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Effective Teaching of Photonics E&M Theory Using COMSOL® 
 

Abstract 

 

Photonics and optical communications, after the exuberant growth and subsequent down turn in 

late 1990s and early 2000s, have entered a more mature and stable growth phase.  As the 

technology of choice for long distance, high data rate, and high performance communication 

systems underlying the now ubiquitous Internet communications, photonics and optical 

communication professionals are and will continue to be in high demand. Because 

electromagnetic (E&M) theory is the foundation of photonics and optical communications, 

mastery of E&M theory is essential for those electrical engineering (EE) students who want to 

develop a career in this field. 

 

Traditionally, rigorous analytic skills in advanced mathematics especially in subjects such as 

partial differential equations (PDE) and linear algebra are a must to the understanding and 

applications of E&M theory, as well as photonic device and waveguide designs. However, as 

practical designs grow in complexity, even the most sophisticated and advanced analytic 

techniques in these mathematical subject areas can quickly fall short of being a suitable practical 

design tool.  Standard industry practices utilize comprehensive software simulation packages to 

address these design needs.  It is therefore appropriate and advantageous for EE students to learn 

and more importantly visualize the E&M theory by combining the basic mathematical principles, 

e.g., the Maxwell equations and wave equations, with practical software tools that they are more 

likely to use in their professional life.  This paper discusses the introduction of COMSOL®, a 

predominant industry PDE solver, to senior EE undergraduates as a learning tool of fundamental 

concepts in photonics such as transverse electrical (TE) modes and transverse magnetic (TM) 

modes in planar waveguide designs. This teaching method improves teaching effectiveness of 

E&M field and wave theory by helping the students better understand mathematical complexities 

through this readily available and reliable software tool.  In addition to the theory, the students 

also gain the design capability using these industry standard software packages, and therefore 

bridging the gap between theory and practice.      . 

 

Introduction 

 

The vector property of E&M fields is at the heart of optics and E&M wave theories. At the same 

time, it is also often a difficult knowledge point in an engineering curriculum.  This in a major 

way is because the vector nature of the fields is abstract. First of all, an E&M field is not easily 

perceived directly.  In addition, the vector relationship between the fields and their 

corresponding responses in a medium is even harder to ‘see’.  This non-intuitive nature of E&M 

fields has been consistently one of the main obstacles for generations of engineering students in 

their study of optics and E&M wave theories.  On the other hand, optics and E&M wave theories 

are now becoming key components of core engineering knowledge as they have become 

increasingly important in modern industries and electrical engineering practices.  Optical fiber 

networks, for example, are the backbone of the Internet and voice communications.  Optical fiber 

communications relies heavily on photonic and opto-electronic technologies.  The need of 

proficient workers and design engineers in this field is and will continue to grow.  Photonics 

E&M theory is essential to those EE students who want to develop a successful career in this 
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field.  Conventionally, teaching of E&M field and wave theory and photonics relies heavily, if 

not solely, on advanced mathematical analysis methods involving subjects such as partial 

differential equations (PDE), linear algebra, and vector calculus and analysis. Students may be 

asked to analytically solve wave equations for fiber and waveguide designs with specific 

boundary conditions.  Since the boundary conditions that can entertain exact analytical solutions 

are only a few, the majority of practical designs remains untouchable for an undergraduate EE 

curriculum.    

 

Following the traditional approach, an E&M field, represented typically by its electrical field (E 

field), is assumed to be linear polarized and the corresponding scalar PDEs are derived 

accordingly.  In order to obtain the desired results such as eigenmodes and the effective index of 

a waveguide, proper boundary conditions have to be applied.  Mathematically, the Neumann 

continuity condition is usually used and the scalar PDEs are solved by requiring the fields and 

their first derivatives to be continuous at the dielectric interfaces.  This typical way of teaching 

has at least two shortcomings, one is conceptual and the other one is practical.  The conceptual 

shortcoming comes from the use of the mathematical Neumann boundary condition.  The 

