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Abstract 

 

Due to its low cost and convenience, a field-programmable gate array (FPGA) demo board is 

often used in universities for teaching digital design.  The major limitations of an FPGA board 

include a small number of input and output options and limited high-level software capability.  In 

order to show students how to overcome the resource scarcity, we have developed several digital 

laboratories to help students creatively explore possible solutions.  In this paper, we discuss 

design considerations for managing various resource limitations.  Also, we present several 

laboratory assignments for students to practice these design considerations using an FPGA 

board.  These laboratories not only provide students with opportunities to practice subsystem 

design, but also teach them various system integration techniques. 

 

1. Introduction 

 

FPGA boards are widely used for digital laboratories in universities
12,15,16

.  Normally, an FPGA 

board contains an FPGA chip, input and output devices, a clock source, and supporting circuitry 

for downloading a bit-stream into the FPGA.  Commonly seen input devices include dual in-line 

package (DIP) and push-button switches; output devices are seven-segment and bar-graph light-

emitting-device (LED) displays.  Some FPGA boards may contain computer, codec, and network 

interfaces.  Since there are only a limited number of input and output options available, creative 

methods are required for efficient application of these resources. 

 

In this paper, we address the issues of overcoming resource constraints normally encountered 

when using an FPGA demo board.  Section 2 discusses considerations for exploring efficient 

resource allocation.  Section 3 presents several laboratories for students to practice the design 

considerations described in Section 2.  These basic laboratories were instrumental for teaching 

system design ideas such as stored program control, embedded systems, as well as rapid 

prototyping.  Finally, Section 4 contains concluding remarks of the paper. 
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2. Design Considerations for Efficient Resource Allocation 

 

In this section, we identify some efficiency considerations for input devices, output interfaces, 

memory structures, data conversions, logic implementation options, and clocking signals 

generation.  Normally, we instruct students to use DIP switches to define the system modes of a 

digital circuit.  For example, two DIP switches can define four different system modes such as 

initialization, input, output, and a function-specific mode.  A push-button pulse signals the 

triggering of the operations for a system mode. 

 

2.1 Input Capture 

 

Commonly seen input devices include a DIP switch, a push-button switch, and a transducer 

input.  A DIP switch is considered to be a simple input device due to its stable input status.  The 

input value can be latched through regular sampling or read using a second push-button.  The 

input pulse of a push-button can be captured by a flip-flop; a debouncing mechanism may be 

needed to ensure its proper operation
11

.  An alternative is to use a finite state machine to reliably 

capture an input pulse request
9
.  An analog-to-digital converter is generally needed to retrieve the 

input value from an input transducer.  For example, a CODEC may be used to sample a speech 

input and to convert it into digital form
12

. 

 

Numeric data are often required for a circuit.  DIP switches are convenient for defining a binary 

number; the methods described so far are adequate for reading this type of data.  A binary-coded-

decimal (BCD) number is, however, a much more user-friendly interface.  How can we enter a 

large decimal number into an FPGA board?  In this subsection we describe three alternative 

methods of capturing input data in the BCD format. 

 

The first method uses four DIP switches to define a decimal digit between zero and nine.  Then, 

it uses a push-button to capture the decimal digit identified by the four DIP switches.  If a 

number between 10 and 15 is entered, the number is ignored.  If a decimal number consists of 

multiple BCD digits, use the following procedure to read the input number.  Starting from the 

leftmost digit, capture one BCD digit at a time by pressing a push-button switch once.   The input 

capture process is terminated by switching the system mode of the circuit. 

 

In the second approach, a counter and a push-button is used to trigger the generation and display 

of a decimal digit.  Starting from zero, the value stored in the counter is incremented by one each 

time a push-button is pressed.  A push-button press while the number nine is being displayed 

resets the counter to zero.  This decimal number generation process can be repeated.  A second 

push-button is then used to capture a displayed decimal digit.  The input capture is deactivated 

when the system mode of input capturing is terminated. 

 

Finally, the third method uses a free-running BCD counter to generate a decimal digit between 

zero and nine at a low speed.  A push-button press is then used to read the digit being displayed.  

The input capture process is terminated by changing the system mode. 

