
ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA.

Efficient Critical System Event Recognition and
Prediction in Cloud Computing Systems

Yuanyao Liu
Department of Computer Science and Engineering

University of Bridgeport
221 University Avenue, Bridgeport, CT 06604, USA

yuaoyaol@bridgeport.edu

Zhengping Wu
Department of Computer Science and Engineering

University of Bridgeport
221 University Avenue, Bridgeport, CT 06604, USA

zhengpiw@bridgeport.edu

Abstract— A reliable system is one of most important goal of
system engineers. However, system failure, software failure,
outside attacks, and mis-actions make the system unstable and
unreliable. Reducing the impact of system failure is possible if
accurate failure predictions are provided. Resources,
applications, and services can be scheduled around predicted
failure and limit the impact. In Cloud Computing environment,
virtualization is a basic technique that increases the utilization of
system resources. However different virtual machines may
generate number of system events. Events from different virtual
machines can affect system stability together. Such mechanisms
are especially important for Cloud Computing environment. In
this paper, we propose an event recognition and prediction
mechanism to increase system stability in a virtualization
environment.

Keywords—System Reliability, Event Recognition, Event
Prediction, Virtualizations

I. INTRODUCTION
In the cloud computing environment, system reliability is

an important factor that measures the wellness of the system.
The system reliability in cloud computing environment does
not only affect components in the system, it also affects other
systems, which collaborate or cooperate with this system.
System behaviors usually represent the system states and also
system reliability. System behaviors indicate a set of series of
system events happened in a time period. For example, the
system crush event usually has some previous system events,
such as memory overflow, hard failure errors, and even CPU
temperature increasing. These events affect a system and
prevent systems to provide certain services to users.
Therefore, how to increase the system reliability is an
important topic in cloud computing.

System behaviors consist of system event sequences. Some
events happen all the time, every day, and even every minute.
However, there are some events happen a few times, but can
stop the system or make the system unstable. We consider
these events as critical events. In order to increase the system
reliability, one method is to prevent the critical events; another
method is to heal the system after the critical event has happen.

Critical events usually appear in some frequent event
patterns. These critical event patterns present system

behaviors. System event patterns in distributed systems may
not consist of the same machines, especially in virtualized data
centers. Events from different virtual machines may works
together to affect the reliability of systems, or may not affect
the entire system. Virtual machines generate system events,
which are collected by the system and recorded in the system
logs.

Virtualization has been widely used in server clusters and
data centers to build multiple services and increase utilization
of hardware resources. Virtualization allows multiple
operating systems running on a same machine. However, these
operating systems need to be coordinated. The system
resources are limited, so it cannot fulfill all need for
virtualized machines at all the times. Although different
resource requirements may increase the workload of the
system, this is the goal of virtualization techniques.

Users cannot tell the difference between virtualized
environments and bear hardware environments. Users always
want to use the system efficiently. Therefore, virtualized
systems receive all type of requests and commands. These
requests and commands are finally passed to the host
operating system or hypervisor to allocate system resources
and do the computation. Host operating systems or the
hypervisors are foundation of the upper level virtual machines.
Events happened in virtual machines will affect host operating
systems or hypervisors. These events may also affect each
other in some ways. For example, the Netflix put its
registration system on the Rackspace’s virtual machines, on
the same physical machine, there are also some small virtual
machines running other customers’ services. According to the
Service Level Agreement, these virtual machines running on
same physical machines can get enough resources that are
stated in the agreement. However, the Netflix find out its
registration system is not always stable. Other small virtual
machines require some system resources that are not stated in
the SLA explicitly. Lack of these system resources makes the
Netflix’s registration system virtual machine not stable. In this
example, there must be some events happened in these virtual
machines affects the reliability of the entire system.

Reliability is one of the most important aspects and
requirement in cloud computing environment [13, 14].
Reliability is the proper functioning of the system under the

full range of conditions experienced in the field [1]. In order to
increase the reliability of systems, there must be some
mechanisms in systems can either avoid the system failures
and faults or adjust systems to prevent the more serious
failures and faults. Of cause, there is no system can ensure
100% reliability. System faults always happen in the entire
computer systems. One lucky thing is we have log in most
computer systems. When people design a computer system,
people always want to keep some records about system events.
These records are system logs. Nowadays, system logs are rich
content databases. In papers [15] propose that the behavior of
individual services in a service process must be monitored in
order to settle any responsibility issue and meet the overall
quality requirements from its customers. Similar in cloud
computing systems, reliability is monitored by system
monitors. System monitor has to try to avoid potential
problems. For instance, in the RESERVOIR architecture [16],
a service manager is responsible for monitoring the deployed
services and adjusting their capacity in order to increase the
reliability of the system. System monitor logs are used to learn
such event sequences and event patterns. There is a lot of
information in system logs. System logs also record critical
events that cause a system fault or failure.

