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Abstract 
 

Several established methods for determining deflections of beams may be found in textbooks on 
mechanics of materials. The method using moment-area theorems is preferred by many engi-
neers because it has the inherent advantage of graphical visualization in solving problems. This 
method employs two moment-area theorems, which are derived by integrating well-behaved 
functions in domains along beams. Unfortunately, most textbooks do not provide explicit warn-
ing that one cannot apply any moment-area theorem directly to the entire beam when the beam 
under loading has a discontinuity in its slope, such as that in a hinge-connected beam. This is a 
pitfall for unsuspecting beginners, who often reach erroneous results and are puzzled by them. 
This paper contributes definitive concepts and detailed explanations to expel ambiguities often 
encountered by students in applying the method to solve problems. The examples illustrate steps 
for use in effective teaching of the method and help beginners avoid tumbling into pitfalls. It is 
aimed at contributing to the better teaching and learning of mechanics of materials. 
 
I.  Introduction 
 
There are several established methods for determining deflections of beams in mechanics of ma-
terials. They include the following:1-12 (a) method of double integration (with or without the use 
of singularity functions), (b) method of superposition, (c) method using moment-area theorems, 
(d) method using Castigliano’s theorem, (e) conjugate beam method, and ( f ) method using 
model formulas. Naturally, there are advantages and disadvantages in using any of the above 
methods. 
 
Many engineers favor to employ the method using moment-area theorems because it has the 
built-in advantage of graphical visualization during the drawing of diagrams of elastic weights 
(i.e., the bending moment divided by the flexural rigidity of the beam), as well as the drawing of 
tangential deviations associated with the deflected beams, in solving problems. There are two 
moment-area theorems. Both of them are derived by integrating well-behaved functions in do-
mains along the beams. Unfortunately, most textbooks do not provide explicit warning that one 
cannot apply any moment-area theorem directly to the entire beam when the beam under load-
ing has a discontinuity in its slope. If a beam is composed of two or more segments that are con-
nected by hinges, then the beam has discontinuity in slope at the hinge connections when loads 
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are applied. In such a case, the deflections must be analyzed by dividing the beam into segments, 
each of which must have no discontinuity in slope. Otherwise, erroneous results will be reached. 
 
In this paper, attention is focused on the method using moment-area theorems. A working 
knowledge of sign conventions and some key terms, besides the two moment-area theorems, is a 
prerequisite for readers of this paper. For the benefit of a wider readership, a refresher on sign 
conventions, definitions of key terms, and the two theorems is included in this paper. Readers, 
who are familiar with the rudiments of this method, may skip the refresher in Sect. II of this pa-
per. 
 
II.  Sign conventions, key terms, and moment-area theorems 
 
 

■  Positive directions of shear forces, moments, and applied loads. 
 

In the analysis of beams, it is important to adhere to the adopted positive and negative signs for 
loads, shear forces, bending moments, slopes, and deflections of beams. The free-body diagram 
for a beam AB carrying loads is shown in Fig. 1. The positive directions of shear forces  and 

, moments  and , at ends A and B of the beam, the concentrated force P and concen-
trated moment K, as well as the distributed loads, are illustrated in this figure. 

AV
BV AM BM

 

 
 
 

Fig. 1.  Positive directions of shear forces, moments, and applied loads 
 
 

In general, the sign conventions for shear forces, moments, and applied loads are as follows: 
 

  A shear force is positive if it acts upward on the left (or downward on the right) face of the 
beam element (e.g.,  at the left end A, and  at the right end B in Fig. 1). AV BV

  At ends of the beam, a moment is positive if it tends to cause compression in the top fiber 
of the beam (e.g.,  at the left end A, and at the right end B in Fig. 1). AM BM

  Not at ends of the beam, a moment is positive if it tends to cause compression in the top fi-
ber of the beam just to the right of the position where it acts (e.g., the concentrated moment 
K in Fig. 1). 