 

Assume that the input is from a transducer and an analog-to-digital converter (ADC) is used to 

convert analog signals into digital format.  If the ADC periodically converts an analog input into 
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a twelve-bit digital data and the FPGA chip does not have enough pins to input the sampled data, 

a scanner consisting of a multiplexer driven by a counter may be used to transform the parallel 

data into a serial one.  Therefore, a single pin may be used for data input.  Inside the FPGA chip, 

the serial input data are stored into a shift-register bit by bit.  If there is a need, a second register 

may be used as a buffer to synchronize updating of the twelve-bit data.  The data processing 

inside the FPGA chip can be isolated from the input interface register.  Without a doubt, the 

design works only if appropriate clocking schemes are implemented.  Figure 1 depicts the data 

flow of the input capture scheme and Figure 2 shows the structure of a three-bit shift-register. 

 

 
 

Figure 1: A High-Speed Data Transfer and Buffering Scheme for Input Capture 

 

 
 

Figure 2: A Shift-Register 
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2.2 Output Presentation 

 

When the circuit is set to the output mode, a push-button is used to initiate the output display.  If 

a binary format is used, an output vector can be displayed using bar-graph LEDs.  If the BCD 

format, which is more user-friendly, is preferred, the output data should be converted into a BCD 

representation.  Starting from the leftmost digit, one digit is displayed at a time.  Each digit is 

displayed for a short period of time.  The seven-segment display can be turned off briefly 

between the display of two digits.  After the rightmost digit is displayed, the seven-segment 

display is turned off.  This process can be repeated by pressing the push-button again. 

The output display is deactivated by switching the system out of the output mode. 

 

Similar to the input interface described in Subsection 2.1, a major concern for output interface is 

how to satisfy a demand of a large number of output pins.  For example, an alarm-clock design 

may require 42 output pins to display the six decimal digits using a normal BCD to seven-

segment mapping approach.  One may consider sharing output pins for the hour-, minute-, and 

second-data.  Then, the number of output pins required is reduced to fourteen.  The simplest 

approach may use one bit for the hour-, minute-, and second-communication link.  Inside the 

FPGA chip, the data are scanned in a bit-by-bit manner and transferred to a 42-bit shift-register 

placed in a breadboard outside the FPGA demo board.  Six seven-bit flip-flops may be used as 

buffers to synchronize the update of LED display.  Figure 3 depicts the data flow.  In general, a 

scanner coupled with high-speed data transfer and buffering is an efficient method for 

overcoming input and output pin constraints. 

 

 
 

Figure 3: A High-Speed Data Transfer and Buffering Scheme for Output Processing 
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2.3 Memory Structures 

 

Memory is an important component in modern computer design.  As a matter of fact, memories 

form the fundamentals for many powerful design schemes such as stored program control and 

embedded systems.  As detailed in Subsections 2.1 and 2.2, incremental approaches are used for 

input and output interfaces to overcome the resource constraints in our laboratories.  Memories 

become critical hardware structures for students to learn. 

 

Memory is often defined as a two-dimensional array, which consists of a specified number of 

words.  Each memory word is assumed to contain a fixed number of bits.  There are numerous 

ways of organizing a memory block.  However, it is difficult to generate a working design in 

some VHDL specification methods using commercial synthesis tools
13,14

.  For example, the 

following statements are a concise way of specifying a memory of 8 sixteen-bit words.  Most 

synthesis tools were not able to generate a working structure.  In fact, it is difficult for a synthesis 

tool to determine an appropriate access structure for a behavioral specification of a memory 

block. 

 
type memory is array (7 downto 0) of std_logic_vector (15 downto 0); 
signal memory_block: memory; 

 

One way of specifying the aforementioned memory block, as shown in the following VHDL 

statement, is to define it as a one-dimensional array of bits. 

 
signal memory_block: std_logic_vector (127 downto 0); 

 

