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Abstract— A reliable system is one of most important goal of 
system engineers. However, system failure, software failure, 
outside attacks, and mis-actions make the system unstable and 
unreliable. Reducing the impact of system failure is possible if 
accurate failure predictions are provided. Resources, 
applications, and services can be scheduled around predicted 
failure and limit the impact. In Cloud Computing environment, 
virtualization is a basic technique that increases the utilization of 
system resources. However different virtual machines may 
generate number of system events. Events from different virtual 
machines can affect system stability together. Such mechanisms 
are especially important for Cloud Computing environment. In 
this paper, we propose an event recognition and prediction 
mechanism to increase system stability in a virtualization 
environment. 
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Prediction, Virtualizations 

I.  INTRODUCTION 
In the cloud computing environment, system reliability is 

an important factor that measures the wellness of the system. 
The system reliability in cloud computing environment does 
not only affect components in the system, it also affects other 
systems, which collaborate or cooperate with this system. 
System behaviors usually represent the system states and also 
system reliability. System behaviors indicate a set of series of 
system events happened in a time period. For example, the 
system crush event usually has some previous system events, 
such as memory overflow, hard failure errors, and even CPU 
temperature increasing. These events affect a system and 
prevent systems to provide certain services to users. 
Therefore, how to increase the system reliability is an 
important topic in cloud computing. 

System behaviors consist of system event sequences. Some 
events happen all the time, every day, and even every minute. 
However, there are some events happen a few times, but can 
stop the system or make the system unstable. We consider 
these events as critical events. In order to increase the system 
reliability, one method is to prevent the critical events; another 
method is to heal the system after the critical event has happen. 

Critical events usually appear in some frequent event 
patterns. These critical event patterns present system 

behaviors. System event patterns in distributed systems may 
not consist of the same machines, especially in virtualized data 
centers.  Events from different virtual machines may works 
together to affect the reliability of systems, or may not affect 
the entire system. Virtual machines generate system events, 
which are collected by the system and recorded in the system 
logs. 

Virtualization has been widely used in server clusters and 
data centers to build multiple services and increase utilization 
of hardware resources. Virtualization allows multiple 
operating systems running on a same machine. However, these 
operating systems need to be coordinated. The system 
resources are limited, so it cannot fulfill all need for 
virtualized machines at all the times. Although different 
resource requirements may increase the workload of the 
system, this is the goal of virtualization techniques. 

Users cannot tell the difference between virtualized 
environments and bear hardware environments. Users always 
want to use the system efficiently. Therefore, virtualized 
systems receive all type of requests and commands. These 
requests and commands are finally passed to the host 
operating system or hypervisor to allocate system resources 
and do the computation. Host operating systems or the 
hypervisors are foundation of the upper level virtual machines. 
Events happened in virtual machines will affect host operating 
systems or hypervisors. These events may also affect each 
other in some ways. For example, the Netflix put its 
registration system on the Rackspace’s virtual machines, on 
the same physical machine, there are also some small virtual 
machines running other customers’ services. According to the 
Service Level Agreement, these virtual machines running on 
same physical machines can get enough resources that are 
stated in the agreement. However, the Netflix find out its 
registration system is not always stable. Other small virtual 
machines require some system resources that are not stated in 
the SLA explicitly. Lack of these system resources makes the 
Netflix’s registration system virtual machine not stable. In this 
example, there must be some events happened in these virtual 
machines affects the reliability of the entire system. 

