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Electrons, Holes, and the Hall Effect 
 

 

Abstract 

 

Many students studying semiconductor theory have a difficult time grasping the concept of a 

hole as a real particle.  From their experience in chemistry, physics, and electrical circuits 

classes, they have a firm grasp of the electron as a particle.  However, the concept of an electron 

vacancy in the valance energy band of a semiconductor crystal behaving as a positive charge 

with mass seems metaphysical to them.  In order to demonstrate that the theory is based on 

observations, an undergraduate student built a Hall effect device to measure the Hall effect 

voltage for doped semiconductor material.  The Hall device will be used in future electronics 

classes as a demonstration of the electron-hole theory of semiconductor material.  The project 

has two main results: the research student learned the laboratory procedures for making Hall 

effect devices using photolithography and thin film diffusion processes on silicon wafers and the 

electronics class now has a laboratory demonstration for reinforcing the electron-hole theory of 

semiconductors. 

 

Our paper will present the difficulties encountered during construction of the Hall effect devices.  

The primary difficulties in building the devices are finding the correct balance of three factors: 

the magnetic flux density of the magnetic field, the current flowing through the doped 

semiconductor, and the sensitivity of our measuring instruments.  Stronger magnetic fields and 

larger currents flowing through the Hall effect device cause the Hall effect voltage to be larger. 

However, we must balance this against the safety issues of strong magnetic fields and damaging 

the semiconductor material with too large of a current density.  Finally, the paper will present a 

description of how the Hall effect devices will be used in the classroom to reinforce electron-

hole current flow theory. 

 

Introduction 

 

The purpose of this research project is to build a Hall Effect device to demonstrate different 

charge carriers of the electrical current flow in p-type and n-type semiconductor materials.  The 

demonstration is to be used in an undergraduate electronics course to prove the existence of hole 

current flow and electron current flow in semiconductor materials.   

 

Eventually, the demonstration will consist of two Hall Effect devices: one with a p-channel 

conductor and the other with an n-channel conductor.  However, we currently have constructed 

only the n-channel device.  We started with the n-channel device because our laboratory has been 

doping n-type channels and regions for several years.  It is only within the last year that we have 

obtained equipment to do p-type doping and we expect to create a p-channel Hall Effect device 

in early 2007. 

 

Background 

 

To briefly explain the concept of this project, consider the atomic levels of semiconductors: 

elemental semiconductors have four electrons in the outer shell.  At absolute zero (0 K) the 
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electrons of the semiconductor atoms drop to the lowest shell (the valence energy band).  Each 

shell is completely filled so that the electrons can not move.  Hence, electrical current can not 

flow and the material is an insulator.  At any non-zero temperature, however, some electrons can 

jump from the valence band to the conduction band (a higher energy band) and move about 

freely and electricity can flow.  For every electron that jumps to the conduction band, there will 

be a vacancy (or hole) in the valence band.  A hole moves as an adjacent electron (in the valence 

band) moves to fill the hole.  As the electron fills the hole, it creates a new hole at the old 

location of the electron.  As electrons move sequentially to fill holes, the holes travel through the 

material.  For pure semiconductor material, there will be equal numbers of electrons and holes.
1
   

 

Consider taking a semiconductor and doping it with a material that has “extra electrons.”  n-type 

donor materials have five electrons (e.g. “extra electrons”) in the outer shell.  Doping 

semiconductors with donor materials fills the valence band and forces the extra electrons to the 

conduction band.  These electrons freely move through the conduction band and carry the 

majority of the charge when electric current flows in the n-type material.  On the other hand, 

doping a semiconductor with p-type acceptor material (which has only three electrons in the 

outer shell) results in holes in the valence band.  Because there are more holes in the valence 

band than there are electrons in the conduction band, the majority charge carriers of p-type 

material are holes.
1
   

 

When current flows through these semiconductors in a magnetic field the charged particles tend 

to push to one side of the conductor or the other.  The resulting voltage difference can be 

measured perpendicular to the current flow.  The transverse voltage across a semiconductor is 

called the Hall Effect.
2
  See Figure 1. 