To enable a synthesis tool to generate a working memory-block design, the access mechanism 

must be clearly specified.  The organization depicted in Figure 4 was adopted.  In addition to a 

memory array, the memory block contains a memory address register (MAR), an input memory 

data register (IMDR), and an output memory data register (OMDR).  To write a vector of bits 

into a memory cell, the following three data transfers are described for the memory access 

interface: a memory address is stored into the MAR, a data vector is moved into the IMDR, and a 

memory write enable signal is asserted.  To read a memory cell, one needs to set the MAR and to 

latch the memory data into the OMDR.  Indeed, a working memory block can be synthesized 

only if the access mechanism is properly defined.  To create a generic memory component, a 

parameterized VHDL process which details the access mechanism using these interface registers 

must be defined. 
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Figure 4: A Memory Organization 
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The emphasis of using BCD for input and output interface poses the needs of binary-to-decimal 

and decimal-to-binary data conversion.  A multiple-digit decimal integer may be converted into 
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multiplication is a complex operation in digital design, we suggested students to perform ten 

additions as a substitution for the operation of multiplying by ten.  For a fractional decimal 

number, the students were advised to derive the closest binary number for each decimal digit 

based on the placement of binary points and the number of fractional bits.  These decisions teach 

students how to take practical considerations into account.  Instead of using division, the same 

approach accompanied by a ceiling comparison is an efficient method for converting a binary 

number into its decimal equivalent. 

 

2.5 Logic Implementation Options 

 

There are often a number of ways for implementing a mathematical function.  For example, a 

multiplier can be implemented as a combinational circuit or as a sequential circuit.  A 

combinational circuit implementation for a multiplier is generally straightforward.  However, it 

may suffer from excessive delay and area requirements.  A sequential implementation may be 

more complex.  However, it often turns out to be an appropriate choice for reducing circuit area 

and delay. 

 

Given a sixteen-bit binary number, let the leftmost bit be used for the sign bit, the next seven bits 

be used for the integer part, and the rightmost eight bits be used to represent the fractional part.  

In other words, the binary point is placed between the position between the eighth and ninth bits.  

The data paths and control flow of a sequential multiplier is depicted in Figure 5 and Figure 6, 

respectively.  The organization happens to be a great selection for capturing decimal data in the 

range of -99.99 to + 99.99.  Again, this design shows students how to make an appropriate 
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decision for the number of bits allocated to the integer and fractional parts as well as where to 

place the binary point. 

 

 

 

 

 
 

Figure 5: Data Paths of A Sequential Multiplier 
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Figure 6: Control Flow of A Multiplier 
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2.6 Clock Generation 

 

By now, it is very clear that the clock signals used by various parts of a digital design must be 

efficiently scheduled.  Indeed, the generation of periodically synchronized clock signals with 

required frequencies is essential to the design of these digital laboratories.  Students were 

instructed to use a counter to derive the needed clock signals from an external clock source.  

They also studied the impact of the duty cycle of a clock signal on a digital design.  If it is 

necessary, a buffering flip-flop may be used to produce a clock signal with 50% duty cycle. 

 

3. Laboratory Assignments for Practicing Efficient Resource Allocation 

 

The methodologies described Section 2 were taught in an “Advanced Digital Design” course at 

Bucknell University.  The course was comprised of three hours of lecture and laboratories, 

respectively, on a weekly basis.  The lectures covered the VHDL
2
, advanced topics in logic 

optimization, and high-level synthesis.  Logic optimization focused on Quine-McCluskey 

method
5,6

, multiple-level logic optimization
3
, and technology mapping for standard-cell 

implementation
4
.  High-level synthesis addressed the issues of scheduling, clique-partitioning for 

data-memory synthesis
7
, control synthesis, and behavioral transformations for design space 

exploration
8
.  The methodologies of micro-architectural modeling

10
 and efficient clocking 

schedule
9
 were emphasized for the design of complex digital circuits.  The laboratories included 

several basic VHDL assignments and complex projects for learning subsystem design and 

efficient system integration. 

 

Occasionally, some students were overwhelmed by the complexity of digital system design.  To 

alleviate the problem, several simple VHDL assignments were defined for students to practice 

the essential design considerations detailed in Section 2.  These VHDL assignments turned out to 

be very instrumental for preparing the students to complete other complex laboratory 

assignments.  This section discusses how these design considerations were embedded in the 

laboratory assignments. 

 

First, a Hamming code generator and a Hamming code receiver were assigned to students for 

them to learn how to specify a combinational circuit in VHDL.  The two VHDL programs 

required students to consider all the input combinations for logic completeness.  Some of the 

lessons that students were able to derive from this simple assignment are listed below: 

• The importance of avoiding the specification of a multiply-defined logic function. 

• The specification and applications of parity functions. 