  A concentrated force or a distributed force applied to the beam is positive if it is directed 
downward (e.g., the concentrated force P, the uniformly distributed force with intensity , 
and the linearly varying distributed force with highest intensity  in Fig. 1). 

0w
1w
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■  Positive directions of slope and deflection. 
 

The sign conventions for positive slope and positive deflection of a beam AB are shown in Fig. 2. 
The slopes Aθ  and Bθ  of the beam at points A and B are small angles (in radians) between the 
horizontal and the tangents drawn at A and B, respectively. A slope at a point of a beam is posi-
tive if the small angle is measured counterclockwise from the horizontal to the tangent drawn at 
that point of the beam. In general, we have the following: 
 

  A positive slope is a counterclockwise angular displacement, such as Aθ  and Bθ  in Fig. 2. 
  A positive deflection is an upward displacement, such as  and  in Fig. 2. Ay By

 

 
 
 

Fig. 2.  Positive slopes and positive deflections of beam AB 
 
■  Beam, elastic weight, elastic curve, change in slope, and tangential deviation. 
 

In mechanics of materials, a beam is a horizontal structural member subjected to transverse 
loads, which act perpendicular to the axis of the beam. The elastic weight at a position on a 
beam is the bending moment M acting in the beam cross section divided by the flexural rigidity 
EI of the beam cross section, where E is the modulus of elasticity of the beam and I is the mo-
ment of inertia of the cross section of the beam about its centroidal axis of bending. Thus, the 
elastic weight on a beam is simply represented by the diagram showing M /EI for the beam. As 
shown in Fig. 3, the elastic curve of a beam is the curve showing the deflected shape of the cen-
terline of the beam under loading. In the study of slopes and deflections of beams, an elastic 
curve refers to a deflected beam, and these two terms are interchangeable. 
 
 

 
 

Fig. 3.  Elastic curve, change in slope, and tangential deviations 
 
 

Suppose that C and D are two points on a beam, as illustrated in Fig. 3, where D is to the right of 
C. The change in slope /D Cθ  from C to D in the deflected beam is the angular displacement 
measured counterclockwise from the tangent drawn at C of the deflected beam to the tangent 
drawn at D of the deflected beam. Note that  
 
 

                                                                   / CD C Dθ θ θ= −  (1) 
 

                                                             / /C D C D D Cθ θ θ θ= − = −  (2) 
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The tangential deviation /D C  of D with respect to C is the vertical linear displacement drawn 
from D of the deflected beam to the tangent drawn at C of the deflected beam, as shown in Fig. 
3. Note carefully that the tangential deviation /C D  of C with respect to D is, on the other hand, 
the vertical linear displacement drawn from C of the deflected beam to the tangent drawn at D of 
the deflected beam. 

t

t

 
 

■  Moment-area theorems. 
 
The method using moment-area theorems for solving problems involving deflections of beams 
may be found in most textbooks on mechanics of materials.1-8 This method is based on two ma-
jor theorems, which are derived by integrating well-behaved functions. These two theorems may 
be stated as follows: 
 

 First moment-area theorem: If C and D are two points on a beam and D is to the right of 
C, then the change in slope /D Cθ  from C to D of the deflected beam is equal to the elastic 
weight from C to D on the beam. We write 

 

                                                                /D C CA Dθ =  (3) 
 

where CD  denotes the elastic weight (i.e., area of the diagram showing M/EI for the beam) 
between C and D on the beam. Note that CD (and hence 

A
A /D Cθ ) is positive if the resulting 

area of the diagram showing M/EI for the beam between C and D on the beam is positive. 
 

 Second moment-area theorem: For C and D being two points on a beam, the tangential 
deviation /D C  of D with respect to C is equal to the first moment about D of the elastic 
weight between C and D on the beam. We write 

t

 

                                                             / ( )D C Dt M CD=  (4) 
 

where ( )D CDM  denotes the first moment about D of the elastic weight between C and D on 
the beam. To compute the tangential deviation /C Dt , we similarly write 

 

                                                             / ( )C D C CDt M=  (5) 
 

where  denotes the first moment about C of the elastic weight between C and D on 
the beam. 