Reliability is one of the most important aspects and 
requirement in cloud computing environment [13, 14]. 
Reliability is the proper functioning of the system under the 



full range of conditions experienced in the field [1]. In order to 
increase the reliability of systems, there must be some 
mechanisms in systems can either avoid the system failures 
and faults or adjust systems to prevent the more serious 
failures and faults. Of cause, there is no system can ensure 
100% reliability. System faults always happen in the entire 
computer systems. One lucky thing is we have log in most 
computer systems. When people design a computer system, 
people always want to keep some records about system events. 
These records are system logs. Nowadays, system logs are rich 
content databases. In papers [15] propose that the behavior of 
individual services in a service process must be monitored in 
order to settle any responsibility issue and meet the overall 
quality requirements from its customers. Similar in cloud 
computing systems, reliability is monitored by system 
monitors. System monitor has to try to avoid potential 
problems. For instance, in the RESERVOIR architecture [16], 
a service manager is responsible for monitoring the deployed 
services and adjusting their capacity in order to increase the 
reliability of the system. System monitor logs are used to learn 
such event sequences and event patterns. There is a lot of 
information in system logs. System logs also record critical 
events that cause a system fault or failure.  

In order to predict critical events before they happen, we 
usually learn knowledge from historical system event data, 
and use this knowledge to predict system behaviors. In another 
word, we have to learning frequent system event sequences 
from the historical data. There are three steps in this process: 
learn frequent event patterns from history data, recognize 
frequent event patterns in run-time, and predict critical events 
in the run-time. Prediction of critical events is important for 
improvement of system reliability.  For example there is a 
system event sequence data. 

TABLE 1 EXAMPLE OF SYSTEM EVENT SEQUENCE DATABASE 

Sequence 
Identifier 

Sequence 

1 CAABCE 

2 ABCBD 

3 CABCE 

4 ABBCAE 

In this system event sequence database example, there are 
4 event sequences. Each sequence contains a critical event, for 
example, sequence 1 is ended with critical event “E”. There is 
another critical event “D” in sequence 2.  System critical 
events are used to identify critical event sequences. There are 
some frequent event patterns in these event sequences. For 
example: “BCE” appears 3 times in this database. If there are 
“BC” event sequence appears, we can predict critical event 
“E” will probable happen in the future. In this paper, we 
propose a critical event pattern learning, recognition and 
prediction framework. 

II. RELATED WORK 
The sequential pattern mining problem was first proposed 

by Agrawal and Srikant in 1995 [2]. Sequential event pattern 

learning has been studied for decades [7, 8, 9, 11, 12]. 
Agrawal also presents an Apriori-based method in [3]. This 
algorithm is Generalized Sequential Pattern algorithm (GSP). 
GSP finds all the length-1 candidates (using one database 
scan) and orders them with respect to their support ignoring 
ones for which support < min_sup. Then for each level (i.e., 
sequences of length-k), the algorithm scans database to collect 
support count for each candidate sequence and generates 
candidate length-(k+1) sequences from length-k frequent 
sequences using Apriori. Some drawbacks of GSP are: a huge 
set of candidate sequences are generated, multiple scans of 
database are needed and it is inefficient for mining long 
sequential patterns as it needs to generate a large number of 
small candidates. In [4], authors developed a vertical format-
based sequential pattern mining method called SPADE, which 
is an extension of vertical format-based frequent itemset 
mining methods. In vertical data format, the database becomes 
a set of tuples of the form <itemset: (sequence_ID, 
event_ID)>. The set of ID pairs for a given itemset forms the 
ID_list of the itemset. To discover the length-k sequence, 
SPADE joins the ID_lists of any two of its length-(k − 1) 
subsequences. The length of the resulting ID_list is equal to 
the support of the length-k sequence. The procedure stops 
when no frequent sequences can be found or no sequences can 
be formed by such joins. The use of vertical data format 
reduces scans of the sequence database. The ID_lists carry the 
information necessary to compute the support of candidates. 
However, the basic search methodology of SPADE and GSP 
is breadth-first search and Apriori pruning. Both algorithms 
have to generate large sets of candidates in order to grow 
longer sequences. In [5], authors use the concept of fuzzy sets 
to extend the original pattern discovery algorithms. These 
algorithms are used to discover fuzzy time-interval sequential 
patterns. In the web activities, the time interval is 
unpredictable, sometimes, the time interval is near the 
boundary that we predetermined. The idea of these algorithms 
is use the concept of fuzzy sets to overcome this boundary. 
There are Fuzzy Time Interval-Apriori algorithm and Fuzzy 
Time Interval-PrefixSpan algorithm. The basic idea of these 
two algorithms is inserts a pre-process to find all possible 
patterns. The Apriori and PrefixSpan algorithms are not 
modified. The space complexity is changed. 

