122nd ASEE Annual
Conference & Exposition
e June 14 - 17, 2015
Seattle, WA
L(avae Hor ooere
al Moking Vatue for Sacii

Paper ID #12360

Effect of extended use of an executable flowchart for teaching C language
Prof. Cho Sehyeong, MyongJi University

Professor, Department of Computer Engineering, MyongJi University

(©American Society for Engineering Education, 2015

1°9/G°92 abed

Effect of extended use of an executable flowchart for teaching C language

Teaching computer programming to students is a daunting task, especially to those without any
background or experience in computer programming. Even simple assignment statements or
arithmetic operations can be difficult for them to understand. In our experience, roughly 25% of
students fail the course and get frustrated that they are not fit for programming after all.

There are many reasons why programming can be so difficult for beginners. First, there are
linguistic issues. The syntax of a programming language is very different from that of a natural
language. Trivial grammatical errors can result in cryptic error messages that are hard to
interpret. The students also encounter semantic difficulties. It is a challenge to get an accurate
understanding of the operational semantics (i.e., effects) of the programming language
constructs, which makes it difficult to predict the accurate result of a program code. This, in
turn, makes it not so easy to write a program. Second, regardless of the difficulty of
programming language at hand, the problem-solving process itself is inherently complicated.

In this paper, we hypothesize that the use of proper visual aid can improve students’
learning speed and programming competence. One of the most popular visual aids for learning
programming is a flowchart. In introductory programming courses, it is very common to explain
the meaning of control structures, such as ‘if-then-else’ or ‘do-while’, by means of flowcharts.
We propose to use an extended flowchart as an actual visual programming language, which is
designed to enable smooth transition to commercial programming languages such as C, C++, or
Java.

We developed a flowcharting tool that can be used for actual programming, as well as for
executing, debugging, and visualizing. Thus, our specific aim was two-fold: first, help learn
programming/problem solving and, second, facilitate the learning of a textual programming
language — the C language. The actual hypothesis tested in the present study was X. The results
of the experiment that was designed to test our expectation fully support our hypothesis. In what
follows, we will briefly introduce the tool used and proceed with the discussion of the
experiment and the results.

Related Work

There are many different approaches to facilitating the acquisition of programming language(s).
For instance, in order to avoid the complexity of full-fledged programming languages, one can
use simplified programming languages, such as Mini-Java’. In fact, mini-languages have been
used for quite a long time?. However, this approach does not meet our requirements, since we

This work was supported by 2014 Research Fund of Myongji University.

2'9/G°9¢7 abed

need to teach a full language after all. Iconic programming languages, such as Mindstorm NXT-
G or Alice*, can be another possibility. Iconic programming is suitable for a gentle introduction
to computer programming and it has been reported to help keep students interested®. Flowchart
programming has been used elsewhere as an aid to help students understand the concept and to
improve their problem-solving skills®. Raptor® is a flowchart programming tool used for
teaching the concept and problem-solving skills, but transition from it to actual programming
language such as C is time-consuming and requires extra effort.

A Brief Introduction to CFL

CFL, which stands for “C-like Flowchart Language,” is an executable flowchart-based
programming language and system. CFL is developed to help students learn programming, as
well as to understand the mechanism of program execution. In particular, it is designed to help
prospective C-language learners. A CFL program consists of nodes and directed arcs connecting
the nodes. Currently, CFL version 2.0 has basic nodes and composite nodes. There are four
types of basic nodes: processing, 1/0, decision, and function nodes. Table 1 summarizes CFL
simple node types. Composite nodes are used to group particular combination of basic nodes to
give structures, such as “if-then-else”, “for”, “while”, and functions. Structured programming is
naturally enforced by composite nodes.

CFL is executable, and, therefore, has features related to execution. These features include:
one accumulator register, one floating point accumulator, 12 integer variables that can be
changed to float variables, two arrays, the input buffer, the output window, and two execution
buttons — for single stepping and running/stopping. During the execution, students can watch the
inner workings of the program: the control flow by a red dot and red-bordered node, changing
values by flashing colors, and the function call stack by a stack of parameters. CFL is tightly
integrated into a web-based instruction system for efficient assigning of exercises, submitting,
and grading’.

Table 1. CFL basic node types

. Function
type processing node I/0 node Decision
start
: ==
. = etch :
typical == [T
example(s) > [o / '
printf sum
+1] *1 /l % H
. putchar, scanf I= == > < only one main
note function call, . .
printf >z, <=, &&, || function
return

This work was supported by 2014 Research Fund of Myongji University.

€'9/G'9¢ abed

For easier transition from CFL to C language, the syntax of CFL is intentionally aligned
with C language syntax. These include arithmetic expressions, array notation, and input/output
functions such as “scanf” or “getchar.” Control structures in C language such as “for,” “while,”
and “if” are translated into intuitive graphical structures, as shown in Figure 1.