( )C CDM

 

Note that many beginners encounter ambiguity or difficulty in computing ( )D CDM  in Eq. (4) or 
 in Eq. (5). To overcome such ambiguity or difficulty, note the following: ( )C CDM

 

 The elastic weight (i.e., M/EI ) acts upward or downward when the bending moment M is 
positive or negative, respectively. 
 

 The first moment ( )D CDM  in Eq. (4) is equal to horizontal distance from D to the centroid 
of the area for the elastic weight between C and D multiplied by the area for the elastic 
weight between C and D. 
 

 Contribution of first moment about point D by the elastic weight to the value of ( )D CDM  in 
Eq. (4) is positive if the direction of such contributed moment about point D is consistent 
with the direction of moment about point C of an imaginary vertical force acting at point D 
and pointing in the same sense of direction as the sketched tangential deviation /D Ct . 
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 If the computed value of ( )D CDM  in Eq. (4) is positive, then the actual direction of linear 
displacement for the tangential deviation /D Ct  as sketched is correct. Otherwise, the actual di-
rection of /D Ct  is opposite to that assumed in the sketch. 
 

 The first moment  in Eq. (5) is equal to horizontal distance from C to the centroid 
of the area for the elastic weight between C and D multiplied by the area for the elastic 
weight between C and D. 

( )C CDM

 

 Contribution of first moment about point C by the elastic weight to the value of  in 
Eq. (5) is positive if the direction of such contributed moment about point C is consistent 
with the direction of moment about point D of an imaginary vertical force acting at point C 
and pointing in the same sense of direction as the sketched tangential deviation 

( )C CDM

/C Dt . 
 

 If the computed value of  in Eq. (5) is positive, then the actual direction of linear 
displacement for the tangential deviation /C

( )C CDM
Dt  as sketched is correct. Otherwise, the actual di-

rection of /C Dt  is opposite to that assumed in the sketch. 
 
 
 

■  A simple illustration of the method using moment-area theorems. 
 

Example 1.  By the method using moment-area theorems, determine the slope θA and deflection 

yA of the free end A of a cantilever beam AB with length L and constant flexural rigidity EI, 
which is acted on by a concentrated force P at its free end A, as shown in Fig. 4. 
 

 
 

Fig. 4.  Cantilever beam AB 
 
 

Solution:  In solving the problem in this example by the method using moment-area theorems, 
we first draw the diagram for the elastic weight (i.e., M/EI) on the beam AB, as shown in Fig. 5. 
Note that the bending moment M in the beam is negative because it causes the top fiber of the 
beam in compression. Thus, the elastic weight acts downward on the beam in this figure, where 
the resultant elastic weight AB  acts through the centroid of the triangular area and its value is 
equal to the triangular area; i.e., 

A

21
2 2AB

PL PLA L EI EI= − ⋅ ⋅ = −  
 

 
 

Fig. 5.  Elastic weight on the beam AB 
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Fig. 6.  Elastic curve of the beam under loading 
 

Next, we sketch the elastic curve of the beam under loading as shown in Fig. 6, where the tan-
gent drawn at B is a horizontal line because the beam is fixed at B. Therefore, the slope Aθ at the 
free end A becomes equal to the change in slope / .A Bθ  Since point B is to the right of point A in 
Fig. 6, we apply the first moment-area theorem to write 
 

2

/ 2B A AB
PLA EIθ = = −  

2

/ / 2A A B B A
PL
EIθ θ θ

⎛ ⎞
= = − = − −⎜ ⎟

⎝ ⎠
 

2

2A
PL
EIθ =  

 