The paper [18] presents Temporal Pattern Search (TPS), an 
algorithm for searching for temporal patterns of events in 
historical personal histories. Comparing to the traditional 
method of searching for such patterns, which uses an 
automaton-based approach over a single array of events and 
sorted by time stamps, TPS operates on a set of arrays, where 
each array contains all events of the same type, sorted by time 
stamps. TPS searches for a particular item in the pattern using 
a binary search over the appropriate arrays. This algorithm 
used for search a pattern in an event stream. It needs 
predetermined patterns. This is an improvement of their 
previous work. In [19], authors propose a HAsh-based and 
PiPelIned (abbreviated as HAPPI) architecture for hardware 
enhanced association rule mining. They apply the pipeline 
methodology in the HAPPI architecture to compare itemsets 
with the database and collect useful information for reducing 
the number of candidate itemsets and items in the database 
simultaneously. In [20], authors use a level-wise association-



rule algorithm. It exploits anti-monotone and monotone 
constraints to reduce the problem dimensions level-wise. Each 
transaction, before participating to the support count, is 
reduced as much as possible, and only if it survives to this 
phase, it is used to count the support of candidate itemsets. 
Each transaction, which arrives to the counting phase at 
iteration k, is then reduced again as much as possible, and only 
if it survives to this second set of reductions, it is written to the 
transaction database for the next iteration. 

Two principal approaches to critical event prediction based 
on the previous occurrence of failures can be determined: 
estimation of the probability distribution of a random variable 
for time to the next failure, and approaches that build on the 
co-occurrence of critical events [17]. In paper [21, 22, 6], 
authors build Markov models and N-gram to construct 
sequential classifiers. Markov models and Nth-order Markov 
models, when parameterized by a length of N, are essentially 
representing the same functional structure as N-grams. These 
algorithms use web logs to predict future events. 

III. CRITICAL EVENT PATTERN LEARNING, RECOGNITION 
AND PREDICTION 

In a cloud computing environment, multiple virtual 
machines usually run on one physical machine, or a service is 
divided into multiple virtual machines on multiple physical 
machines. Distributed service components may trigger number 
of events from various machines, including virtual machines 
and physical machines. Various types of system events are on 
behalf of system reliability and stability. For example, in 
Windows systems, there are 8 levels of events representing 
different importance of system events. The 0 level indicates 
the most critical events, which is usually system crush. The 
level 1 to level 7 events indicate from system overusing 
events, process errors to debug level events. The Table 1 
shows a list of levels of system events. System event 
sequences usually start with normal events such as level 6 or 
level 5 events, and end with critical events, such as level 0 
events or level 1 events. Table 2 show a list of windows event 
levels. 

TABLE 2 SYSTEM AND SERVICE LOGGING LEVEL LIST IN WINDOWS 

Level System 
0 Emergency: system is 
unusable Hardware error 

1 Alert: action must be 
taken immediately System overusing 

2 Critical: critical 
conditions Process shutdown 

3 Error: error conditions Process abnormality 
4 Warning: warning 
conditions System access failure 

5 Notice: normal but 
significant condition  Start of system process  

6 Informational: 
informational messages Hardware being online 

7 Debug: debug-level 
messages 

All system running related 
message 

 

System event sequences construct system behaviors. Each 
system behavior represents series of system event patterns. 
These system events can be collected and put together to form 
a structured behavior. Like human behavior includes a series 
of actions, each system structured behavior has its own 
patterns. These patterns are good for us to analyze how a 
system performs. And we can predict system behaviors 
through learning history system event data.  