In order to predict critical events before they happen, we
usually learn knowledge from historical system event data,
and use this knowledge to predict system behaviors. In another
word, we have to learning frequent system event sequences
from the historical data. There are three steps in this process:
learn frequent event patterns from history data, recognize
frequent event patterns in run-time, and predict critical events
in the run-time. Prediction of critical events is important for
improvement of system reliability. For example there is a
system event sequence data.

TABLE 1 EXAMPLE OF SYSTEM EVENT SEQUENCE DATABASE

Sequence
Identifier

Sequence

1 CAABCE

2 ABCBD

3 CABCE

4 ABBCAE

In this system event sequence database example, there are
4 event sequences. Each sequence contains a critical event, for
example, sequence 1 is ended with critical event “E”. There is
another critical event “D” in sequence 2. System critical
events are used to identify critical event sequences. There are
some frequent event patterns in these event sequences. For
example: “BCE” appears 3 times in this database. If there are
“BC” event sequence appears, we can predict critical event
“E” will probable happen in the future. In this paper, we
propose a critical event pattern learning, recognition and
prediction framework.

II. RELATED WORK
The sequential pattern mining problem was first proposed

by Agrawal and Srikant in 1995 [2]. Sequential event pattern

learning has been studied for decades [7, 8, 9, 11, 12].
Agrawal also presents an Apriori-based method in [3]. This
algorithm is Generalized Sequential Pattern algorithm (GSP).
GSP finds all the length-1 candidates (using one database
scan) and orders them with respect to their support ignoring
ones for which support < min_sup. Then for each level (i.e.,
sequences of length-k), the algorithm scans database to collect
support count for each candidate sequence and generates
candidate length-(k+1) sequences from length-k frequent
sequences using Apriori. Some drawbacks of GSP are: a huge
set of candidate sequences are generated, multiple scans of
database are needed and it is inefficient for mining long
sequential patterns as it needs to generate a large number of
small candidates. In [4], authors developed a vertical format-
based sequential pattern mining method called SPADE, which
is an extension of vertical format-based frequent itemset
mining methods. In vertical data format, the database becomes
a set of tuples of the form <itemset: (sequence_ID,
event_ID)>. The set of ID pairs for a given itemset forms the
ID_list of the itemset. To discover the length-k sequence,
SPADE joins the ID_lists of any two of its length-(k − 1)
subsequences. The length of the resulting ID_list is equal to
the support of the length-k sequence. The procedure stops
when no frequent sequences can be found or no sequences can
be formed by such joins. The use of vertical data format
reduces scans of the sequence database. The ID_lists carry the
information necessary to compute the support of candidates.
However, the basic search methodology of SPADE and GSP
is breadth-first search and Apriori pruning. Both algorithms
have to generate large sets of candidates in order to grow
longer sequences. In [5], authors use the concept of fuzzy sets
to extend the original pattern discovery algorithms. These
algorithms are used to discover fuzzy time-interval sequential
patterns. In the web activities, the time interval is
unpredictable, sometimes, the time interval is near the
boundary that we predetermined. The idea of these algorithms
is use the concept of fuzzy sets to overcome this boundary.
There are Fuzzy Time Interval-Apriori algorithm and Fuzzy
Time Interval-PrefixSpan algorithm. The basic idea of these
two algorithms is inserts a pre-process to find all possible
patterns. The Apriori and PrefixSpan algorithms are not
modified. The space complexity is changed.

