

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

Session 1658

Efficient Database Design
John H. Ristroph

University of Louisiana at Lafayette

Databases are a major foundation of the information age, but specifying their tables and fields
can be a daunting challenge for designers. This paper presents a pedagogy that rapidly enables
students to design small to medium sized systems. It recognizes that a database management sys-
tem (DBMS) is a tool, and students must understand how the tool works before they can design
something for its use. An example illustrates the concepts of entities and processes, tables, rela-
tions, indexes, and queries with a simple report generation problem. Then procedures are pro-
vided that make the design of databases more efficient by requiring fairly few changes as imple-
mentation progresses. Final steps include techniques for checking the quality of the design prior
to implementation.

Process Overview

Table 1 provides an overview of the steps required to
develop a database system. The first step defines the
desired capabilities of the system. Steps 2 and 3 are
pivotal steps that affect all of the following ones.
They require creative, conceptual level thinking that
challenges even excellent students. This paper pre-
sents methods that help all students learn how to per-
form these crucial steps in an efficient manner.

The first thing to recognize is that Table 1 ini-
tially is completely meaningless to students. They
need to see how a database management system
(DBMS) uses tables, relationships, and indexes before
they can design an effective schema. One excellent
way to do this is to go through a comparatively sim-
ple, but complete, example, such as the one presented
in the appendix.

Schema Design

After illustrating the use of a DBMS, attention can shift to efficiently designing a schema. A
commonly used introductory approach is to identify entities and processes, make a guess at the
tables, and check the tables to make sure that they are in normal form. Repeatedly checking and
changing the tables that have a poor initial design can be very laborious. This section presents
procedures for rapidly teaching students how to obtain a good initial design and techniques for
improving that design that go beyond checking normal forms.

Table 1. Database Development

1. Identify information needs and de-
fine final products.

2. Determine entities and processes.
3. Identify tables, attributes, and rela-

tionships.
4. Specify important field properties,

including primary keys and in-
dexes.

5. Create tables with major field prop-
erties and declare relationships.

6. Enter a trial data base.
7. Check formats, add minor field

properties, and test system.
8. Produce final products.
9. Document the system.

P
age 7.465.1

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

Types of Tables

Tables need to be developed to describe entities and processes, but which tables? A good ap-
proach to specifying tables is first to be aware of the different types of tables, and then use the
table types as a checklist to see which tables are needed for each entity or process. Tables can be
categorized as descriptive, transaction, child, reference, summary, or historical, as well as tables
serving multiple purposes. From the onset, it must be stressed that the only fields that should be
in more than one table are identifiers, such as for employees (EmpID) or projects (ProjID).
1. Descriptive or master tables typically contain fairly static data typically dealing with entities,

such as employee, product, or customer tables. A descriptive table might store identifiers
such as ID numbers, full names, abbreviations or short names for use in reports, verbal de-
scriptions, addresses, dimensions, weights, and so forth.

2. Transaction tables record low-level (non-aggregated) data about events or activities referred
to as transactions. For example, an invoice table typically contains ID's of salespersons and
customers, payment methods, dates, and other basic information about a sale. A work log
might include dates, regular hours, and overtime hours (not just total hours) worked by each
employee on each job in each skill class. Inventory tables might include data about ship-
ments, receipts, transfers, and so forth. Storing low-level data allows it to be combined in
many different ways for a variety of uses, whereas aggregated data is usually very difficult to
recombine in different ways.

3. Child tables extend descriptive and transaction tables (referred to as parent tables) by allow-
ing an indefinite number of entries. For example, a paper invoice contains basic data about a
sale and then lists data for an indefinite number of sale items. The fields of an invoice parent
table can be an invoice number used as a primary key, the customer ID, the salesperson ID,
payment method, and the date. Each record of the child table contains the invoice number, an
item ID, its quantity, and its price. The child table contains the primary key of the parent ta-
ble, thereby allowing the two tables to be related. Concatenating the invoice number and the
item number can provide a primary key for the child table. Notice that extended prices and
the total amount of each sale are not stored. As a general rule, items that are easy to calculate
are computed as needed, rather than stored, thereby reducing the volume of data.

4. Reference tables record basic data used to check entries in other tables (i.e., their data integ-
rity) or to provide names for different codes. Examples include tables containing all allow-
able codes for types of: payments, inventory transactions, skill classes, project status, and so
forth. Such tables typically contain the allowable codes, their corresponding names (possibly
both short and long versions), and sometimes definitions.