Each structured behavior consists of number of features. 
These features are information of system states as well as 
system events. The most important feature is the time of an 
event happens. Event times can be used to form an order of 
different events. Different orders may represent different 
system behaviors. Therefore, event time is one feature that we 
have to keep in the data pre-processing. Event lasting time is 
another time-related feature in system event database. Some 
event may last certain time, because these events may take 
some time to finish it process. 

Another important event feature is event level. As 
mentioned in previous, event levels indicate different event 
types. Different types of events appear in different position of 
event sequences. In another word, event levels also carry 
ordering information of event sequences. For example, Critical 
level events are usually treated as an end of event sequences. 
Event sources indicate which processes or components trigger 
these events. Event sources are usually used in event 
relationship analysis. A structured behavior represents a series 
of system events. Structured behaviors carry system 
information and event information. 

A.  System Event Pattern Learning 
1) Summary of BIDE algorithm 
According to previous presentation, system event 

sequences present behaviors of a system. Different structured 
behaviors have different event patterns. An event sequence 
ended with a critical event usually present a critical behavior. 
However, not every event sequence ended with critical events 
happens again and again. There are only a few event 
sequences appear frequently. We call these frequent event 
sequences frequent event patterns. Although the number of 
frequent event patterns is not very large, these frequent event 
patterns can have different prefixes of other events sequences. 
Therefore, if some event sequences happen and lead frequent 
event pattern appearing, we can recognize these frequent event 
pattern and predict critical event before it happens. 

In order to predict critical system events, we first have to 
know under what kind of situation the critical system events 
happen. In another word, we have to learn what will lead to a 
critical system event. This situation can be presented as a 
frequent event pattern, which also presents a structured 
behavior of a system. Therefore, we can find out the 
knowledge of these structured behaviors or frequent event 
patterns from historical system event databases.  

Learning a historical system event database is an ongoing 
research topic. There are number of techniques can find out 
frequent event patterns. In this paper, we customize an 
efficient mining algorithm. In [10], Wang and Han present an 
efficient algorithm for mining frequent closed sequences 



without candidate maintenance. The proposed mechanism 
adopts a novel sequence closure checking scheme called BI-
Directional Extension (BIDE) and prunes the search space 
more deeply by using the BackScan pruning method. 

Time propriety of system events is an important feature of 
event sequences. Time represents an ordering propriety of 
events in a sequence. Therefore, events in an event sequence 
follow their orders, as well as in frequent event patterns. The 
example in the first section includes 4 event sequences, which 
includes 3 types of events. If we enumerate all event 
sequences, the sequence set will be: {A:4; AA:2; AB:4; 
ABB:2; ABC:4; AC:4; B:4;BB:2; BC:4; C:4; CA:3; CAB:2; 
CABC:2;CAC:2; CB:3; CBC:2; CC:2}. We can construct a 
pattern tree through this event sequence set. There are some 
short frequent pattern that can be treated as a prefix of its 
children, which means these node can become their children 
through add more events to it. For example, pattern “AB”. 
Some of these frequent patterns have the same support as their 
children. Such as the node “AB:4” in the dataset, that has the 
same support with its children “ABC:4”. Therefore, we can 
combine nodes “AB:4” and “ABC:4”. 

What kind of pattern can be absorbed by longer pattern? 
This is determined by Forward-checking and Backward-
checking in BIDE algorithm. The Forward-checking is a 
method that eliminates event sequences Sp that its complete set 
of forward extension events is equivalent to the set of its 
locally frequent items whose supports are equal to SUPSDB(Sp). 
This is proved in the paper [10]. The Backward-check consists 
of a prefix event sequences, whether there is an existed item e0 
that appears in each of the ith maximum periods of the prefix 
Sp in SDB, e0 is a backward-extension event (or item) with 
respect to prefix Sp. 