Neumann boundary condition requires that the field and its first derivative to be continuous 

across the boundary.  However, at dielectric interfaces, for example, while the tangential fields 

are continuous, the normal component of the E field is not.  Since the first derivative of the 

magnetic field (H field) is directly proportional to the E field, for example, the Neumann 

boundary condition does not obviously hold.  How this mathematical boundary condition can be 

related to the physical boundary condition that is required for E&M fields is often a neglected 

topic in the traditional way of teaching.  This again is due primarily to the lack of ability for 

students to ‘see’ the vector relationship between E&M fields directly.  On the application side, as 

practical designs grow in complexity, analytical techniques usually are far too complex and 

cumbersome to serve as suitable and practical design tools.  Typical practices in the industry use 

commercial and/or proprietary software simulation packages to address the design needs.  It is 

advantageous for EE students to be familiar with such simulation software packages as a highly 

desirable job skill.  More importantly, the visualization of the E&M fields by the software’s 

graphic user interfaces renders a direct experience and hands-on interaction for the students. An 

effective teaching method, therefore, combines the basic mathematical principles such as the 

Maxwell equations and wave equations with practical software tools that the students are more 

likely to use in their professional life.   

 

In this paper we discuss the use of COMSOL®, a predominant industry PDE solver, in an EE 

senior level photonics course.  Fundamental concepts such as TE and TM modes in planar 

waveguide designs are directly demonstrated in both analytical vector relations and the more 

intuitive graphs and pictures.  This method of teaching enhances the effectiveness of teaching 

E&M and wave theories to EE undergraduate students through computer interactions that 

students can have with the mathematical complexities.  In addition to the benefit of ‘seeing’ the 

abstract relations, the students also acquire a practical design capability and therefore bridge the 

gap between theory and practice. 

 

Wave Equations and Boundary Conditions 
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Wave equations derived from the Maxwell equations can take various field and/or potential 

representations.  Typically in an undergraduate level course one uses either the electrical field (E 

field) or the magnetic field (H field) for solving waveguide eigenmode problems. The derivations 

of E field and H field wave equations are similar and the resulted wave equations are 
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where n is the index of refraction, ω is the frequency of light and c is the speed of light in 

vacuum. These are in general vector equations in three dimensional (3-D) space, but most 

textbooks use the linear polarization assumption to simplify them into scalar wave equations.  

For planar waveguides, usually a one-dimensional (1-D) model is used as illustrated in Figure 1.  

The 1-D eigenmode problem is given by 
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where β  is the effective propagation constant of the eigenmodes.   

 

Traditionally the teaching effort starting from here is to apply the above equation in each 

uniform domain of a structure and then apply the Neumann continuous boundary condition at 

each dielectric interface.  This approach, however, can result in ambiguous explanations of the 

differences between TE and TM modes and easily cause confusion among students.  This is 

especially true if a student wishes to correlate the mathematical Neumann continuous boundary 

condition here with the physical requirements of the dielectric interface.  Recall that the 

Maxwell’s E&M law requires that for a dielectric interface in lossless media the tangential 

components of both the E field and the H field are continuous while the normal component of the 

E field is not.  The mathematical Neumann boundary condition, on the other hand, requires the 

field and its first derivative to be continuous.  

 

Figure 1: 1-D model of planar waveguide modes. Correspondingly there are two types of 

eigenmodes, namely, TE modes, whose electrical field is parallel to the dielectric 

interface, and TM modes, whose electrical field is normal to the dielectric interface.  
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In one typical traditional treatment, Hz is chosen as the field component to solve for TE modes 

and Ez is chosen as the field component to solve for TM modes. However, in this case the first 

derivative of Hz or Ez (i.e. ∂Hz/∂x and ∂Ez/∂x) does not by itself correspond to any field 

components.  In fact (∂Hz/∂x-∂Hx/∂z) corresponds to Ey and (∂Ez/∂x-∂Ex/∂z) corresponds to Hy. 

