriculum, the first stage of which is transforming the means by which major goals

and objectives of three key courses, Data and Information Structures (COSC-3345), Digital

Image Processing (COSC-4333), and Computer Graphics (COSC-4330) are achieved. The goal

is to integrate in a rather “fun and games” way basic concepts from mathematics, statistics,

signal and image processing, and computer graphics into a real-life game project. The three

courses are meshed synergistically through a well thought-out 2-D/3-D gaming project, which is

introduced in the junior level course and continues in the senior imaging and graphics courses.

In the new age of IPods, PlayStations, and Xboxes, it is hard to ignore the affinity young students

have for 3-D action-based and visually intense games; so rather than villainizing games and

ostracizing their use, we aim instead at using that inherent fondness of the games to the students’

advantage by relating key computer, engineering, and mathematical concepts to the fundamental

way games operate. By adhering to the guidelines and recommendations set forth by the ACME

and the Accreditation Board for Engineering and Technology (ABET) Technology Criteria 2000

for the Computer Science and Engineering programs, the CS/CIS department at our university

has continually modified and enhanced several facets of its programs to demonstrate that its

graduates possess specific mathematics, physics, engineering, and computer science skills

(outcomes) by their time of graduation. This paper describes our efforts to incorporate in a rather

fun and entertaining ways how to integrate major concepts in the above described fields in an

action-based game project which students find exciting and are easily able to relate to. Our new

experience showed that a Game-based project quickly attracts students and fosters student

communications, teamwork, and the development of analytical capabilities. The paper

additionally details the interdisciplinary strategy implemented by the department’s faculty in

conjunction with other departments in the college of Science, Mathematics, and Technology

(SMT) to integrate key concepts in the Mathematics and Physics areas in the game design

project.

P
age 12.573.2

Introduction

Games are fun! Such a statement is hardly disputed by any one, especially young students at the

college level, who are usually seen playing with their nifty and “cool” gadgets at dorms, bus-

stops, and cafes. But games are also complex to design and construct, as they incorporate many

disciplines especially those in the Science, Mathematics and Engineering areas. The question

which then presents itself is: Is there a way to combine the fun aspects of gaming with the

engineering and scientific principles they underline at the college level? Recent articles
1-5

 have

emphasized the role these games can play in “reversing the ongoing decline in computer science

enrollment,” by appealing to the “ubiquitous interest among teens and twentysomethings,” in

action-based games.

Additionally, games can present “real-world applications” to science and engineering majors

rather than the unrealistic short programs, presented in programming classes for example, with

their archaic number-sorting algorithms, and seemingly abstruse formulas; the same can be said

about the mathematical functions and equations, or physics laws, which at times can be seen as

void of a proper context to justify and reinforce their extreme importance. This paper presents

our efforts to bring major concepts in Science, Mathematics, Physics and Computer Science

together in a game-centric action-based project. The game consists of many modules, but we, as

a first stage effort, specifically target the game modules which relate to the following:

1. Mathematics and Physics

a. Relation to vector analysis, probability, transformations, integration and

differentiation, physics motion equations, exponential and doubly exponential

functions used in fogging.

b. Matrix operations for basic translation, rotation, and scaling.

2. Computer Science

a. Object Oriented Programming (OOP)

i. Classes and objects as game components

b. Data structures used in maintaining players information and statistics, game structure,

game resources

c. Hardware architecture of modern graphic-cards and game platforms

3. Signal and Image Processing

a. Filtering techniques related to gaming

b. Image pyramids, interpolation and zooming techniques

c. Images and bitmaps

4. Computer Graphics

a. Rendering techniques for basic geometric objects (lines, circles, polygons)

b. Texture representation

 In the following sections we describe the overall structure of the game and the targeted modules

as they relate to the game project, and give a suggestion as how to extend them to other design

projects.