5. Summary tables contain periodic summaries (e.g., monthly or yearly) or totals that are up-
dated with transaction data. For example, a summary payroll table can contain year-to-date
regular and overtime hours, total wages, deductions, leave, etc., but not the details in a trans-
action file. A summary inventory table can provide year-to-date issues and receipts, quantity
on-hand, or quantity on-order. As a general rule, summary tables include items that are used
frequent ly but that are too time consuming to calculate on demand. It is not unusual to put
summary fields in a descriptive or master table instead of creating a separate table.

6. Historical tables store old, rarely accessed data from any of the foregoing types of tables. For
example, large transaction tables such as work logs or inventory actions can become expen-
sive to maintain due to the disk space and processing time that they require. Old transactions

P
age 7.465.2

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

typically are transferred to historical tables, particularly if the data in a summary table is ade-
quate. Using the same table design for both the historical and transaction tables allows con-
venient transfers between tables.

Logic of Table Assignment

The following procedure produces fairly well-designed initial tables, and subsequent checks im-
prove them. Each step ideally is applied to one entity or process at a time, going through all of
steps before going onto the next entity or process. However, a certain amount of back-tracking or
skipping ahead is inevitable.
1. Check to see which type of table is required. Entities typically need a descriptive table, and

processes generally use transactions tables.
2. List the most important attributes for each entity or process, generally beginning with an

ident ifier that is used as the primary key. It usually is easier to combine data than to separate
it, so store each data element separately, such as last name, first name, and middle initial for
a person or regular hours and overtime hours for a task.

3. Each time a code or identifier is entered, ask how its referential integrity can be checked. If it
cannot be validated from a table that will be created for other entities and processes, then a
special reference table is needed.

4. If a field or group of fields must be repeated an indefinite number of times, then use one or
more child tables. For example, a customer descriptive table might require an indefinite
number of entries for contacts' names, phone numbers, and so forth. A project descriptive ta-
ble has an indefinite number of jobs, so each job becomes a record in a job child table with
fields that include the project number and the job number. In turn, each job uses an unknown
number of resource (skill or equipment) types, so the activity table becomes a parent table to
a resource child table with fields that include the project number, job number, resource code,
and the number of units of that resource required by the activity.

5. Check to see if any reference tables are needed to insure the referential integrity of codes
that are not present in a non-reference table. For example, suppose that a Task table uses
EmpID and SkillClass. The Employee table provides a validation check for EmpID, but a ref-
erence table might be required to contain all allowable entries of SkillClass.

6. If there is any summary data that is difficult to calculate, then create a summary table or pos-
sibly merge the summary fields into a descriptive table.

7. Examine all of the fields to insure that the only fields present in more than one table are
codes, such as EmpID. If data associated with the code, such as a name, are needed, then they
should be looked up in other tables.

8. Examine the need for historical tables. Even if they should be missed initially, they usually
can be added to the schema later without much difficulty.

9. Update a list of any primary keys, relationships, or indexes that have been identified thus far.
Whenever a field or concatenation of fields must be looked up in a table, it should be indexed
and possibly be a primary key if it is unique.

10. Update a list of unanswered questions, issues that must be checked, or simply notes for future
use. Trying to remember all of the details associated with a schema is a certain recipe for a
headache. P

age 7.465.3

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

This procedure usually provides a good starting point, but the tables should be checked as
thoroughly as possible before implementing the system. The time spent in design is far less than
the time spent making changes to a poorly designed database after implementation has begun.
Provided below are some methods for checking the quality of the initial table specification.

Completeness

Data is processed into information products, such as reports. The first check insures that all nec-
essary data is recorded. One very direct way to do this is to examine each information product to
see if its required data is available. For example, examine each item in a report to see if its requi-
site data is in a table. If data is missing, see if it should be part of an existing table before creat-
ing any new ones. Consider marking each data element that is used, so that the potential need for
any unmarked data can be questioned.

Normal Forms

Once the tables are complete, then examine each one to see if it is organized correctly by insur-
ing that it is in normal form. Three steps for doing this are provided below, in the context of a
database for a video rental store. Notice that the foregoring table assignment logic usually results
in tables that are in normal form.

1NF. Remove any repeating field or group of repeating fields, and develop appropriate
parent-child tables. Consider a rental transaction table with its fields in parentheses and the pri-
mary key underlined:

Rental(RentID, CustID, Date, VideoID1, CopyNum1, DueDate1,
VideoID2, CopyNum2, DueDate2, …)

The more common way of indicating repeating fields is with parentheses:
Rental(RentID, CustID, Date, Total, (VideoID, CopyNum, DueDate))

A child table will store the data more effectively, since DBMSs generally are programmed so
that data is easier to manage when it is in a child table instead of repeating fields.