The tangential deviation of A with respect to B is directed upward from A to the tangent 
drawn at B, as shown in Fig. 6. Furthermore, we note that the direction of moment about point B 
of an imaginary vertical force acting at point A and pointing in the same upward direction as the 
sketched tangential deviation  is clockwise. Therefore, contribution of first moment about 
point A by the elastic weight AB  to the value of (  is positive if the direction of such con-
tributed moment about point A is also clockwise. In this case, both are clockwise! Referring to 
Figs. 5 and 6 and applying the second moment-area theorem, we write 

/A Bt

/A Bt
A )A ABM

 

32

/
2( ) 3 2 3A B A AB

L PPLt M EI EI= = ⋅ = L  
 

3

/ 3A BA
PLy t EI= − = −             

3

3A
PLy EI ↓=  

 
III.  Analysis of a hinge-connected beam: a pitfall to avoid 
 

The two moment-area theorems presented in Sect. II are derived in textbooks on mechanics of 
materials 1-8 by integrating well-behaved functions, whose domain lie along the beam. Neverthe-
less, most textbooks do not provide explicit warning that one cannot apply any moment-area 
theorem directly to the entire beam when the beam under loading has a discontinuity in its slope, 
such as that in a hinge-connected beam. In such a case, the deflections must be analyzed by di-
viding the beam into segments, each of which must have no discontinuity in slope. Otherwise, 
erroneous results will be reached. A hinge-connected beam is a pitfall for unsuspecting begin-
ners, who often reach erroneous results and are puzzled by them. 
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Example 2.  A beam AE with a hinge connector at C carries a concentrated force P at D and is 
supported as shown in Fig. 7, where the segments AC and CE have the same flexural rigidity EI. 
An unsuspecting beginner, who tries to apply the method using moment-area theorems, arrived at 
a set of wrong answers for (a) the reaction moment  and the vertical reaction force at A, 
and (b) the vertical reaction force  at B. What may be the likely improper way taken by this 
person? 

AM yA
yB

 

             
 

          Fig. 7.  Hinge-connected beam AE with a fixed end and two simple supports 
 
 
 

Solution – improper way:  Let us assume that this person has drawn a correct free-body diagram 
of the beam, as shown in Fig. 8, in the beginning of the solution. 
 
 
 

 
 

                       Fig. 8.  Free-body diagram for the hinge-connected beam AE 
 
 

Next, let us also assume that, based on Fig. 8, this person has drawn a correct diagram, by parts, 
for the elastic weight on the beam, as shown in Fig. 9. 
 
 

 
 

                       Fig. 9.  Elastic weight diagram, by parts, for the beam AE 
 
 

 

Furthermore, let us assume that this person has also draw an elastic curve for the deflected beam, 
which satisfies the boundary conditions, as shown in Fig. 10. 
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Fig. 10.  Elastic curve for the beam under loading 
 
 

In applying the method using moment-area theorems, this person correctly notes that the tangen-
tial deviation  of B with respect to A is zero. Referring to Figs. 9 and 10, this person writes /B At
 

/ ( ) 0B A B ABt M= = :  

                                                       1 02 3 2
yA A LM LL L LEI EI⋅ + ⋅ ⋅ ⋅ =  (a) 

 

Due to lack of adequate warning regarding a beam with discontinuity in slope, this person is 
likely of the impression or opinion that, “the tangential deviation  of E with respect to A is /E At
also zero.” Referring to Figs. 9 and 10, this person writes 
 

/ ( ) 0AEEE At M= = : 

                      4 34 4 1 1 12 4 33 2 2 3 2
y yA A L B LM L L L PLL L L L LEI EI EI EI⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ = 0

0

 (b) 
 

Equilibrium of the entire beam in Fig. 8 gives 
 
 

                              (c) 0 :EM+ Σ = 4 3y yAM LA LB LP− − − + =
 

Solution of the above three simultaneous equations in (a) through (c) yields 
 

8
243A
PLM =              8

81y
PA = −              331

729y
PB =  

 