P
age 12.573.3

Game Components

The game requirements are introduced to the students in their sophomore year with preliminary

work done on different pieces; however, the final game is actually implemented during the senior

year as a capstone project for the Computer Graphics (COSC-4330) course. Our intention, once

we have a good pool of completed projects, is to distribute, either in hand or though an on-line

portal/website, the best project from the previous offering as an exemplary project to learn from

and replicate in terms of best practices. This will serve two purposes: firstly, it will allow the

junior student to see how the end product should look like; and secondly, it will allow him to

relate the preliminary work done before the capstone project to where it meshes in the final

project.

The project requires the students to implement an action-based game which incorporates

multidisciplinary concepts from the following modules shown in figure 1. Before taking the

Computer Graphics course, the student would have taken the following courses in the proper

order, which are also shown in figure 1:

Calc I, II å Physics I, II, å Programming I, II, III, å Data and Information Structures å Digital Image Processing å Computer Graphics.

Course Sequence Recommendation

Figure 1. Course Sequence Recommendation

P
age 12.573.4

Figure 2. Game Overall Diagram

Figure 2 shows a diagram of the major components of the game as they relate to our targeted

areas. In the following we discuss these modules and present related material implemented in the

final game project.

1. Mathematics & Physics Modules

As mathematics represents a major part of any game, many mathematical concepts were

successfully integrated into the final game design.

1.1. Mathematical Functions

Many basic formulas and functions are put in perspective in the context of gaming. We discuss

two examples among many others that exist in almost every stage of the game. The first is

collision detection, such as when a plane is hit, is approached as a Euclidean distance measure

between two vectors (2-D or 3-D points), which falls within a given distance (the sum of the two

planes radii, considered as simple spheres). The algorithmic code for the collision detection can

be implemented as follows:

Function: Boolean bCollideTest
Parameters: Vector* Plane1, Vector* Plane2, float P1Radius, float P2Radius
{
 // Computer Difference Vector between the two planes
 Vector DistanceVector = Plane1->prPosition - obj2-> Plane2;
 // Find Scalar Distance
 dist = DistanceVector.x * DistanceVector.x +
 DistanceVector.y * DistanceVector.y +
 DistanceVector.z * DistanceVector.z;
 // Compare distance to the
 minDist = P1Radius + P2Radius;

P
age 12.573.5

 return dist <= minDist * minDist;
}

Another example where mathematical functions make absolute sense within the game context is

the difference between exponential functions, and the drastic effects they have on performance.

We use Fogging to demonstrate these differences. Fog is a general term that describes similar

forms of atmospheric effects. It can be used to simulate haze, mist, smoke, or pollution. For

gaming, Fog is essential in visual-simulation applications, where limited visibility needs to be

approximated and when fog is enabled, objects that are farther from the viewpoint begin to fade

into the fog color. Mathematical functions are used to control the density of the fog, which

determines the rate at which objects fade as the distance increases, as well as the fog's color. As

the graph below shows, three models can be used for fogging (GL_EXP2, GL_EXP1,

GL_LINEAR) each with drastically different effect on how objects are seen from a distance.

Fogging with different models, No Fog, GL_EXP2, GL_EXP1, GL_LINEAR, (affecting

distance from viewer)

1.2. Motion Equations

Many physical phenomena in gaming have their origin in Newton’s motion laws. Therefore, we

strived to derive these equations from differential calculus point of view, and then use them in

different aspects of the game. For example, a fountain simulation was implemented by some of

the students based on these laws. All students were required to use Newton’s laws in vector

form; the vector-form equation was used to update the player’s fighter plane and enemy’s planes

as well. In the final game design, each plane takes the following form

– P(t)=P0 + s(t) d

Where P0 is the initial location of the plane, d is a direction vector deciding the path of the plane,

and s(t) is the speed of the plane.

P
age 12.573.6

1.3. Vector Transformations

e has the freedom to move paced on the feedback from the

put devices (mouse, keyboard, etc.). Basic left and right movements were implemented as

here for Translation, T= , Rotation, T= , and for Scaling

T=

Additionally, graphics hardware employs a sequence of coordinate systems; the location of the

eometry is expressed through the transformation in each coordinate system in turn, and

and orient the main objects in the game

cluding the player’s fighter plane, the enemy’s planes, the bullets, and the surrounding terrains.

oid glTranslate{fd}(TYPE x, TYPE y, TYPE z);

, or d, for integer, must be supplied; TYPE is the

pe of variable (i.e. float, integer, etc.).

imensional arrays of positive integers (pixels)

presenting either the digitized color components or the gray levels. Image processing deals

oal

te

In the game, a player’s fighter plan

in

vector transformation operations. For generality, we also allowed a plane to go through the

following transformation:

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç
?