Any event pattern has Forward-extension or Backward-
extension can be compressed into other frequent patterns, 
because it is a part of its Forward-extension or Backward-
extension or both. The Forward-extension or Backward-
extension in a tree is usually located in deeper levels. If there 
is neither Forward-extension event nor Backward-extension 
event of a frequent pattern, this frequent pattern can be called 
as frequent closed pattern. Frequent closed patterns indicate 
there is no further event patterns have the same supports. This 
feature reduces the search space of the pattern recognition and 
prediction.  

Although the Forward-checking and Backward-checking 
generate a nonredundant frequent pattern space, this is not 
enough for reducing search spacing learning. Therefore, 
authors in [10] also introduce a “BackScan” Search Space 
Pruning method. This technique prunes some branches to 
further reduce the search space. Through this method, nodes 
frequent pattern tree cannot format a traditional tree, which 
means the learning process is speed up because there are no 
more branches. This tree structure has some draw backs in the 
recognition and prediction process, because of pruned nodes. 
There may not be a complete path from one node to its 
children. Therefore, during the prediction process, the path to 
a leaf node is needed that in order to predict critical event 
more early. The “BackScan” method prunes these nodes 

during the learning in order to reduce the search space, but we 
can keep such nodes during the recognition processes. 

Φ 

AA:2 CA:3 CB:4ABB:2 ABC:4

CACB
:2  

Figure 1 Frequent Closed Pattern Tree after Pruning 

In the Figure 1, this tree is built use BIDE algorithm, there 
are only 6 nodes left in this tree. In this tree, all these nodes 
are frequent closed pattern, which can be used in further steps. 
It is a very simple tree which has only two levels. In the 
prediction, if the coming event sequence is “CA”, we can 
directly predict the future events are “CB”, because there is 
only one child under the “CA” node. If there is not any match 
an event sequence, for example “BC”, in this tree, we cannot 
predict future events. Because there is no matching event 
patterns in this pruned tree. However, the event sequence 
“BC” is the suffix of frequent closed pattern “ABC”. 

2) Hash table with Frequent Pattern Tree 
One most important feature or advantage of Hash table is 

the search speed, which is a constant time. A good hash 
function can greatly reduce search time in hash table search. In 
previous section, we summarize the BIDE algorithm which 
mines the event sequence database and find out all frequent 
closed patterns. It consists of Forward-checking, Backward-
checking and BackScan pruning methods. This algorithm 
constructs a complete set of frequent closed pattern in an event 
sequence database, and a frequent closed pattern tree.  The 
pattern tree is a compressed tree, where nodes not only contain 
their own information, but also contain their Forward-
extension nodes and Backward-extension nodes. For example, 
the node “CABC” in Figure 1 is a leaf node, during the 
Forward-checking and Backward-Check, the event sequence 
“CAB” is compressed into the “CABC” node, because the 
node “CAB” has the same support as the “CABC” node. 
Therefore, one of important proprieties of this pattern tree is 
compressed information. 

In order to map tree node to a hash table, we have to use 
hash function to calculate indexes for each node in the pattern 
tree.  The hash function treats the event patterns as a string, 
because each event is represented as an English word. 
Therefore, we can utilize string hash function to map event 
patterns into a hash table. Features of each event, which are 
time, source, event level, and etc, are also used in the hash 
function. Through the time of events, we can form a time 
period for each frequent pattern. This time period usually 
formalize a time window for similar event sequences. And 
also the time period indicates system behaviors with reality 
world, because there may be some environmental factors 
affect the reliability of distributed systems. Sources and event 
level can also be used in the hash function that maps event 
pattern into hash table with event level orders. For example, if 
there are collisions in a hash table entry, the event pattern with 
higher event level can be put in the header of the event pattern 



list. This could increase the speed of search for patterns that 
contain high event level events. 