The paper [18] presents Temporal Pattern Search (TPS), an
algorithm for searching for temporal patterns of events in
historical personal histories. Comparing to the traditional
method of searching for such patterns, which uses an
automaton-based approach over a single array of events and
sorted by time stamps, TPS operates on a set of arrays, where
each array contains all events of the same type, sorted by time
stamps. TPS searches for a particular item in the pattern using
a binary search over the appropriate arrays. This algorithm
used for search a pattern in an event stream. It needs
predetermined patterns. This is an improvement of their
previous work. In [19], authors propose a HAsh-based and
PiPelIned (abbreviated as HAPPI) architecture for hardware
enhanced association rule mining. They apply the pipeline
methodology in the HAPPI architecture to compare itemsets
with the database and collect useful information for reducing
the number of candidate itemsets and items in the database
simultaneously. In [20], authors use a level-wise association-

rule algorithm. It exploits anti-monotone and monotone
constraints to reduce the problem dimensions level-wise. Each
transaction, before participating to the support count, is
reduced as much as possible, and only if it survives to this
phase, it is used to count the support of candidate itemsets.
Each transaction, which arrives to the counting phase at
iteration k, is then reduced again as much as possible, and only
if it survives to this second set of reductions, it is written to the
transaction database for the next iteration.

Two principal approaches to critical event prediction based
on the previous occurrence of failures can be determined:
estimation of the probability distribution of a random variable
for time to the next failure, and approaches that build on the
co-occurrence of critical events [17]. In paper [21, 22, 6],
authors build Markov models and N-gram to construct
sequential classifiers. Markov models and Nth-order Markov
models, when parameterized by a length of N, are essentially
representing the same functional structure as N-grams. These
algorithms use web logs to predict future events.

III. CRITICAL EVENT PATTERN LEARNING, RECOGNITION
AND PREDICTION

In a cloud computing environment, multiple virtual
machines usually run on one physical machine, or a service is
divided into multiple virtual machines on multiple physical
machines. Distributed service components may trigger number
of events from various machines, including virtual machines
and physical machines. Various types of system events are on
behalf of system reliability and stability. For example, in
Windows systems, there are 8 levels of events representing
different importance of system events. The 0 level indicates
the most critical events, which is usually system crush. The
level 1 to level 7 events indicate from system overusing
events, process errors to debug level events. The Table 1
shows a list of levels of system events. System event
sequences usually start with normal events such as level 6 or
level 5 events, and end with critical events, such as level 0
events or level 1 events. Table 2 show a list of windows event
levels.

TABLE 2 SYSTEM AND SERVICE LOGGING LEVEL LIST IN WINDOWS

Level System
0 Emergency: system is
unusable Hardware error

1 Alert: action must be
taken immediately System overusing

2 Critical: critical
conditions Process shutdown

3 Error: error conditions Process abnormality
4 Warning: warning
conditions System access failure

5 Notice: normal but
significant condition Start of system process

6 Informational:
informational messages Hardware being online

7 Debug: debug-level
messages

All system running related
message

System event sequences construct system behaviors. Each
system behavior represents series of system event patterns.
These system events can be collected and put together to form
a structured behavior. Like human behavior includes a series
of actions, each system structured behavior has its own
patterns. These patterns are good for us to analyze how a
system performs. And we can predict system behaviors
through learning history system event data.

Each structured behavior consists of number of features.
These features are information of system states as well as
system events. The most important feature is the time of an
event happens. Event times can be used to form an order of
different events. Different orders may represent different
system behaviors. Therefore, event time is one feature that we
have to keep in the data pre-processing. Event lasting time is
another time-related feature in system event database. Some
event may last certain time, because these events may take
some time to finish it process.

Another important event feature is event level. As
mentioned in previous, event levels indicate different event
types. Different types of events appear in different position of
event sequences. In another word, event levels also carry
ordering information of event sequences. For example, Critical
level events are usually treated as an end of event sequences.
Event sources indicate which processes or components trigger
these events. Event sources are usually used in event
relationship analysis. A structured behavior represents a series
of system events. Structured behaviors carry system
information and event information.

A. System Event Pattern Learning
1) Summary of BIDE algorithm
According to previous presentation, system event

sequences present behaviors of a system. Different structured
behaviors have different event patterns. An event sequence
ended with a critical event usually present a critical behavior.
However, not every event sequence ended with critical events
happens again and again. There are only a few event
sequences appear frequently. We call these frequent event
sequences frequent event patterns. Although the number of
frequent event patterns is not very large, these frequent event
patterns can have different prefixes of other events sequences.
Therefore, if some event sequences happen and lead frequent
event pattern appearing, we can recognize these frequent event
pattern and predict critical event before it happens.