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç
?

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç
|
|

110011

y

x

baa

baa

y

x

Ty

x

yyyyx

xxyxx

W

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç

100

10

01

y

x

b

b

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç /

100

0cossin

0sincos

ss
ss

Ù
Ù
Ù

Ú

×

È
È
È

É

Ç

100

00

00

y

x

s

s

.

g

modified along the way. The movement of geometry through these spaces is considered a

pipeline, and is subject to different transformations.

We also use the modeling transformation to position

in

OpenGl represents these transformations with the following functions:

void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);

v

void glScale{fd}(TYPE x, TYPE y, TYPE z);

Where the {} indicates that either an f, for float

ty

2. Signal Image Processing Modules

Images can simply be thought of as two-d

re

with the acquisition, representation, and processing of these arrays to achieve a specific g

such as removing noise, sharpening an image, etc. Three of the gaming areas that heavily rela

to image processing are bit maps and images, zooming and interpolation, and texturing.

2.1. Bit Maps and Images

P
age 12.573.7

Bit im es and maps are at the hag eart of any game as they are used to display the environment,

rrains, character, weapons, and special effects. To display images at different places in the

nto

gnify,

duce, or flip (reflect) an image. The function glPixelZoom() can be used for these purposes.

gnify, reduce or flip (reflect) an image. Of course in image

rocessing, magnifying and zooming are achieved based on different types of interpolation

ction

.3. Texturing

re e appearance and feel of a surface. Usually an image is used to define those

haracteristics of the surface. In gaming, many objects are dressed with a texture in the form of

an image; texturing an object involves mapping (pasting) 2D images onto geometrical objects in

order to enhance the realism of a scene and making drawings a bit more interesting. Surface

te

buffer, OpenGL provides operations for reading, copying and drawing pixels. These commands

use the following functions respectively: glReadPixels() - reads a region of the frame buffer i

off-screen (processor) memory; glCopyPixels()- copies a region of the frame buffer into another

part of the frame buffer; glDrawPixels()- draws a given pixmap into the frame buffer.

In the process of transferring and copying pixels OpenGL provides the capability to ma

re

2.2. Zooming and Interpolation

OpenGL provides the capability to ma

p

techniques. Gaming provides a perfect context in which these operations are used to display

objects at different distances and scales, thus making scenes more realistic. We used the fun

glPixelZoom()to demonstrate this capability; the parameters, the functions used, are already

covered in the image processing class. Another technique related to interpolation and texturing is

mipmapping. Mipmapping, shown in the following figure, is a technique that allows us to

calculate a texture map at each resolution level. We Pre-calculate how the texture should look at

various distances, and then use the appropriate texture at each distance. Each mipmap (each

image) represents a level of depth (LOD). Mipmapping, of course, is known as image pyramid in

image processing, and is used for different purposes including image compression and vision

applications. The gaming project presents another solid example where a pyramid is used to

create a realistic application.

2

Textu is simply th

c P
age 12.573.8

texture can be made from Bitmaps, Digital images, Clip arts, as well as from computed

functions. While implementing the game, students had the choice to create new art work or use

freely existing ones for their fighter planes, bombs, enemy characters, and trains. As they are

already familiar with image formats they were able to easily load the texture images and bind

them to the appropriate objects. The following set of partial functions taken from one of

student’s project show the basic steps used in this process, which are loading the image,

generating the texture using the glGenTextures() function, binding the texture to an object usin

the glBindTexture()function, and building the mipmap structure of textures.

void LoadTextures(…)
{

glGenTextures((sizeof(resource_id)/2), &texture[0])
for (int i=0; i<sizeof(resource_id)/2; i++) {

 the

g

;

ure(NULL, resource_id[i], i);

texture)

ge(…);
glPixelStorei(…);

..);

 fadelevel)

 glColor4f (1.0f, 1.0f, 1.0f, fadelevel);
ture[2]);

 // may try adding in the future

 Y + size);
 Y - size);
Y - size);
Y + size);

computer science should be on relating many of

ardware issues, data structures, and OOP concepts, taught in the lower level courses, to real

r y present themselves in a gaming project.