• The difference between logic minimization and logic partitioning. 

 

The second assignment was about the design of a clock signals generator.  Students practiced 

how to produce clock signals of different frequencies.  These clock signals were derived from the 

same source so that some of these clock signals could be periodically synchronized.  The 

students were requested to analyze the duty cycle of each clock signal using an oscilloscope.  

Also, they studied how to generate a clock signal with 50% duty cycle. 

 

The third project involved reading five BCD numbers, storing them into a memory, and reading 

memory words one by one and displaying each on a seven-segment LED.  This project allowed 
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students to practice the specification of memories, input capture, and output display.  The 

assignment also forced students to address the implications of five, instead of eight, memory 

words.  They studied the methodologies of micro-architectural modeling and efficient scheduling 

of clock signals as well.  These methodologies enable students to produce a working design for 

any computer algorithms that can be described by a high-level procedural language. 

 

In addition to these three basic VHDL assignments, three system projects were assigned to 

students.  These three projects included a motion guide
9
, an alarm clock, and a discrete cosine 

transform
1,10

.  The alarm clock allowed students to compare direct output of time data using 42 

pins and the scheme of applying parallel-to-serial, serial-to-parallel, high-speed data transfer and 

buffering techniques for output management.  The discrete cosine transform provided them an 

opportunity to study number systems, digital organization for numeric operations, internal data 

conversion techniques, and the multiplication scheme described in Subsection 2.5. 

 

The three basic VHDL assignments are included in this section for those readers who are 

interested in additional details. 

 

3.1 A Hamming Code Transmitter 

 

Given a four-bit code, a Hamming code contains four additional parity bits to support single-bit 

error correction and two-bit error detection.  Assume that all four parity bits are of even parity.  

Write a VHDL program which will take a four-bit binary codeword as its input and produce an 

eight-bit Hamming codeword as its output such that the new codeword may support the purpose 

of single-bit error correction and two-bit error detection.  Assume that the eight bits of a 

Hamming codeword are indexed by 1 to 8 from right to left; the parity bits are indexed by 1, 2, 4, 

and 8.  Use four DIP switches on the FPGA board as the input devices and eight LED bars on the 

FPGA board as the output display. 

 

Let the four DIP switches be denoted by dipsw(1), dipsw(2), dipsw(3), and dipsw(4).  Also, 

assume that the eight bits of the resultant Hamming codeword are represented by P8, H7, H6, 

H5, P4, H3, P2, and P1.  The four data bits dipsw(1), dipsw(2), dipsw(3), and dipsw(4) 

correspond to the bits H3, H5, H6, and H7, respectively, in the Hamming codeword. 

 

Below are four equations defining the four parity bits of a Hamming codeword for your 

reference. 

 

P1 = dipsw(1) xor dipsw(2) xor dipsw(4); 

P2 = dipsw(1) xor dipsw(3) xor dipsw(4); 

P4 = dipsw(2) xor dipsw(3) xor dipsw(4); 

P8 = dipsw(1) xor dipsw(2) xor dipsw(3) xor dipsw(4) xor P1 xor P2 xor P4; 

 

3.2 A Hamming Code Receiver 

 

Assume that even parity is used for all four parity bits of an eight-bit Hamming code.  Write a 

VHDL program, which takes an eight-bit Hamming codeword as its input and shows whether an 

error is contained in the codeword.  Use an LED segment to show that a single-bit error is 
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detected; the eight-segment LED should display the corrected codeword.  Use a separate LED 

segment to show that a two-bit error is detected.  Both LED segments should be off if no error is 

detected. 

 

3.3 A Clocking Signals Generator 

 

Clock signals generate the heartbeats for a synchronous sequential circuit.  In other words, a 

synchronous sequential circuit needs clock signals to drive its operation.  For example, a finite 

state machine, in addition to input signals, requires a clock signal to trigger state transition. 

 

An oscillator is often used in a digital system to generate a clock signal of stable frequency.  In 

each FPGA board that we use, a 100 mega hertz clock signal is available from an integrated-

circuit oscillator in the FPGA board.   Inside a digital design, a counter is often used to generate 

clock signals of lower frequencies.  In this assignment, write a VHDL description of a counter to 

derive clock signals of the following frequencies. 

• 1 mega hertz. 

• 10 kilo hertz. 