In order to predict critical system events, we first have to
know under what kind of situation the critical system events
happen. In another word, we have to learn what will lead to a
critical system event. This situation can be presented as a
frequent event pattern, which also presents a structured
behavior of a system. Therefore, we can find out the
knowledge of these structured behaviors or frequent event
patterns from historical system event databases.

Learning a historical system event database is an ongoing
research topic. There are number of techniques can find out
frequent event patterns. In this paper, we customize an
efficient mining algorithm. In [10], Wang and Han present an
efficient algorithm for mining frequent closed sequences

without candidate maintenance. The proposed mechanism
adopts a novel sequence closure checking scheme called BI-
Directional Extension (BIDE) and prunes the search space
more deeply by using the BackScan pruning method.

Time propriety of system events is an important feature of
event sequences. Time represents an ordering propriety of
events in a sequence. Therefore, events in an event sequence
follow their orders, as well as in frequent event patterns. The
example in the first section includes 4 event sequences, which
includes 3 types of events. If we enumerate all event
sequences, the sequence set will be: {A:4; AA:2; AB:4;
ABB:2; ABC:4; AC:4; B:4;BB:2; BC:4; C:4; CA:3; CAB:2;
CABC:2;CAC:2; CB:3; CBC:2; CC:2}. We can construct a
pattern tree through this event sequence set. There are some
short frequent pattern that can be treated as a prefix of its
children, which means these node can become their children
through add more events to it. For example, pattern “AB”.
Some of these frequent patterns have the same support as their
children. Such as the node “AB:4” in the dataset, that has the
same support with its children “ABC:4”. Therefore, we can
combine nodes “AB:4” and “ABC:4”.

What kind of pattern can be absorbed by longer pattern?
This is determined by Forward-checking and Backward-
checking in BIDE algorithm. The Forward-checking is a
method that eliminates event sequences Sp that its complete set
of forward extension events is equivalent to the set of its
locally frequent items whose supports are equal to SUPSDB(Sp).
This is proved in the paper [10]. The Backward-check consists
of a prefix event sequences, whether there is an existed item e0
that appears in each of the ith maximum periods of the prefix
Sp in SDB, e0 is a backward-extension event (or item) with
respect to prefix Sp.

Any event pattern has Forward-extension or Backward-
extension can be compressed into other frequent patterns,
because it is a part of its Forward-extension or Backward-
extension or both. The Forward-extension or Backward-
extension in a tree is usually located in deeper levels. If there
is neither Forward-extension event nor Backward-extension
event of a frequent pattern, this frequent pattern can be called
as frequent closed pattern. Frequent closed patterns indicate
there is no further event patterns have the same supports. This
feature reduces the search space of the pattern recognition and
prediction.

Although the Forward-checking and Backward-checking
generate a nonredundant frequent pattern space, this is not
enough for reducing search spacing learning. Therefore,
authors in [10] also introduce a “BackScan” Search Space
Pruning method. This technique prunes some branches to
further reduce the search space. Through this method, nodes
frequent pattern tree cannot format a traditional tree, which
means the learning process is speed up because there are no
more branches. This tree structure has some draw backs in the
recognition and prediction process, because of pruned nodes.
There may not be a complete path from one node to its
children. Therefore, during the prediction process, the path to
a leaf node is needed that in order to predict critical event
more early. The “BackScan” method prunes these nodes

during the learning in order to reduce the search space, but we
can keep such nodes during the recognition processes.

Φ

AA:2 CA:3 CB:4ABB:2 ABC:4

CACB
:2

Figure 1 Frequent Closed Pattern Tree after Pruning

In the Figure 1, this tree is built use BIDE algorithm, there
are only 6 nodes left in this tree. In this tree, all these nodes
are frequent closed pattern, which can be used in further steps.
It is a very simple tree which has only two levels. In the
prediction, if the coming event sequence is “CA”, we can
directly predict the future events are “CB”, because there is
only one child under the “CA” node. If there is not any match
an event sequence, for example “BC”, in this tree, we cannot
predict future events. Because there is no matching event
patterns in this pruned tree. However, the event sequence
“BC” is the suffix of frequent closed pattern “ABC”.