Each hash table entry links to a tree node in the pattern tree. 
In a hash table entry, there are also statistical data, and pattern 
time period. Statistical data is useful in pattern prediction. 
Pattern time period can be used to eliminate some unmatched 
event sequences or confirm recognition results. Hash table 
entry also contains an address of corresponding tree nodes.  
This address is the relationship between the hash table and 
frequent pattern tree. This information will be updated when 
the tree structure changed in run-time.  

An advantage of using hash table is to fast locate nodes in 
the pattern tree. However, not every event sequence has a 
corresponding entry in the hash table. Event sequences, which 
do not have indexes in the hash table, are infrequent patterns 
or non-closed event patterns. These event sequences can be 
added to the frequent pattern tree. The hash table entry also 
will be updated accordingly. 

IV. SYSTEM EVENT PATTERN RECOGNITION 
System event pattern recognition is the second step of 

critical event prediction. In this step, we have to read an event 
sequences, and search frequent pattern database that try to find 
out a matched frequent pattern. If there is a matched frequent 
pattern, we also have to update the statistical data for further 
recognition and prediction. 

In a hash table, to search an existed item, we can use hash 
function to directly calculate the index of this item. If the hash 
table entry with this index contains this item, it will report a 
match. If there is not a match in this step, we have to consider 
two situations. One situation is that the hash table entry of this 
index is empty, which means there is no such item can match 
given data item. Another situation is that there is a linked list 
in this hash table entry. If the given pattern can match any 
item in this linked list, we also can report a match. If there is 
no match in the linked list, we will report an unmatched 
notification. 

If the given event sequence can be found in the hash table, 
which means this event sequence is a frequent closed pattern. 
And this item can be found in the event sequence tree. We will 
update the statistical data of this event pattern. The Figure 2 
shows a process of recognition. In this example, the event 
sequence “ABC” has a hit in the frequent event pattern hash 
table. Then we follow the link to update the statistical data in 
the event sequence tree. This is a recognized sequence. 
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AA:2 CA:3 CB:4ABB:2 ABC:4
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:2
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3

ABC

CABC

CB

Event Sequence

 

Figure 2 Event Sequence Recognition 

If there is an unrecognized event sequence appears in the 
system, we have to update the event sequence tree, which 
include uncompress certain nodes to insert new event 
sequences. In order to uncompress a tree node in the event 
sequence tree, we have to create a new linked list, where the 
first node contains a “∅”. This new linked list includes a path 
from “∅” to the target event sequences. For example, there is 
a new event sequence “ABCD”, which does not have any 
match with all frequent patterns. We create a linked list with 5 
elements {“∅”, “A”,”AB”,”ABC”,”ABCD”}. Then we 
compare this linked list with event sequence tree, from the tail 
of the linked list. In order to compare elements in the linked 
list with frequent patterns in the event sequence tree, we use 
the hash function to calculate indexes. In this example, we can 
calculate that “ABC” is a frequent pattern in event sequence 
tree. Then, we create a child node of “ABC” and put the 
element after “ABC”, which is “ABCD” to this child node. 
The event sequence tree become to the event sequence tree in 
the Figure 3. 

Φ 

AA:2 CA:3 CB:4ABB:2 ABC:4

CACB
:2

ABCD 
1

 
Figure 3 Updated Event Sequence Tree 

In the traditional tree structure, parent nodes are connected 
with children nodes through links. However, in our approach, 
there is only one link from one parent node to its first child 
node. This child node is also connected with other children 
node through sibling links. The Figure 4 shows a structure of a 
node. Child node pointer points to its first child node; Sibling 
Node pointer points to its next sibling node; Parent node 
pointer points to its parent node; Next node pointer points to 
next node in the linked list. In following presentation, figures 
only show links that related to their topics.  
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Figure 4 Structure of a Node 

In the new event sequence tree, the new node cannot 
become frequent pattern immediately, because the new event 
sequence does not meet the threshold yet. If there is an event 
sequence in the event sequence tree reach the support 
threshold, it will become a frequent pattern and be added in to 
the frequent pattern hash table. If the incoming event sequence 
is not in the frequent pattern but in the event sequence tree, we 
can use same process to update the event sequence tree, and 
check whether the incoming event sequence meet the support 
threshold. If the incoming event sequence does not match any 
frequent pattern in frequent pattern hash table and event 
sequences in the event sequence tree, the incoming event 
sequence will also be added into the event sequence tree. And 
update its statistical data. 