Consistent with the defined sign conventions, this unsuspecting beginner is led to report 
 
 

8  243A
PL=M                     8

81y
P= ↓A                     331

729y
P= ↑B  

 
 

According to these seeming “answers,” which satisfy Eq. (c), the moment at C in Fig. 8 would be 
 

8 8 331 2112 2243 81 729 729y yAC
PL P P PLM M LA LB L L⎛ ⎞ ⎛ ⎞= + + = + − + = ≠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
0  

 

Since the moment at a hinge must be zero (i.e., 0CM = ), the above answers must be wrong! 
 
 
 

Example 3.  A beam AE with a hinge connector at C carries a concentrated force P at D and is 
supported as shown in Fig. 7, where the segments AC and CE have the same flexural rigidity EI. 
Show the proper way to apply the method using moment-area theorems to determine for this 
beam (a) the reaction moment  and the vertical reaction force at A, (b) the vertical reac-
tion force  at B, (c) the deflection  of the hinge at C, (d) the slopes 

AM yA
yB Cy CLθ  and CRθ  just to the 
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left and just to the right of the hinge at C, respectively, and (e) the slope Dθ  and the deflection 
Dy  at D. 

 
 

             
 

Fig. 7.  Hinge-connected beam AE with a fixed end and two simple supports   (repeated) 
 

Solution – proper way:  We first draw a correct free-body diagram of the beam, as shown in Fig. 
8, in the beginning of the solution. 
 
 
 

 
 

Fig. 8.  Free-body diagram for the hinge-connected beam AE   (repeated) 
 
 

Based on Fig. 8, we draw a correct diagram, by parts, for the elastic weight on the beam, as 
shown in Fig. 9. 
 
 

 
 

Fig. 9.  Elastic weight diagram, by parts, for the beam AE   (repeated) 
 
 

 

Furthermore, we draw an elastic curve for the deflected beam, which satisfies the boundary con-
ditions, as shown in Fig. 10. 
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Fig. 10.  Elastic curve for the beam under loading   (repeated) 
 
 

In applying the method using moment-area theorems, we note that the tangential deviation  
of B with respect to A is zero. Referring to Figs. 9 and 10, we write 

/B At

 

/ ( ) 0B A B ABt M= = :  

                                                       1 02 3 2
yA A LM LL L LEI EI⋅ + ⋅ ⋅ ⋅ =  (a) 

 

This beam is statically indeterminate to the first degree. Because of the discontinuity in slope at 
the hinge connection C, this beam needs to be divided into two segments AC and CE for analysis 
in the solution, where no discontinuity in slope exists in either segment. 
 

 
 

Fig. 11.  Free-body diagram for segment AC 
 
 
 

Referring to the free-body diagram for the segment AC in Fig. 11, we write 
 
 

                                   0 :CM+ Σ = 2 y yAM LA LB 0− − − =  (b) 
 

                                            0 :yF↑+ Σ = 0yy yA B C+ − =  (c) 
 
 
 

                                                      
 

Fig. 12.  Free-body diagram for segment CE 
 
 
 

 

Referring to the free-body diagram for the segment CE in Fig. 12, we write 
 

 

                                          0 :EM+ Σ = 2 0yLC LP− + =  (d ) 
 
 

Solution of the above four simultaneous equations in (a) through (d ) yields 
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4A
PLM =               3

4y
PA = −               5

4y
PB =               2y

PC =  
 

Consistent with the defined sign conventions, we report that 
 
 

   4A
PL=M                     3

4y
P= ↓A                     5  4y

P= ↑B  
 

(These answers are obtained in a proper way and are different from those obtained earlier for 
, , and  in an improper way by an unsuspecting beginner in Example 1.) AM yA yB

 
There is discontinuity in slope at hinge connection C. We note that 0Aθ =  at the fixed end A and 
that CLθ  and CRθ  are the slopes just to the left and just to the right of the hinge at C, respectively. 
Therefore, we may refer Fig. 9 and utilize the above obtained solutions in applying the moment-
area theorems. We write 
 