2) Hash table with Frequent Pattern Tree
One most important feature or advantage of Hash table is

the search speed, which is a constant time. A good hash
function can greatly reduce search time in hash table search. In
previous section, we summarize the BIDE algorithm which
mines the event sequence database and find out all frequent
closed patterns. It consists of Forward-checking, Backward-
checking and BackScan pruning methods. This algorithm
constructs a complete set of frequent closed pattern in an event
sequence database, and a frequent closed pattern tree. The
pattern tree is a compressed tree, where nodes not only contain
their own information, but also contain their Forward-
extension nodes and Backward-extension nodes. For example,
the node “CABC” in Figure 1 is a leaf node, during the
Forward-checking and Backward-Check, the event sequence
“CAB” is compressed into the “CABC” node, because the
node “CAB” has the same support as the “CABC” node.
Therefore, one of important proprieties of this pattern tree is
compressed information.

In order to map tree node to a hash table, we have to use
hash function to calculate indexes for each node in the pattern
tree. The hash function treats the event patterns as a string,
because each event is represented as an English word.
Therefore, we can utilize string hash function to map event
patterns into a hash table. Features of each event, which are
time, source, event level, and etc, are also used in the hash
function. Through the time of events, we can form a time
period for each frequent pattern. This time period usually
formalize a time window for similar event sequences. And
also the time period indicates system behaviors with reality
world, because there may be some environmental factors
affect the reliability of distributed systems. Sources and event
level can also be used in the hash function that maps event
pattern into hash table with event level orders. For example, if
there are collisions in a hash table entry, the event pattern with
higher event level can be put in the header of the event pattern

list. This could increase the speed of search for patterns that
contain high event level events.

Each hash table entry links to a tree node in the pattern tree.
In a hash table entry, there are also statistical data, and pattern
time period. Statistical data is useful in pattern prediction.
Pattern time period can be used to eliminate some unmatched
event sequences or confirm recognition results. Hash table
entry also contains an address of corresponding tree nodes.
This address is the relationship between the hash table and
frequent pattern tree. This information will be updated when
the tree structure changed in run-time.

An advantage of using hash table is to fast locate nodes in
the pattern tree. However, not every event sequence has a
corresponding entry in the hash table. Event sequences, which
do not have indexes in the hash table, are infrequent patterns
or non-closed event patterns. These event sequences can be
added to the frequent pattern tree. The hash table entry also
will be updated accordingly.

IV. SYSTEM EVENT PATTERN RECOGNITION
System event pattern recognition is the second step of

critical event prediction. In this step, we have to read an event
sequences, and search frequent pattern database that try to find
out a matched frequent pattern. If there is a matched frequent
pattern, we also have to update the statistical data for further
recognition and prediction.

In a hash table, to search an existed item, we can use hash
function to directly calculate the index of this item. If the hash
table entry with this index contains this item, it will report a
match. If there is not a match in this step, we have to consider
two situations. One situation is that the hash table entry of this
index is empty, which means there is no such item can match
given data item. Another situation is that there is a linked list
in this hash table entry. If the given pattern can match any
item in this linked list, we also can report a match. If there is
no match in the linked list, we will report an unmatched
notification.

If the given event sequence can be found in the hash table,
which means this event sequence is a frequent closed pattern.
And this item can be found in the event sequence tree. We will
update the statistical data of this event pattern. The Figure 2
shows a process of recognition. In this example, the event
sequence “ABC” has a hit in the frequent event pattern hash
table. Then we follow the link to update the statistical data in
the event sequence tree. This is a recognized sequence.

Φ

AA:2 CA:3 CB:4ABB:2 ABC:4

CACB
:2

ID Sequence

1

2

3

ABC

CABC

CB

Event Sequence

Figure 2 Event Sequence Recognition

If there is an unrecognized event sequence appears in the
system, we have to update the event sequence tree, which
include uncompress certain nodes to insert new event
sequences. In order to uncompress a tree node in the event
sequence tree, we have to create a new linked list, where the
first node contains a “∅”. This new linked list includes a path
from “∅” to the target event sequences. For example, there is
a new event sequence “ABCD”, which does not have any
match with all frequent patterns. We create a linked list with 5
elements {“∅”, “A”,”AB”,”ABC”,”ABCD”}. Then we
compare this linked list with event sequence tree, from the tail
of the linked list. In order to compare elements in the linked
list with frequent patterns in the event sequence tree, we use
the hash function to calculate indexes. In this example, we can
calculate that “ABC” is a frequent pattern in event sequence
tree. Then, we create a child node of “ABC” and put the
element after “ABC”, which is “ABCD” to this child node.
The event sequence tree become to the event sequence tree in
the Figure 3.