3.1. Object Oriented programming (OOP)

 LoadBMPText

}
}

bool LoadBMPTexture(char* file, int resource_id, int num_
{

LoadIma

 glBindTexture(…);

glTexParameteri(…);
gluBuild2DMipmaps(.

}

void Fighter::DrawFighter(float
{
 glPushMatrix();

 glBindTexture (GL_TEXTURE_2D, tex

 int size=3;
 int direction=0;
 glBegin (GL_QUADS);
 glTexCoord2f (0,1); glVertex2f (X - size,

f (0,0); glVertex2f (X - size, glTexCoord2
 glTexCoord2f (1,0); glVertex2f (X + size,

 glVertex2f (X + size, glTexCoord2f (1,1);
 glEnd ();
 glPopMatrix();
}

3. Computer Science

e felt that the major emphasis in the area of W

h

wo ld applications as the

 P
age 12.573.9

OOP deals with the creation of classes, or templates, from which we can create many objects. A

class is similar to a blueprint of a car, and the objects are the actual cars built from this blueprint.

OOP is easy to deal with as it resembles in many aspects the way we think in real l

ife. For our

ame, students were required to construct an object oriented model of the game in which they

 objects. As an example, we show the major

Faded(GLfloat x,GLfloat fadelevel);
Explosion(GLfloat BlastRadius);

 Draw();
 Draw(GLfloat x);

adeIndex;

sionRadius;

d in Constructor
;

//////////
Class;

t;

g

treated players, enemies, resources, and terrains as

parts of the class definition of a fighter as implemented by one of the students:

class Fighter
{
private:

void DrawFighter(float fadelevel);
 void Draw

void Draw
 void

void
 void Draw(GLfloat x, GLfloat y);

 GLfloat X;
 GLfloat Y;

 int NewFighterDelay;

int DefaultNewFighterDelay;
 GLfloat FighterF
 // Flags

bool Explodef;
 bool Fighterf;
 bool GameOver;

ionSize; GLfloat Explos
 GLfloat CurrentExplo
 GLint ShootCounter;

// Defaults - Define
 GLfloat DefaultExplosionSize
 GLfloat DefaultX;
 GLfloat DefaultY;

 GLint ProjectileMax;

//////////// ///////////////////////
 // Projectile Nested

class Projectile
 {

private:
 GLfloat X;
 GLfloat Y;

int; GLfloat VanishPo
Lfloat StartPoin G

 GLfloat StartSpeed;
 GLfloat VanishSpeed;

P
age 12.573.10

 bool Projectilef;

at y);

 void Explode();
ove();

X_PROJECTILES];

);

void RemoveAll();
l Active();

…

loat x, GLfloat y, GLfloat r);

tGameOver(bool flag);

, and come up

 each class; in probing about this, we found that

erience with actual game playing and game

y of the solid OOP principles including modularity, data

psulation, inheritance, and function overriding just to mention a few.

re.

ance

aphics and

cused, instead, on usual and basic structures introduced in the lower

 cla e examples where data structures were efficiently used and explained

 public:
 Projectile();
 void New(GLfloat x, GLflo
 void UpdatePosition();
 void Draw();

 void Rem
 void Loop();
 bool Active();
 float ReturnX();
 float ReturnY();
 };
 // End Nested Class
 Projectile projectile[MA

public:

 Fighter(
 void New();
 void Remove();

 boo

 void Loop();
 void Shoot();
 void Explode();
 bool CheckCollision(GLf
 bool Ready();
 void Se
 void Shoot2();
};

hat iW s amazing is the ease with which students were able to construct the classes

with logically sound members and functions for

th e was mainly based on their real-life expis eas

ngs. The classes illustrate mansetti

caen

3.2. Data Structures

Data structures are one of the basic tools programmers use to create solid and efficient softwa