2NF. The entire primary key in a 1NF table should be needed to identify what is in each
of the other fields. Suppose that the rental child table had been defined as

RentChild(RentID,VideoID, CopyNum, Title, DueDate, ReturnDate)
Notice that the Title field depends only on the VideoID component of the primary key. Placing
the Title field in the Video descriptive file and just using the VideoID to reference it avoids wast-
ing space and prevents problems that can occur with misspellings or slightly different names.

3NF. No non-primary key field in a 2NF table should be able to identify another one. For
example, suppose that the Rental table contained the customer's last name:

Rental(RentID, CustID, LastName, Date)

Then CustID is a non-primary key field that uniquely identifies LastName. Another way
of saying this is that LastName is dependent on CustID. This wastes space since a look-up can be
performed. It also invites spelling and other problems.

Data Entry Procedure

At this stage of development, the system can be too abstract for a new designer. Writing the sys-
tem's data entry procedure helps to define the system logic, review the table design, understand

P
age 7.465.4

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

the relations between tables, and determine indexes and primary keys. Having a written data en-
try procedure before the system becomes operational is desirable, and this is a good time to do it.
The order in which data is entered into tables should recognize the following:
1. Increase data accuracy by requiring referential integrity wherever possible. Tables that con-

tain lists of all permissible codes must be updated before using those codes. For example, en-
tering an EmpID or SkillClass in a Task table should be done after including those codes in
an Employee descriptive table or a SkillClass reference table.

2. There is a natural temporal sequence. For example, data describing a project, such as its
number, name, or component jobs, should be known before performing work on the project.

Continue updating the list of all relationships during the data entry process, as well as

any indexes needed to perform look-ups. Also realize that indexes that do not allow duplicates
also can improve data accuracy in some cases. For example, each employee number in an Em-
ployee table should be a unique entry, and an index on EmpNum without duplicates would insure
uniqueness. Such indexes frequently indicate primary keys.

Sample Data Base and Initial Queries

This stage of development is on the borderline of the design and implementation phases of creat-
ing a database. At this time, there still might be some questions in the mind of the designer re-
garding the schema. It is important to focus on potential problem areas immediately, so that as
little work as possible needs to be redone. Once the potential problems are identified, perhaps
based on notes made earlier, then create the affected tables, specify properties and relationships,
and enter just enough data to develop and test queries.

The data should be brief enough to hand check, but otherwise have the essential charac-
teristics of a complete dataset. For example, if sums are to be developed, then more than one re-
cord that will be summed needs to be in the tables. Similarly, if there will be logical tests for
special cond itions, such as null values, then those conditions should be present in the data. It is a
good idea to test one characteristic at a time to isolate the cause of any problems.

If the testing indicates problems with the current design, then the modifications must be
made with care being taken to trace out all effects of changes. Once again, jotting notes removes
the stress of trying to remember everything can improves performance.

Summary and Conclusions

Databases are a cornerstone of the information age, but the critical step of designing a schema is
an art that requires creativity and insight in addition to technological knowledge. The objective
of this paper is to make the design effort more efficient by developing a design process that does
more than just recognize entities and check normal forms.

The design procedure has been found to be effective in practice and useful as a teaching
tool. However, students, like everyone else, listen to wonderful lessons from someone else's ex-
perience, then promptly forget them. One way to provide reinforcement is to give students case
problems and let them do the design.

Initially, the instructor serves as a moderator, recording and displaying (using a black-
board or a LCD) decisions students make on entities, processes, tables, fields, and relationships P

age 7.465.5

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

while gently guiding them through the design steps. Doing one or two simple systems like this
should be followed by a system of moderate complexity that will be challenging.

At this time, the instructor should do less guiding. Let students ignore the design process,
seek shortcuts, and have problems. Giving partial solutions in stages will keep the class moving
while allowing the students to gain experience. Part of the learning experience is to understand
that design is more than a quick homework assignment and to recognize the necessity of a struc-
tured design process. Students need to learn for themselves that occasional setbacks are a normal
part of the design process. This can be frustrating and disheartening, but it is much better for it to
happen in the classroom than on the job.

A good way to finish a course is to provide another case study after students have inter-
nalized the need for the design process. Randomly choose students to take turns guiding the de-
sign process, as well as recording and displaying the decisions of their classmates. Lend a help-
ing hand only if necessary. The improvement in students' performance will be evident, and a
source of satisfaction to everyone in the classroom.