The time is an important feature in the event pattern 
recognition process. Each event sequence carries its time 
information. This time information can be used in the 
recognition process. For example, an event sequence happens 
in time “t1”, and end at time “t2”, the time period is “Δt”. In 
the recognition process, if there is not any frequent pattern 
match the incoming event sequence, the new event sequence 
should be add into the event sequence tree. After this event 
sequence, another event sequence comes into the system and 
carries the consecutive time information, which means these 
two event sequence happens in a tied time period. If the 
second event sequence is identical with the first event 
sequence, and these two event sequence come from a same 
source, these two event sequence may be a repeat event 
sequence. Therefore, we can identify whether there is a system 
jitter. The system should add this event sequence into the 
frequent pattern hash table for future recognition. 

V. CRITICAL EVENT PREDICTION 
The critical event prediction utilizes the statistical 

information of frequent patterns to predict known critical 
events. This step is processed at the same time of the 
recognition. Because every event pattern is ended with a 
critical event, the event sequence tree is a monitor of the 
system event sequences. At the beginning, the event sequence 
tree is a compressed tree, which does not contain all nodes, 
and its leaves are ended with critical events. Therefore, during 
the recognition, new added the event sequences are all ended 
with a critical event. As a result all leaves in the event 
sequence tree is ended with a critical event or a set of critical 
events. 

The basic method to calculate probability of a critical 
event is to use Bayesian probability theorem. The Bayesian 
probability theorem provides a method to infer a probability of 
critical events. However, events in Bayesian theorem are 
independent to each other. The appearance of each event is 
base on its own statistical information. According to Bayesian 
theorem, the probability of appearance of an event is 
calculated by the (1). 

P(x)
P(y|x)P(y)P(y|x) =

 (1)
 

In a cluster system or virtualized cloud computing system, 
most system events are not independent with other events. For 
example, one memory allocation request may cause a memory 
exhaust alert for other systems within the same physical 
machine. Therefore, there are tie relationships between events, 
especially for critical events. These relationships affect the 
result of prediction. Therefore, relationships have to be 
considered during the prediction. We use a constant “C” to 
indicate relationships.  

C
P(x)

P(y|x)P(y)P(y|x) +=
 (2)

 

The relationship constant “C” shows how interdependence 
is between two events. Constant “C” can be calculated through 
the structure of reverse pattern tree and relationship between 
critical event patterns (Formula 3). We assume the system is a 
reliable system, which critical events do not happen very 
frequently. Therefore, critical events appear only in the deeper 
level in the reverse pattern tree. Every prior event in a critical 
event pattern increases amount of relationship constant. The 
relationship constant includes a structured prediction function: 
“f(x,yi)”. The structure prediction function is a function 
Denote the output space for a given input pattern “x” as 
“Y(x)”. We assume that we can define the output space for a 
structured example “x” using a set of constraint functions: “f(x, 
y)”. This constraint function is very general. The output “y” is 
determined through the structure of pattern “x”. The output of 
structure prediction function indicates the strength of 
relationship between child nodes of a pattern. For example, the 
structure probability of pattern “ABCD” is the relationship 
between its parent pattern “ABC” and its child nodes 
“ABCDA”, “ABCDC” and “ABCDE”. The result of this 
function is a number indicates the strength between “ABC and 
“ABCD”. Relationship constant also includes an event 
relationship probability function “g(x,yi)”. The event 
relationship probability function indicates relationships 
between events. The temporal logic is used in this event 
relationship probability function. Relationships between 
events include direct and indirect relationships. These two 
types of relationships indicate different aspects of state 
transitions of systems. Direct relationships present the 
relationships of attributes of events, such as event “A” and 
event “B” are the same type of events. The event type attribute 
of “A”, “B” is one of the direct relationships.  The frequency 
of sequence “AB” appears in other patterns is another direct 
relationship of event “A” and “B”. Indirect relationships 
represent relationships between events from one working node 
to the master node. Indirect relationships are used in the 
prediction in the master node. The master node has the entire 
event stream during the event processing. Although the master 
node controls functions that working nodes perform, master 
node cannot affect the exact events happened in working 
nodes. If an event from one working node result another event 
in another working node, these two events are indirectly 
connected. And this is the indirect relationship. Indirect 
relationships are learnt through pattern libraries. For example, 
event “A” and event “B” always appears together, and these 