Gaming is full of areas in which data structures are used efficiently whether for fast perform

r for efficient storage. While many specialized data structures exist for gro

professional gaming, we fo

evel sses. Here are soml

within the game context:

P
age 12.573.11

o 1-D arrays: one-dimensional arrays were used to store basic textures, or number of enem

planes, or light information. A typical definition would look like:

GLuint texture[No_Textures]; or

Enemy min

y

ion[MAX_MINIONS];

float lightPos[] = {x,y,z,1};

o b data, A typical

definiti

BS][2];

o Structu lass would be considered less efficient

eled

 A typical definition would look like:

3.3. Hardw ar itect aphi cards

One of the mo

which it is runs. As students we

cture room, it was hard not to notice the fervor and enthusiasm with which they were

nce were the

llowing three parts:

lthough hardware is not officially part of any of the targeted course, we discovered that

students were quickly tutoring each other, and at many times the instructor, to the latest

tech l he above categories. Whether it is the latest features form AMD or Intel

processors, or the newest graphics and sound cards from NVIDIA or ATT, or the latest DDR

emory in the market, a game seems just the perfect topic to stir interest in hardware. Of course,

ne

e, how

ts of mathematics, science and engineering into similar entertaining projects. Our

xperience is reproducible not only for games but also for other projects that involve simulation

float lightDirection[] = {0.0,0.0,-1.0,1.0};

2-D arrays: two-dimensional arrays were used to store images, Bom

on would look like:

GLubyte image [256][256]

float BombData[MAX_BOM

res: structures were used in places were a c

(as structures can be considered specialized classes). For example some students mod

bomb data using a structure.
struct bullet
{
 float x, y; // center of bullet
 float velocity; // velocity
 bool exist; // exist detection 0/1
};

a ch ure of modern gr c- and game platforms re

st he hardware and the platform on

re running there games at the lab, on their lab top, or in the

important factors for a successful game is t

le

discussing, proudly, the hardware pieces relating to the game. Of particular importa

fo

o Processors

o Graphic Cards,

o Memory

A

no ogies in each of t

m

in the process, we found our students brushing up on their computer architecture or machi

language knowledge to gain better understanding of their game performance; for exampl

double buffering, texture support, or shading and lighting routine are supported at the hardware

level.

4. Integration Into Design Projects:

We believe it is fairly simple for other disciplines to follow a similar path in integrating key

concep

e

P
age 12.573.12

or visualization. The key is early coordination within and across departments. Within the

epartment one or more senior projects can be created every cycle of 2 to 4 years, and given to

d

 senior

on)

d

juniors, who will then execute them through their senior year. A set of targeted courses are

chosen to emphasize the aspects of the senior project though programming, simulation, an

homework problems. Across-department coordination is also vital. The mathematics and physics

departments in particular can be involved early by working preliminary examples from the

project through their teachings and assignments. A department-specific set of targeted courses

can be chosen based on their instructional goals and how they can mesh synergistically in a

senior project. As the table for our targeted courses show, a game (or a simulation/visualizati

project easily attains many of the instructional goals for the courses. Other departments can

decide on a project in a similar way.

Selected courses Instructional Goals

Course # Course

Name

Students

should be

able to

demonstrate

kno

of

n

Students

should be able

to understand

data

ation

Students

should be

able to

understand

Students

should be able

to apply their

understanding

oftware

d hardware

 in

How the
requirements
are met and
assessed.

wledge representation

and the

the

relationship

of s

an

informatio

structures.

transform

of data.

between

hardware

and

software.

structures

scientific or

industrial

applications.

COSC

3345

Data and

Information

Structures

Programming
assignments,
quizzes,
exams, &
comprehensive
final exam

X x X

COSC4330
Computer

Graphics
X X X X

Programming
assignments,
quizzes,
exams, &
comprehensive
final exam

COSC

4333
Processing

X X X

&

Digital

Image

Programming
assignments,
quizzes,
exams,
comprehensive
final exam,
several
projects

P
age 12.573.13

Examples and Screen Shots

The complete code for one game designed by Mark Haven will be posted on the department

website. Following are images and screen shots from the game while in action.