The continuity of ∂Hz/∂x and ∂Ez/∂x by itself at the dielectric interface is either an assumption or 

an approximation that can not be traced back to the physical boundary conditions. Another 

popular treatment chooses Ey as the field component to solve for TE modes and Ex as the field 

component to solve for TM modes.  In this case for TE modes, since ∂Ey/∂x=jωµHz, Ey and 

∂Ey/∂x are indeed both continuous across the dielectric interfaces. However, for TM modes, 

∂Ex/∂x does not correspond to any field components and its continuity across the dielectric 

interfaces is again questionable.  Even when Hy is correctly chosen as the field component to 

solve for TM modes, since ∂Hy/∂x = -jωεEz, ∂Hy/∂x is actually not continuous across the 

dielectric interfaces. In any of these cases of ambiguous treatments, a diligent student can easily 

get lost when trying to match the mathematical Neumann condition with the physical boundary 

conditions.   A traditional way of teaching that correctly differentiates TE and TM modes starts 

with Eq.(2) and applies different boundary conditions for TE and TM modes and ends up with 

different sets of analytic relations for solving TE and TM eigenvalues β1
. This approach quickly 

becomes intractable when several uniform regions are involved as it is usually the case in 

practical waveguide designs, notably for example for double-hetero-junction lasers
2
.  For such 

multi-layer structure waveguide designs, commercial available PDE solver packages are 

commonly used in practice. COMSOL® is one of such packages that have gained increasing 

popularity in recent years.  To a great benefit of engineering students, this software package also 

has a well designed graphical user interface with versatile graphical representations of the fields 

such as field contour plots and arrow plots.  In the following sections we will demonstrate two 

simple yet important practical waveguide models that also help to visualize the E&M fields.     

 

Optical Fiber modes: Visualization of E&M fields 

 

The first model we introduced to students is a step-index optical fiber.  This model is particularly 

simple in its geometry but is indeed very useful practically. The analytic approach for optical 

fiber model involves solving the 2-D eigenvalue problem in a cylindrical coordinate system and 

results in fiber mode profiles expressed in special functions.  This approach is very abstract and 

the required mathematics is difficult for undergraduate EE students.  Using COMSOL®, 

however, the vector wave equation is directly solved numerically by the finite element method  

(FEM) embedded in the software and the results can be exhibited by various field plots with easy 

and clear visualization and interaction.  

 

The vector wave equation is expressed in its general format, 
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Figure 2 shows the step-index optical fiber geometry and two of its degenerated fundamental 

modes with different polarization.  The arrow plots of the E field visually show the polarization 

direction of each fundamental mode.   To build this model it only involves several simple steps 
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of selecting the appropriate 2-D model (vector wave equation eigenvalue problem), drawing the 

fiber cross-section in its real length unit (um here) and input of the corresponding core and clad 

indices.  Once the GUI is familiarized, it only takes our EE seniors half an hour to build and 

solve this model.  The teaching results are very satisfying as our students are inspired by solving 

this complicated real world practical problem and visualizing the results, or ‘seeing’ the fields, 

for themselves. The students immediately report that the graphical representation helped them to 

understand the linear polarized modes in optical fiber.  Indeed, for advanced students including 

graduate students, one can also visualize the z-component of the fields which will clearly 

indicate that the linear polarization is only an approximation of the actual case.    

 

The boundary condition for the circular dielectric interface for COMSOL® 2-D vector wave 

equation (Eq.3) is also in the vector format 

 

 ( ) ( ) 0    and    0 2121 =−×=−× EEnHHn     (4) 

 

which states that both tangential E field and tangential H field are continuous.  This is the 

appropriate physical boundary condition and is sufficient to uniquely determine the solution to 

the vector wave equation Eq. (3).   

 

Planar Waveguide Modes: Boundary Conditions 
 

One of the objectives of introducing the COMSOL® photonics simulation package to our EE 

seniors is to equip them with a practical tool to design planar waveguides. Planar waveguides are 

used intensively in various integrated photonics devices as well as semiconductor laser designs
2
.  