• 1 kilo hertz. 

• 10 hertz. 

• 1 hertz. 

 

Use an oscilloscope to display the clock signals that you generate.  Examine each clock signal.  

Does it have a 50% duty cycle?  If it does not, how would you generate a clock signal with 50% 

duty cycle? 

 

3.4 Input Capture and Output Display of Decimal Numbers 

 

In this VHDL assignment, you will first write a VHDL description to display a decimal number 

using a 7-segment LED.  Then, you will experiment with three methods of capturing an input 

decimal number.  In each case, a captured number will be displayed by a 7-segment LED.  We 

assume that a decimal number may consist of one to five decimal digits. 

 

Each design for capturing a decimal number will consist of four system modes including idle, 

input capture, output display, and global reset; use two DIP switches to identify the active system 

mode: 01 for input capture, 11 for output display, 10 for global reset and 00 for idle mode, 

respectively. 

 

3.4.1 Display of A BCD Number 

 

Use four DIP switches to define a BCD number.  Display a BCD number using a seven-segment 

LED display.  If a number between 10 and 15 is entered, all the LED segments should be turned 

off.  Write a VHDL program of a digital circuit which performs the aforementioned function. 
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3.4.2 Generating Decimal Digits Using DIP Switches 

 

Use four DIP switches to define a decimal digit between zero and nine.  Then, use a push-button 

to capture the decimal digit identified by the four DIP switches.  If a number between 10 and 15 

is entered, the number should be ignored.  If a decimal number consists of multiple BCD digits, 

use the following procedure to capture the input number.  Starting from the leftmost digit, 

capture one BCD digit at a time by pressing a push-button switch once.   The process of an input 

capturing process is terminated by switching the system mode of the circuit.  When the circuit is 

set to the output mode, a push-button is used to initiate the output display.  Starting from the 

leftmost digit, display one digit at a time.  Each digit is displayed for a short period of time.  The 

LED segments should be turned off for half a second between the displaying of two digits.  After 

the rightmost digit is displayed, the LED segments are turned off.  This process can be repeated 

by pressing the push-button again. 

 

3.4.3 Capturing Decimal Digits Using an Externally-Controlled Counter 

 

In this case, you will use a push-button to trigger the generation and display of a decimal digit.  

A counter is used to store a BCD number.  Starting from zero, the value stored in the counter is 

incremented by one each time a push-button is pressed.  A push-button press while nine is being 

displayed resets the counter to zero.  This decimal number generation process can be repeated.  

Use a second push-button to capture a displayed decimal digit.  The input capture is deactivated 

when the system mode of input capturing is terminated.  Similar to the previous design, the 

output display is activated by a push-button while the system is set to the output mode. 

 

3.4.4 Decimal Digits Generation Using a Free-Running BCD Counter 

 

Use a free-running BCD counter to generate a decimal digit between zero and nine at a low 

speed.  A push-button press will capture the digit being displayed.  The input capturing process 

can be terminated by changing the system mode.  Similar to the previous cases, the output 

display is initiated by a push-button while the system is set to the output mode. 

 

3.4.5 Additional Notes 

 

Figure 7 depicts a framework for students to develop a complex laboratory.  The clocks 

generator and user-friendly interface circuits are used in the test phase.  After a design is verified 

to be functional, the real input and output can be attached to the application circuit.  Numerous 

lessons can be derived from the development of the utility design.  The following list includes a 

few of the lessons: 

• Micro-architectural modeling technique. 

• Memory structures. 

• Intellectual property (IP) module reuse. 

• Stored program control and embedded systems. 

• Rapid prototyping. 
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Figure 7: A Laboratory Framework 

 

 

4. Conclusion 
 

In this paper we describe a number of design considerations for efficient resource allocation for 

FPGA demo-board based digital laboratories.  Students may use these design considerations as a 

recipe for handling various design requirements.  Also, we present several laboratories for 

students to practice these methodologies.  Some students defined their own projects using the 

framework described in Subsection 3.4.  For example, one project extended the assignment to 

include a sound generator so that the design was able to support input of musical scales into a 

memory block and replay of stored music. 

 

Most importantly, students learned how to apply micro-architectural modeling to hardware 

implementation of computer algorithms as well as efficient event and clock scheduling for 

seamless system integration. 
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