 

The primary difficulty in building this demonstration was the need to accurately measure very 

small voltages (on the order of micro-volts).  In any given laboratory there are electrical noise 

sources that generate voltages that are induced into our experimental circuit.  The measured 

noise voltages in the testing laboratories are approximately 10 mV unless proper grounding and 

shielding techniques are followed.   

 
Figure 1: The Hall Effect

3
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Processing 

 

The Hall Effect devices will be fabricated on 4-inch p-type silicon wafers, using planar 

processing techniques.  The first step in the process is the growth of a thick silicon oxide (SiO2) 

layer on the surface of the wafer, using wet oxidation.  In this process, high purity oxygen gas is 

bubbled through boiling deionized (DI) water in order to couple steam into a high temperature 

furnace.  The oxidation parameters (time and temperature) are determined by the minimum oxide 

thickness necessary for a subsequent doping process, as described later.  The thickness of the 

oxide layer is measured and verified to be adequate for future processing. 

 

Next, using standard photolithography techniques, small windows are etched in the oxide layer 

in order to expose regions of the silicon wafer that are to be doped and converted from p-type to 

n-type.  The doping process is based on a conventional two-step diffusion profile, involving 

predeposition and drive-in.  During predeposition, dopant sources containing phosphorous (an n-

type dopant material) are placed in close proximity to the wafers in a high temperature furnace.  

This deposits a thin layer on the surface of the wafers that exhibits a high concentration of 

phosphorous.  Using the natural process of diffusion, the phosphorus in this layer is then “driven-

into” the wafer using yet another high temperature process.  The diffusing phosphorous then 

converts the wafer from p-type to n-type.  However, due to the oxide layer grown earlier, the 

conversion from p-type to n-type only takes place within the windows where the oxide has been 

removed by photolithography.  Elsewhere, the oxide is thick enough to block the diffusion of 

phosphorous into the silicon.  As a result, wells of n-type silicon are created within an otherwise 

p-type silicon wafer. The doping parameters (time and temperature) dictate the oxidation 

parameters outlined above – the higher the drive-in time and temperature, the thicker the oxide 

must be in order to serve as an effective block to the phosphorous diffusion. 

 

Following the doping process, a thin layer of silicon oxide is grown over the entire wafer surface, 

using dry oxidation.  In this step, high purity oxygen gas, instead of steam, is pumped directly 

into a high temperature furnace.  A second photolithography step is then used to open very small 

(contact) windows in this thin oxide layer, exposing the underlying doped silicon where 

electrical contacts will be made. 

 

In order to form the electrical contacts, a thin layer of aluminum is deposited over the entire 

wafer surface (as well as inside the contact windows) through physical vapor deposition.  The 

aluminum contacts are then defined using a final photolithography process in which all of the 

aluminum is removed expect for the contact pads over the contact windows.  The devices are 

then ready for testing.  

 

Testing 

 

From the beginning it was expected that testing these devices would present the greatest 

challenge.  Testing required us to overcome three major challenges: create a low noise 

environment, create the strong B-field required to generate the Hall Voltage, and increase the 

current flow through the Hall Effect device. 
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The first challenge was creating a low noise working environment.  A considerable amount of 

time was dedicated to trying to identify the sources of noise and interference within the room.  

Whenever possible, equipment not in use was turned off.  During some of our earliest 

experiments, we also turned off the fluorescent lights in the room because they were causing 

variations in our measurements as our shadow covered the silicon wafer under test.  Eventually 

as we created stronger B-fields, higher currents, and more mechanically robust contacts, the Hall 

Voltage became large enough where fewer precautions were required. 