two events are from two different working nodes. Event 
sequence “AB” has an indirect relationship. Indirect 
relationships indicate likehood of events that have causal 
relationship. 

),(),( ii yxgyxfC =
  (3)

 

The structured prediction function works for both working 
nodes and master nodes. The relationship function includes 
two parts, direct relationship and indirect relationship. Direct 
relationship works for events in both working nodes and 
master nodes. Indirect relationship only works for master 
nodes, which include all events from upper level of the system 
since working nodes cannot know system events from other 
working nodes and master nodes. 

VI. EXPERIMENT 
The dataset we used in the experiment is records of cluster 

node outages, workload logs and error logs in Los Alamos 
National Laboratory. The data spans 22 high-performance 
computing systems that have been in production use at Los 
Alamos National Lab (LANL) between 1996 and November 
2005. The data contains an entry for any failure leading to a 
node outage that occurred during the 9-year time period and 
that required the attention of a system administrator. For each 
failure, the data includes start time and end time, the system 
and node affected, as well as categorized root cause 
information. There are 23740 event records in this dataset. The 
first step is preprocessing. We clear the data with several 
features including event ID, event source, event start time, end 
time, and event type.  

Through the BIDE algorithm, we can mining the frequent 
event pattern in this data set. The Figure 4 shows the result of 
BIDE learning result in different scale of events. In this test, 
the minimum support is set to 0.1%, the max length of 
frequent closed pattern is 10 events, which is also constrained 
by time. If time period between two events is over 24 hours, 
we will discard the early events. Source feature is also used to 
control the event sequence. 

 
Figure 5 BIDE Learning Result 

The learning process in this dataset shows in Figure 5. 
With the increasing of size of dataset, the time consumption in 
learning process is also increase, but it is increase in a liner 
fashion. 

The Figure 6 shows the time that used for recognition in 
the same dataset. In this figure, the increase of processing time 
indicates there are still overhead in the program. The time 
include matched pattern and unmatched event sequences. The 

unmatched event sequence greatly increases the processing 
time. 

 
Figure 6 Hash Table Recognition Time 

The Figure 7 shows the times that prediction process 
reported. With different thresholds, the report times are 
different. Higher thresholds reduce the search space of 
prediction process. Because the prediction process is triggered 
by the threshold, higher threshold setting triggers fewer 
prediction processes. 

 
Figure 7 Hash Table Recognition Time 

VII. CONCLUSION 
In this paper, we proposed a critical event prediction 

framework in virtualization environment. The virtualization 
technique is widely used in distributed systems and very large 
data centers. In this framework, we use BIDE algorithm 
mining frequent closed pattern and store these event patterns 
in a hash table. Through the hash table, we reduce search time 
in the pattern recognition process. In the critical event 
prediction process, we use event sequence tree to calculate the 
probability of a critical event. This framework not only 
increases the frequent pattern recognition process, but also 
increases the accuracy of critical event prediction result. 
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