Φ

AA:2 CA:3 CB:4ABB:2 ABC:4

CACB
:2

ABCD
1

Figure 3 Updated Event Sequence Tree

In the traditional tree structure, parent nodes are connected
with children nodes through links. However, in our approach,
there is only one link from one parent node to its first child
node. This child node is also connected with other children
node through sibling links. The Figure 4 shows a structure of a
node. Child node pointer points to its first child node; Sibling
Node pointer points to its next sibling node; Parent node
pointer points to its parent node; Next node pointer points to
next node in the linked list. In following presentation, figures
only show links that related to their topics.

Pattern
Child
Node

pintoer

Sibling
Node

Pointer

Parent
Node

Pointer

Next
Node

Pointer
Figure 4 Structure of a Node

In the new event sequence tree, the new node cannot
become frequent pattern immediately, because the new event
sequence does not meet the threshold yet. If there is an event
sequence in the event sequence tree reach the support
threshold, it will become a frequent pattern and be added in to
the frequent pattern hash table. If the incoming event sequence
is not in the frequent pattern but in the event sequence tree, we
can use same process to update the event sequence tree, and
check whether the incoming event sequence meet the support
threshold. If the incoming event sequence does not match any
frequent pattern in frequent pattern hash table and event
sequences in the event sequence tree, the incoming event
sequence will also be added into the event sequence tree. And
update its statistical data.

The time is an important feature in the event pattern
recognition process. Each event sequence carries its time
information. This time information can be used in the
recognition process. For example, an event sequence happens
in time “t1”, and end at time “t2”, the time period is “Δt”. In
the recognition process, if there is not any frequent pattern
match the incoming event sequence, the new event sequence
should be add into the event sequence tree. After this event
sequence, another event sequence comes into the system and
carries the consecutive time information, which means these
two event sequence happens in a tied time period. If the
second event sequence is identical with the first event
sequence, and these two event sequence come from a same
source, these two event sequence may be a repeat event
sequence. Therefore, we can identify whether there is a system
jitter. The system should add this event sequence into the
frequent pattern hash table for future recognition.

V. CRITICAL EVENT PREDICTION
The critical event prediction utilizes the statistical

information of frequent patterns to predict known critical
events. This step is processed at the same time of the
recognition. Because every event pattern is ended with a
critical event, the event sequence tree is a monitor of the
system event sequences. At the beginning, the event sequence
tree is a compressed tree, which does not contain all nodes,
and its leaves are ended with critical events. Therefore, during
the recognition, new added the event sequences are all ended
with a critical event. As a result all leaves in the event
sequence tree is ended with a critical event or a set of critical
events.

The basic method to calculate probability of a critical
event is to use Bayesian probability theorem. The Bayesian
probability theorem provides a method to infer a probability of
critical events. However, events in Bayesian theorem are
independent to each other. The appearance of each event is
base on its own statistical information. According to Bayesian
theorem, the probability of appearance of an event is
calculated by the (1).

P(x)
P(y|x)P(y)P(y|x) =

 (1)

In a cluster system or virtualized cloud computing system,
most system events are not independent with other events. For
example, one memory allocation request may cause a memory
exhaust alert for other systems within the same physical
machine. Therefore, there are tie relationships between events,
especially for critical events. These relationships affect the
result of prediction. Therefore, relationships have to be
considered during the prediction. We use a constant “C” to
indicate relationships.