Images Used for Game Construction (Mark Haven)

Enemy Images

Fireball Images

Ship Images

Space Image

P
age 12.573.14

Game Start Screen Shot

Human Computer Interaction (GUI) Options for game

P
age 12.573.15

Students Testimonials

As we present the students testimonials, either as they were ascertained orally or during the end

of class evaluation, it is imperative to emphasize that our experience showed that this project did

not compromise any of the goals and objectives of our courses, while at the same time gaining

instant popularity among them.

The Computer Graphics class in which the gaming project was designed and implemented was

offered in fall of 2005, and has an enrollment of 11 students. The Data structures class was

offered every semester, except summers, and the image processing class was offered one

semester before the Computer graphics was offered.

Statistics for COSC-43330, Computer Graphics

Fall-2005

No. Of Students 11

S

G

tudents overall

rading of

course

A

9 2 0

D

0

B C

“I love to have a career in gaming”

“I learned more than in any other class”

“I really liked this class! It has put everything I learned in focus”

“The instructor demonstrated the course very efficiently, and made it very

interesting and practical”

“Great Course”

“I think that there should be an additional course only for the GUI

programming in Windows; It is very interesting.

Comments from

students

“We really need a whole track in Game programming; I wouldn’t mind

taking 2 or more additional course in that filed”

P
age 12.573.16

Conclusion

This paper detailed an innovative way to mesh in a synergetic way major concepts from

Mathematics, Physics, Computer Science, and Engineering in an action-based gaming project.

Many modules of the game were discussed and related to a set of targeted courses, and the actu

game design was done in a senio

al

r level Computer Graphics course. The experience proved

xtremely rewarding to the students as well as to the instructors while at the same time insuring

ere

ourses

 Engineering, to Networking, to Artificial

telligence, to Databases, and Operating systems, we believe that different modules can easily

terface with the game. That is a goal we have set to ourselves, and we will report on our efforts

in a future conference. The importance of the rea stic and fun factors in these projects are hard

to oversee, and they can ineering

and Science fields, which have been suffering an alarming decline in enrollment. Additional

h ject include improving analytical skills, team work, and better

m tudents and instructors.

e

that the goals and objectives from these courses are attained by the students. Such an endeavor

has proven to be a major one, and while we achieved substantial milestones, we stress that th

is a myriad of ways to enhance on the project. For example, several concepts from others c

can be easily integrated into the game. From Software

In

in

li

be prove to be a major factor in retaining students in the Eng

benefits from suc a pro

communication a ong s

P
age 12.573.17

Acknowledgements

”

, ITiCSE,

Costa De Caparica, Portugal, pp. 123-127, 2005.

[3]. Chamillard, A. T., “Introductory Game Creation: No Programming Required,” Technical

Symposium on Computer Science Education, Proceedings of the 37th SIGCSE technical

symposium on Computer science education, pp: 515-519, 2006.

[4]. Bishop, L., Eberly, D., Whitted, T., Finch, M., and Shantz, M. “Designing a PC Game

Engine,” IEEE Computer Graphics and Applications, V. 18 (1), pp. 46-53, 1998.

[5]. Schaefer, S. and Warren, J. “Teaching Computer Game Design and Construction,”

Computer-Aided Design V. 36 (14), pp.1501-1510, 2004.

Many of the students in the computer graphics class were partially funded by the CS/CIS

department through employment as Lab Assistants. The authors would like also to thank all the

students who participated in this innovative project, and provided invaluable feedback, most of

which is currently being incorporated in the current offering of the course.

References:

[1]. Anonymous, “More than Fun and Games: New Computer Science Courses Attract Students

with Educational Games,” http://www.ccnmag.com/news.php?id=3720.

[2]. Claypool, K., and Claypool, M., “Teaching Software Engineering through Game Design,

Annual Joint Conference Integrating Technology into Computer Science Education

P
age 12.573.18