- Q}chﬁgjjiﬁ?
v break

1]
ondif {retuna)

Figure 1. Composite Nodes: if, while, for, and function

[CFL: K:WDaumCloudW1,choW2, Z'IWChookW2BWCFL samplesWprint_ten.cfl 2. =10| x|
File Edit Connect Setup Help

Wl B & o [Ooclaa@ T (B #] o=

intacc [I] | module! |
float R [0.5852] |

inta) 22892
intb| 21024
intc| -2837
intd| 14813
inti| -4846)
intj|-22517)
int k |-19788)
intm| 294
intn 4
intp| -706
intx
inty
intz| 873

intr{0]{-17
int r{1]
intr{2]
intr{3]
intr{d] [3
int r{5] |-2
int r{6]
intr{7]]-2

int r{8] |-205
intr(9] |-

input buffer

e

keyboard input

printf n "in"

[continue]

@D

——Activation Stack

char s[0]
char s[1]
chars[2]| 7
char s[3]
char s[4]
char s[5]
char s[6]
char s[7]]| -
char s[8]
char s[9]| -5

Figure 2. Snapshot of CFL editor/execution environment

The Experiment

It has elsewhere been observed that learning CFL control structures before learning C language
This work was supported by 2014 Research Fund of Myongji University.

¥'9/G'9¢ abed

control structures helps the C language learners learn faster and better’. The previous
experiment was limited to a rather short time scale of a few hours. This time, we conducted an
experiment to see if learning CFL has longer-term benefits in terms of weeks.

The preparation

We had two classes of the C programming courses with similar class sizes. Both classes started
the semester with 35 students, i.e. the maximum number of students allowed in that semester.
The students were taught by the same instructor on the same weekdays, but on different hours.
The course was a 4 credit-hour course. The class met twice a week, each consisting of two
consecutive class hours. One class - the control group - was taught by the regular C language
syllabus. The other group — the treatment group — was first taught CFL programming for four
weeks, before they started learning C language. Table 2 summarizes the semester schedule of
the two classes. Although the course is intended for freshmen, there were quite a few students
who were not freshmen. Since they were likely to have some experience in C programming, we
excluded them from the analysis. This resulted in a total of 29 freshmen in the control group and

22 students in the test group.

Table 2. Summary of schedules

Week | Control group (C only) Treatment group (CFL + C)
1 Intro to Computers, Prep for laboratory Intro to Computers, CFL basics,
(incl. Linux and vim) operations, 1/0
2 Beginning C programming CFL conditional, for loop
3 Integers and 1/0 CFL arrays, functions and recursion
4 conditionals CFL graphics and game project
5 while/for loops Linux and vim, Integers and 1/O,
6 Functions conditionals, while/for loop
7 Arrays and applications Functions, arrays
8 Handling strings, mid-term arrays, mid-term
9 2-dim arrays strings, 2-dim arrays
19 files files
11 structures structures
12 bit handling bit handling
13 recursion recursion
14 pointers and dynamic allocation pointers and dynamic allocation
15 linked lists linked lists
16 Final Exam Final Exam
This work was supported by 2014 Research Fund of Myongji University.

G'9/G'9z abed

To explore if learning CFL has any effects, either positive or negative, on learning C
language programming, we tested the students with three identical tasks in the final exam, as
well as observed their overall performance throughout the semester. The students were not
informed about the ongoing experiment.

Task A
Problem description:
Let X be a sequence of integers starting with 1, 2, 4, ... and the differences between
consecutive terms make an arithmetic progression of 1, 2, 3,

Let Y be a sequence of integers that starts with 1, 2, 4, 8, ... and each pair of consecutive
numbers in the sequence has a difference defined by sequence X.

Write a program to generate sequence Y less than 100.

Task A requires the understanding of how to write a loop. In the control group, 12 of 29
freshmen passed the test, compared to 15 of 22 in the treatment group. Thus, the performance in
the treatment group was significantly higher than that of the control group (68.2% vs. 41.4%).

100.0%

80.0%

60.0%

40.0% - W Task A

20.0% -

0.0% -
Control group Test group

Figure 3.Performance of the two groups on task A

Task B

This work was supported by 2014 Research Fund of Myongji University.

9'9/G'9¢ abed

Problem description:

Given an array of integers already in ascending order, write a program to insert an arbitrary new

number into an existing set of numbers, such that the result is in an ascending order. However,
you should follow the order given as follows: 1) determine what position the new number
should go in; 2) shift all numbers greater than the new number; and 3) actually insert the new
number.