C
P(x)

P(y|x)P(y)P(y|x) +=
 (2)

The relationship constant “C” shows how interdependence
is between two events. Constant “C” can be calculated through
the structure of reverse pattern tree and relationship between
critical event patterns (Formula 3). We assume the system is a
reliable system, which critical events do not happen very
frequently. Therefore, critical events appear only in the deeper
level in the reverse pattern tree. Every prior event in a critical
event pattern increases amount of relationship constant. The
relationship constant includes a structured prediction function:
“f(x,yi)”. The structure prediction function is a function
Denote the output space for a given input pattern “x” as
“Y(x)”. We assume that we can define the output space for a
structured example “x” using a set of constraint functions: “f(x,
y)”. This constraint function is very general. The output “y” is
determined through the structure of pattern “x”. The output of
structure prediction function indicates the strength of
relationship between child nodes of a pattern. For example, the
structure probability of pattern “ABCD” is the relationship
between its parent pattern “ABC” and its child nodes
“ABCDA”, “ABCDC” and “ABCDE”. The result of this
function is a number indicates the strength between “ABC and
“ABCD”. Relationship constant also includes an event
relationship probability function “g(x,yi)”. The event
relationship probability function indicates relationships
between events. The temporal logic is used in this event
relationship probability function. Relationships between
events include direct and indirect relationships. These two
types of relationships indicate different aspects of state
transitions of systems. Direct relationships present the
relationships of attributes of events, such as event “A” and
event “B” are the same type of events. The event type attribute
of “A”, “B” is one of the direct relationships. The frequency
of sequence “AB” appears in other patterns is another direct
relationship of event “A” and “B”. Indirect relationships
represent relationships between events from one working node
to the master node. Indirect relationships are used in the
prediction in the master node. The master node has the entire
event stream during the event processing. Although the master
node controls functions that working nodes perform, master
node cannot affect the exact events happened in working
nodes. If an event from one working node result another event
in another working node, these two events are indirectly
connected. And this is the indirect relationship. Indirect
relationships are learnt through pattern libraries. For example,
event “A” and event “B” always appears together, and these

two events are from two different working nodes. Event
sequence “AB” has an indirect relationship. Indirect
relationships indicate likehood of events that have causal
relationship.

),(),(ii yxgyxfC =
 (3)

The structured prediction function works for both working
nodes and master nodes. The relationship function includes
two parts, direct relationship and indirect relationship. Direct
relationship works for events in both working nodes and
master nodes. Indirect relationship only works for master
nodes, which include all events from upper level of the system
since working nodes cannot know system events from other
working nodes and master nodes.

VI. EXPERIMENT
The dataset we used in the experiment is records of cluster

node outages, workload logs and error logs in Los Alamos
National Laboratory. The data spans 22 high-performance
computing systems that have been in production use at Los
Alamos National Lab (LANL) between 1996 and November
2005. The data contains an entry for any failure leading to a
node outage that occurred during the 9-year time period and
that required the attention of a system administrator. For each
failure, the data includes start time and end time, the system
and node affected, as well as categorized root cause
information. There are 23740 event records in this dataset. The
first step is preprocessing. We clear the data with several
features including event ID, event source, event start time, end
time, and event type.

Through the BIDE algorithm, we can mining the frequent
event pattern in this data set. The Figure 4 shows the result of
BIDE learning result in different scale of events. In this test,
the minimum support is set to 0.1%, the max length of
frequent closed pattern is 10 events, which is also constrained
by time. If time period between two events is over 24 hours,
we will discard the early events. Source feature is also used to
control the event sequence.

Figure 5 BIDE Learning Result

The learning process in this dataset shows in Figure 5.
With the increasing of size of dataset, the time consumption in
learning process is also increase, but it is increase in a liner
fashion.

The Figure 6 shows the time that used for recognition in
the same dataset. In this figure, the increase of processing time
indicates there are still overhead in the program. The time
include matched pattern and unmatched event sequences. The

unmatched event sequence greatly increases the processing
time.

Figure 6 Hash Table Recognition Time

The Figure 7 shows the times that prediction process
reported. With different thresholds, the report times are
different. Higher thresholds reduce the search space of
prediction process. Because the prediction process is triggered
by the threshold, higher threshold setting triggers fewer
prediction processes.

Figure 7 Hash Table Recognition Time

VII. CONCLUSION
In this paper, we proposed a critical event prediction

framework in virtualization environment. The virtualization
technique is widely used in distributed systems and very large
data centers. In this framework, we use BIDE algorithm
mining frequent closed pattern and store these event patterns
in a hash table. Through the hash table, we reduce search time
in the pattern recognition process. In the critical event
prediction process, we use event sequence tree to calculate the
probability of a critical event. This framework not only
increases the frequent pattern recognition process, but also
increases the accuracy of critical event prediction result.