/ 0AC CL A CL A CL CLA θ θ θ θ θ= = − = − =  
 

∴   
221 12 22 2

y yA
CL

A L B LM P3
8L L LEI EI EI EIθ = ⋅ + ⋅ ⋅ + ⋅ ⋅ = − L                

23  8CL
PL
EIθ =  

 

3

/
22 1 1 7( ) 2 23 2 3 2 24

y yA
C A C AC

A L B LM L L Pt M L L L LEI EI EI= = − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ = L  
 

∴   
3

/
7

24C AC
PLy t= − = −                

37
24C

PLy EI= ↓  
 
 

 
 
 

Fig. 13.  Equivalent elastic weight diagram, by parts, for segment CE 
 

Referring to Figs. 10 and 13, we apply the second moment-area theorem to write 
 

3

/
22 1 1( ) 23 2 3 2 2

y
E C E CE

C LL L PL PLt M L LEI EI EI= = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =  
 

2
// 5

482
C AE C

CR
t t PL

EILθ −
= − = −                

25
48CR

PL
EIθ =  

 

2

/
1
2 4

y
CDD CR D CR

C L PLW L EI EIθ θ θ= − = = ⋅ ⋅ =  

∴   
2 2 25 7

4 4 48 48D CR
PL PL PL PL
EI EI EI EIθ θ= + = − =

2
               

27  48D
PL
EIθ =  
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3

/
1( ) 3 2 12

y
D C D CD

C LL Pt M L EI EI= = ⋅ ⋅ ⋅ = L  
 

3 2 3

/ /
7 5

24 48 12 16D C A CR D C
PL PL PL PLy t L t L EI EI EIθ

⎛ ⎞
= − + + = − + ⋅ − + = −⎜ ⎟

⎝ ⎠

35  
 

35  16D
PLy EI= ↓  

 
 

The foregoing results and answers are obtained by the method using moment-area theorems via a 
proper way. These answers have been assessed and verified to be in agreement with the answers 
that were independently obtained for a problem involving the same beam but being solved using 
an entirely different method – the conjugate beam method.10

 
 
IV.  Conclusion 
 
There are advantages and disadvantages in using any of the several established methods for ana-
lyzing deflections of beams. This paper contributes definitive concepts and detailed explanations 
to expel ambiguities often encountered by students in applying the method using moment-area 
theorems to solve problems. Furthermore, it points out a caveat to avoid a common unsuspected 
pitfall when applying this method to solve problems involving slopes and deflections, as well as 
statically indeterminate reactions at supports, of beams. The paper is not written to advocate this 
particular method over other established methods. 
 
For the benefit of a wider readership, the paper goes over the sign conventions for beams and the 
rudiments of the method using moment-area theorems for analyzing beams. Most textbooks for 
mechanics of materials or mechanical design do not adequately warn readers about the limita-
tions of the moment-area theorems and the pitfall in the case of hinge-connected beams, where 
discontinuity in slope of the beam exists. Beginning students tend to be of the impression that the 
moment-area theorems can be applied to the entire beam without the need to divide it into seg-
ments for analysis in all cases. Such an impression is a correct one if the beam is a single piece 
of elastic body that has a constant flexural rigidity, but it is a misconception for the analysis of a 
hinge-connected beam. Thus, a hinge-connected beam is a pitfall into which unsuspecting per-
sons often tumble. 
 
The paper includes simple and full fledge illustrative examples to demonstrate both proper and 
improper ways in using moment-area theorems to solve problems involving either simple or 
statically indeterminate beams. In general, deflections and any statically indeterminate reactions 
associated with a hinge-connected beam must be analyzed by dividing the beam into segments, 
as required, where each segment must have no discontinuity in slope. Otherwise, erroneous re-
sults will be reached. 
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