Bibliography

1. Valacich, Joseph S., Joey F. George, and Jeffrey A. Hoffer, Essentials of Systems Analysis and Design, Prentice
Hall, Upper Saddle River, NJ, 2001.

Biography
Dr. John H. Ristroph is a Professor of Engineering and Technology Management and a registered professional engi-
neer in Louisiana. His B.S. and M.S. are from LSU, and his Ph.D. is from VPI&SU, all in industrial engineering. He
has been active in the information systems area as an analyst, teacher, and researcher for over thirty years.

Appendix: Example Illustrating DBMS Functions

Employees of a company work on many projects for different clients, and it is necessary
to track the number of hours that each employee works and to determine his or her gross pay.
Figures 1 and 2 show two reports that that identify information needs and define the final prod-
ucts, step 1 in the development process.

Entities and Processes

Students must understand that examining reports might reveal what data is needed, but it does
not help to organize it into the tables needed by a DBMS. This is done by determining the enti-
ties and processes of the business system. Entities are things about which data is needed. They
can be persons, companies, products, parts and so forth. Processes are business activities that
generate data, such as selling a product, performing a task, and so forth.

Sometimes it can be difficult to decide whether something is an entity or a process. For
example, is a project an entity or a process? It is a thing about which data is needed, such as its
due date, the amount of the contract, and so on. However, it also consis ts of tasks that create
data, such as the hours worked by different employees at various pay rates. Whether something
is classified as an entity or a process is not particularly important. In fact, the term entity is com-
monly used to describe both. What is important is to identify the things about which data must be

P
age 7.465.6

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

must be recorded, whatever they are called. Once the entities and processes are identified, then
one or more tables can be set up to record the data needed for each one.

Identifying entities and processes is more of an art than a science, and it takes practice
before general princip les become meaningful and helpful. It is useful to ask students to help in
identifying this system's entities and processes: The entity Employee performs the Task process
on the entity Project. Then ask which descriptors or attributes of each entity or process are
needed to produce the reports.

• Employee: the person’s unique identifier, name, and pay rate
• Task: its unique identifier, employee, project, date, and hours
• Project: its unique ident ifier and name

Later exercises will focus on giving students a variety of small systems, and letting them
practice identifying entities and processes, and then specifying tables to contain the attributes.

Employee Activity Report from 1/3/2000 to 1/4/2000
Date: 1/5/2000Time: 10:00 a.m.

Employee ID Date Project Hours

LastA, FirstA A 0002 1/3 Project1 for ClientA 6.0
 Project2 for ClientA 2.0
 1/4 Project1 for ClientB 3.5
 Project2 for ClientB 4.5

 Total: 16.0

LastB, FirstB B 0001 1/3 Project1 for ClientA 3.0
 Project2 for ClientB 5.0
 1/4 Project2 for ClientA 7.0

 Total: 15.0

 Grand Total: 31.0

 Figure 2. Employee Activity Report

Gross Pay Report from 1/3/2000 to 1/4/2000
Date: 1/5/2000Time: 10:05 a.m.

Employee ID Hours Pay Rate Gross Pay

LastA, FirstA A 0002 16.0 $20.00 $320.00
LastB, FirstB B 0001 15.0 $15.00 $225.00

 Total: $545.00

Figure 1. Gross Pay Report

P
age 7.465.7

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

Techniques for doing this are presented later, but for the moment a student still needs to know
how a DBMS uses its tables.

Data Dictionaries, Tables, Records, and Fields

Table 2 through Table 4 show how tables store the attributes as columns known as fields on rows
referred to as records. Each field is defined in a data dictionary, such as Table 5. Students need
to examine the tables to see if they contain all of the data necessary to produce the reports. It
must be stressed that the only fields repeated in more than one table are the unique identifiers
known as keys. This saves space and minimizes problems caused by different names or spellings
for the same entity. It also means that if a name changes, then only one entry needs to be
changed.

Indexes, Primary Keys, and Field Properties

It is important to explain how a DBMS uses the tables
to create the reports, as described in Table 6. Students
quickly grasp the concept of looking up data in one ta-
ble based on a key in another table and see that it can
be time consuming, so this is a good time to introduce
indexes.

It is helpful for a student to see an index. Table 7 shows an index for the Task table based
on the employee ID. Note that the index is sorted by EmpID, and it points to records in the Task
to facilitate look-ups. Without the index, it would be necessary to search every record in Task to
match each EmpID needed in step 2 for both reports, just like trying to find a word in a diction-
ary without the words being stored in sorted order. There are very efficient procedures for
searching a sorted list, such as an index, so indices are commonly used to facilitate look-ups. The
performance improvement afforded by an index typically more than compensates for the re-
sources used to store the index and update it.