References	

[1] Clausing, Don, and Daniel D. Frey. "Improving system reliability by

failure ‐ mode avoidance including four concept design
strategies." Systems engineering Vol 8, Issue 3, pp. 245-261 2005.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. Int’l
Conf. Data Eng. (ICDE ’95), pp. 3-14, Mar. 1995.

[3] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations
and Performance Improvements,” Proc. Int’l Conf. Extending Database
Technology (EDBT ’96), pp. 3-17, Mar. 1996.

[4] M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Machine Learning, vol. 42, pp. 31-60, 2001.

[5] Chen, Yen-Liang, and TC-K. Huang. "Discovering fuzzy time-interval
sequential patterns in sequence databases." Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, Vol35, Issue 5,
pp. 959-972, 2005

[6] J.Pitkow and P.Pirolli. Mining Longest Repeating Subsequences to
Predict World Wide Web Surfing. In Second USENIX Symposium on
Internet Technologies and Systems, Boulder, C0, 1999

[7] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for
Mining Sequential Patterns,” Proc. European Symp. Principle of Data
Mining and Knowledge Discovery (PKDD ’98), pp. 176-184, Sept.1998.

[8] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu, “
FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining,” Proc.
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(SIGKDD ’00), pp. 355-359, Aug. 2000.

[9] Derek Pao, Wei Lin, Bin Liu, "A memory-efficient pipelined
implementation of the aho-corasick string-matching algorithm", ACM
Transactions on Architecture and Code Optimization (TACO), pp 1-22,
2010,

[10] Wang, Jianyong, Jiawei Han, and Chun Li. "Frequent closed sequence
mining without candidate maintenance." Knowledge and Data
Engineering, IEEE Transactions on 19.8 (2007): 1042-1056.

[11] A.Paschke and A. Kozlenkov. Rule-based event processing and reaction
rules. In Proceedings of RuleML, pages 53-66. Springer, 2009.

[12] Artikis, Alexander, Marek Sergot, and Georgios Paliouras. "Run-time
composite event recognition." Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems. pp. 69-80, ACM,
2012.

[13] Wagle, Rohit, et al. "Distributed middleware reliability and fault
tolerance support in system S." Proceedings of the 5th ACM
international conference on Distributed event-based system. pp.335-346
, 2011.

[14] Atwa, Yasser M., and Ehab F. El-Saadany. "Reliability evaluation for
distribution system with renewable distributed generation during
islanded mode of operation." Power Systems, IEEE Transactions on, Vol
24, Issue 2 , pp.572-581, 2009.

[15] Yanlong Zhai, Jing Zhang, Kwei-Jay Lin, "SOA Middleware Support
for Service Process Reconfiguration with End-to-End QoS Constraints",
ICWS 2009, pp.815-822, July 2009,

[16] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-
Yehuda, W. Emmerich, F. Galán, “The reservoir model and architecture
for open federated cloud computing”, IBM Journal of Research and
Development archive Volume 53 , Issue 4, pp. 535-542, July 2009.

[17] Salfner, Felix, Maren Lenk, and Miroslaw Malek. "A survey of online
failure prediction methods." ACM Computing Surveys (CSUR) Vol 42,
Issue3, 2010.

[18] Wang, Taowei David, Amol Deshpande, and Ben Shneiderman. "A
temporal pattern search algorithm for personal history event
visualization." Knowledge and Data Engineering, IEEE Transactions on
Vol 24, Issue 5, pp 799-812, 2012.

[19] Zhong, Ning, Yuefeng Li, and Sheng-Tang Wu. "Effective pattern
discovery for text mining." Knowledge and Data Engineering, IEEE
Transactions on, Vol 24, Issue 1, pp. 30-44,2012.

[20] Bonchi, Francesco, et al. "ExAMiner: Optimized level-wise frequent
pattern mining with monotone constraints." ICDM 2003, Data Mining
Third IEEE International Conference on. 2003.

[21] S. Schechter, M. Krishnan and M. D. Smith, Using path profiles to
predict HTTP requests. In 7th International World Wide Web
Conference, pages 457–467, Brisbane, Qld., Australia, April 1998.

[22] Su, Zhong, Qiang Yang, and Hong-Jiang Zhang. "A prediction system
for multimedia pre-fetching in internet." Proceedings of the eighth ACM
international conference on Multimedia, pp. 3-11, 2000