The second task is a part of a sorting program that requires knowledge of and competence
in handling 1-dimensional arrays. Both groups experienced ‘bubble sort’ during the semester.
Sorting program is so simple that it is quite possible to memorize the code. In order to prevent
“memorizing the solution”, we provided specific constraints for sorting algorithm. In this test,
the treatment group again outperformed the control group. Only27.6% of the freshmen in the
control group solved the problem, while 45.5% in the treatment group solved it. Figure 4
compares the pass ratios for the second test.

100.0%

80.0%

60.0%

40.0% m Task B

20.0% -

0.0% -
Control group Test group

Figure 4. Performance of the two groups on task B

Task C

Problem description:
Given a representation of Omok (a.k.a., Gomoku) game in a 2-dimensional array, write a
function to determine if a player has a winning configuration, i.e., 5 in a row.

Task C is to fill in some missing part of Omok game. For those who are not familiar with
this game, omok is played by two players, black and white, taking turns to put a white or black

This work was supported by 2014 Research Fund of Myongji University.

/'9/G°9Z abed

stone until one of the player has 5 in a row, either straight or diagonally(see Figure 5).

This problem requires knowing how to deal with 2-dimensional arrays. On this task, the
performance in the two groups was almost identical: 17 out of 29 students (58.6%) in the control
group and 13 out of 22 students (59.1%) coped with the task.

This task differed from tasks A and B in that the students were given the same problem as
homework assignment before, which might explain why the performance of the two groups was
similar.

Figure 5. An Omok game

100.0%

80.0%

60.0%

40.0% W Task C

20.0% -

0.0% - —
Control group Test group

Figure 6. Performance of the two groups on task C

The overall performance

The treatment group outperformed the control group on two out of three problems in the exam.
More importantly, in the end of the semester, far more students in the treatment group passed the
course. Specifically, 90.9% of the treatment group (i.e., those who learned CFL before learning
C language) passed the course. By contrast, only 72.4% of the control group passed the course.
Grading is based on 15 problems in quizzes, midterm, and final exam, as well as homework
This work was supported by 2014 Research Fund of Myongji University.

8'9/G'9¢ abed

assignments. The average scores of exams are 28.0 for control group and 40.9 for test group in a
100 scale. The pass ratio of the course in recent 3 years amounts to 74%. Therefore, 72.4% can
be considered quite normal, while 90.9% can be considered exceptional.

100.0%

80.0%

60.0% -

40.0% m Course

20.0% -

0.0% - |
Control group Test group

Figure 7. Course pass ratios of the two groups

70
60
50
40
30
20 -

W Average score

Control group Test group

Figure 8. Average scores of the two groups

Conclusion and Future Work

To further previous research on short-term effect of using CFL for learning C language
programming, the present study focused on corresponding long-term effects. Our results

This work was supported by 2014 Research Fund of Myongji University.

6'9/G°92 abed

convincingly show that the students who are taught CFL before learning C language eventually
outperform those who learned C programming in the first place. In view of the fact that both
groups spent almost the same time learning, the results are even more encouraging.

We believe that the reason why we benefit from CFL is because CFL is in facta C
language in (graphical) disguise. We experienced that the students who learn CFL have more fun
and do better in terms of “thinking” of the solution, because of the graphical nature of the
language and the execution environment. Furthermore, the competence acquired with CFL does
not seem to be diminished later by the complexity of the C language syntax, for once one
understands how to do something in CFL, it is easy to translate that into C language syntax.
However, we cannot completely rule out the possibility that the seemingly encouraging result
has been obtained purely by chance. Therefore, another experiment is planned for the coming
semester.

References

1. Roberts, E. “An Overview of MiniJava”, ACM SIGCSE Bulletin 33 (1), 2001, pp. 1-5.

2. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., and Miller, P. “Mini-languages: A Way to
Learn Programming Principles”, Education and Information Technologies 2 (1), 1997, pp. 65-83.

3. Swan, D. “Programming Solutions for the LEGO Mindstorms NXT,” Robot magazine, 2010, p. 8.

4. Sattar A., Lorenzen T. “Teach Alice programming to non-majors”, ACM SIGCSE Bulletin 41(2), pp. 118-121.

5. Crews, T. “Using a Flowchart Simulator in a Introductory Programming Course”,
http://www.citidel.org/bitstream/10117/119/2/visual.pdf Last accessed Dec.30, 2013.

6. Martin C., Carlisle et al. “RAPTOR: introducing programming to non-majors with flowcharts”, Journal of
Computing Sciences in Colleges 19(4), 2004, pp. 52-60.

7. Sehyeong Cho, Ryu, Y. S., and Kim, S. “Learning C language programming with executable flowchart
language”, Proceedings of ASEE annual conference, 2014, paper 1D#8872.

This work was supported by 2014 Research Fund of Myongji University.

0T°'9.G°9¢ abed