The proper PDE model here is a 1-D PDE eigenvalue problem.  It is a standard practice to design 

planar waveguides, which are indeed a 2-D problem, by the method of effective index in two 

steps, first in the vertical (y) direction and then in the in-plane (x) direction
3
. The 1-D eigenvalue 

problem PDE equation that is applicable in COMSOL® reads  

Figure 2: 2-D model of step-index optical fiber showing two of its polarization 

degenerated fundamental modes.  The arrow plots visually show the E field direction 

(polarization) and the degenerated effective index.  

neff(2)=1.5528 (2)  Arrow: Electric field [V/m] neff(1)=1.5528 (1)  Arrow: Electric field [V/m]neff(2)=1.5528 (2)  Arrow: Electric field [V/m] neff(1)=1.5528 (1)  Arrow: Electric field [V/m]
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for low loss 1-D waveguide models.  The corresponding Neumann continuous boundary 

condition for Eq. (5) reads 
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This boundary condition automatically takes into account both TE and TM cases provided that 

now Eq. (2) only applies to TE modes and TM wave equations take a slightly different format as 
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In each uniform region, Eq. (2) and Eq. (6) are exactly the same.  Referring to Figure 1, both the 

E field of TE modes in Eq.(2) and the H field of TM modes in Eq.(6) are the y-component of the 

fields.  Given the 1-D waveguide model, the index of refraction only varies along one spatial 

dimension, chosen here to be x direction. Since the medium is uniform in y direction, the 

derivatives respect to y vanishes.  For TE modes, the z component of the E field is also zero. 

From the vector relationship between E field and H field, this implies that the only non-zero E 

field component is the y component, to which Eq. (2) applies. Similarly, the only non-zero H 

field component is also the y component, to which Eq. (6) applies. Since all y components of the 

fields are tangential to the interface, they are all continuous as required physically.  Their first 

derivatives, however, need to conform to Eq. (5b) for the Neumann boundary condition to be 

valid.  For TE modes Eq. (5b) yields 
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first derivative of the E field respective to x evaluated at the boundary on the side of subdomain 

two.  Since dE/dx is proportional to the z component of H field, Hz, which is tangential to the 

TE mode:

β=13.370 um-1

TM mode:

β=13.315 um-1

TE mode:

β=13.370 um-1

TM mode:

β=13.315 um-1

Figure 3: 1-D model of a multi-layer (5 different compositions, III-V semiconductors 

lattice matched to InP) planar waveguide model. Fundamental mode profiles and effective 

propagation constants for TE and TM modes respectively. (Student’s course project work)  
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interface, the Neumann boundary condition Eq. (5b) correctly prescribes the physical boundary 

condition requirement for the E field of TE modes.  For TM modes, Eq. (5b) yields 
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n
. Now that dH/dx is proportional to erEz, and the z component of the E 

field, Ez, is continuous across the interface, therefore, Eq. (5b) again correctly prescribes the 

physical boundary condition, recognizing that er=n
2
. Figure 3 shows a result of a multi-layer 

core planar waveguide model obtained by one of our EE seniors for their course project.  By 

applying the COMSOL® software with careful considerations of boundary conditions, students 

expressed that they understand and appreciate much better the vector relationship among E&M 

fields.  One student commented in his course evaluation that the best aspect of the course is 

“doing the COMSOL project and being able to learn the new software and how that software 

actually relates to what we were doing in the class.”  

 

Discussions 

 
Commercial software package COMSOL® has been introduced in an EE senior course of laser 

electronics.  It has been a great help to the instructor to help students to ‘see’ the E&M fields and 

better understand the vector properties of E&M field like the polarization state of light.  The 

approach is effective also because it teaches EE seniors a practical tool for photonic and RF 

waveguide design.  The application of software to a course project, which in this case is to 

design an active semiconductor waveguide for diode lasers, deepens students’ understanding of 

the related important topics such as TE and TM modes in planar waveguides.  The results are 

satisfactory and the feedback from students is positive.  Combining with this department’s 

previous efforts and experience using other popular commercial software packages such as 

MATLAB® in the classroom, we believe that this effective approach is highly appropriate and 

advantageous for EE students to learn and, more importantly in the case of photonic E&M 

theory, to visualize the E&M theory by combining the basic mathematical principles, e.g., the 

Maxwell equations and wave equations, with practical software tools that they are more likely to 

use in their professional life.     
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