Table 3. Project Table

ProjID ProjName
0001 Project1 for ClientA
0002 Project2 for ClientA
0003 Project1 for ClientB
0004 Project2 for ClientB

Table 2. Employee Table

EmpID PayRate EmpLast EmpFirst EmpMid
0001 $15.00 LastB FirstB B
0002 $20.00 LastA FirstA A

Table 4. Task Table

TaskID EmpID ProjID TaskDate TaskHour
1 0002 0001 1/3/00 6
2 0002 0002 1/3/00 2
3 0001 0001 1/3/00 3
4 0001 0004 1/3/00 5
5 0002 0003 1/4/00 3.5
6 0002 0004 1/4/00 4.5
7 0001 0002 1/4/00 7
8 0002 0001 1/5/00 8

P
age 7.465.8

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

Field Properties

Usually students are not familiar with the need to specify properties of
data structures. It must be noted that a DBMS is a very general, automated
system that requires a high degree of structure. Table 8 shows some of the
major field properties used by Microsoft's Access 2000.

Relationships

Using the same name for fields common to more than one table helps hu-
mans understand a system, but a DBMS needs an explicit declaration of
these relationships, such as those shown in Figure 3. This is a good time to
explain how relationships can enforce referential integrity, such as not en-
tering a value of EmpID in Task unless that value also is in Employee.

Table 6. Basic Logic for Reports

Employee Activity Report

1. Retrieve EmpID, EmpLast, EmpFirst, and EmpMid from the Employee table.
2. For each EmpID in Employee, search the Task table to find each entry with the same Em-

pID and record its ProjectID, TaskDate, and TaskHour.
3. Retrieve each ProjName by matching the ProjID in the Task table with the ProjID in the

Project table.

Gross Pay Report

1. Retrieve EmpID, EmpLast, EmpFirst, EmpMid, and PayRate from the Employee table.
2. For each EmpID in Employee, search Task and find all entries with the same EmpID and

sum the values of TaskHour.
3. Multiply the sum of TaskHour by PayRate.

Table 7. Index
EmpID Pointer
0001 3
0001 4
0001 7
0002 1
0002 2
0002 5
0002 6
0002 8

Table 5. Data Dictionary

Name Description
EmpID Employee ID: Unique number for each employee
EmpFirst Employee First Name
EmpLast Employee Last Name
EmpMid Employee Middle Initial
PayRate Pay Rate: Dollars per hour earned by an employee
ProjID Project ID: Unique number for each project
ProjName Project Name
TaskID Task ID: Unique number for each task. A task is the work

performed by one employee on one project during one day.
TaskDate Task Date: Date on which a task is performed.
TaskHour Task Hours: Hours worked on a task.

P
age 7.465.9

 Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright © 2002, American Society for Engineering Education

Queries

Queries use relationships to create temporary tables called dynaset. The dynasets can organize
data in a manner suitable for creating the reports. A good way to illustrate queries is to create a
dynaset containing all of the data in the Employee table, followed by all of the related data in the
Task and Project tables. This clearly shows how the new records are formed from the ones in the
tables. The difference between inner and outer joins can be shown by adding a new employee to
the Empoyee table, and executing the query with both types of joins. Developing queries that
will be used to produce the reports shown in Figures 1 and 2 makes a transition to the next step.

Report Generation

Generating reports serves two important instructional purposes. The first is to close the design
loop and show how tables lead to queries that are transformed into reports. The second is to illus-
trate the basics of how a report generator works. Both of these purposes are served by using
quick, default formats instead of more edited versions such as Figures 1 and 2. Formatting re-
ports can be tedious and time consuming enough to distract students from the primary focus of
schema design.

Figure 3. Relationships

Table 8. Tables and Fields

Table Field Primary Key Data Type Field Size Req’d Index
Employee EmpID Yes Text 4 Yes
 PayRate Currency 8 Yes
 EmpLast Text 12 Yes
 EmpFirst Text 10 No
 EmpMid Text 1 No
Project ProjID Yes Text 4 Yes
 ProjName Text 20 No
Task TaskID Yes AutoNumber Long Int. Yes
 EmpID Text 4 Yes Allow dup.
 ProjID Text 4 Yes
 TaskDate Date 8 Yes
 TaskHour Number Single Yes

Employee
EmpID
PayRate
EmpLast
EmpFirst
EmpMid

Task

TaskID
EmpID
ProjID
TaskDate
TaskHour

Project

ProjID
ProjName

1
1

∞
∞

P
age 7.465.10