 

The second challenge was creating the necessary B-Field that generates the Hall Voltage.  We 

used permanent magnets as the source of our B-field because they were cheap and we would not 

have to worry about another power supply adding electrical noise to our environment.  We 

originally borrowed some small permanent magnets from another department to do some 

preliminary experiments.  These early experiments failed to produce any measurable Hall 

Voltage.   From calculations based on the resistance of the channel of the Hall Effect device and 

the B-field strength, we determined we needed a much stronger magnet.  We obtained two 

neodymium rare earth magnets (2.0 in. in diameter and 1.0 in. thick) with a surface flux density 

of 0.7 T and mounted them on a C-Clamp with one magnet on each of the jaws of the clamp.  

See Figure 2.  The magnets were held in place by 3 inch diameter aluminum stock.  Two 

identical sections were cut, and bored out so that one magnet could fit within each.  The 

aluminum stock was bolted to the clamp and the magnets placed in the aluminum stock.  Once 

the stock was bolted closed, encasing the magnets, the magnets were more easily handled. 

 

 

 
Figure 2: C-clamp with magnets 
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The final challenge was to increase the current flow through the Hall Effect device.  Our first 

attempt at creating Hall Effect devices had several small devices on one wafer.  After simple 

experiments did not yield any measurable Hall Voltage, we designed a new Hall Effect device 

with a wider and longer channel.  The formula for the Hall Voltage predicted that the total 

current flow and the magnetic flux density were the important factors.  So we used a larger 

channel so we could increase the total current flow without damaging the wafer by heat 

dissipation from the larger current flowing through the channel of the Hall Effect device.  We 

also reduced the amount of doping because the formula for the Hall Voltage indicated that a 

larger sheet resistance would increase the Hall Voltage.  Reducing the doping also increases the 

mobility and further increases the Hall Voltage.  However, if the doping is too low, there will be 

nearly equal amounts of electron flow and hole flow: reducing the Hall Voltage. 

 

With the improved Hall Effect device, we tried to increase the current from 100 mA  to 1 A.  

However, our electrical contact was a steel needle touching aluminum deposited on the wafer.  

The higher current resulted in very high current densities near the contact point.  The high 

current densities cause the aluminum to melt and electrical contact was lost. Our first attempt to 

improve the contact was to order special solder and flux to solder a wire to the aluminum 

contact.  Unfortunately, the liquid solder dissolved the deposited aluminum and destroyed the 

contact pads.  The final solution to obtain better contacts was to use conductive epoxy to attach a 

connector header to the conductor pad of the wafer.  With the improved contact, we were able to 

achieve stable electric current flow of 0.3 A. 

 

With the new Hall Effect device, we set the current to approximately 300 mA and measured the 

transverse voltage without any applied magnetic field.  We measured a non-zero value because 

the channel has a voltage drop along the channel and if the transverse contact points are not 

precisely placed, the measured voltage will contain both a component caused by the voltage 

dropped along a portion of the channel and a portion caused by the Hall Effect.  We also 

measured the transverse voltage with a magnetic field applied and recorded the difference as the 

Hall voltage. We applied the power supply so that conventional current flowed from left to right 

from the observer's point of view.  We measured the transverse voltage with the positive terminal 

behind the channel (the channel was between the observer and the positive test point on the 

wafer).  The negative terminal of the voltmeter was in front of the channel (the negative test 

point was between the channel and the observer).  Finally we set the magnet so that the north 

pole of the field was on top and the south pole was on the bottom.  Analysis of this configuration 

using the right hand rule shows that hole flow will produce a positive Hall Voltage while 

electron flow will produce a negative Hall Voltage.   

 

Results 

 

Consistent, repeatable Hall Effect voltages between 0.3 and 0.4 mV were observed.  In addition, 

the polarity of the Hall Voltage was correct for the n-type material under test.  We switched the 

polarity of the applied magnetic field and observed the sign change in the voltage.  The 

maximum Hall Voltage for this device, based on theoretical calculations, is approximately 7 mV.  

This however, assumes a magnetic field density equal to the specified surface flux density of the 

magnet.  Since we were moving the C-clamp with the magnets to apply and remove the magnetic 
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field, the gap between the north pole and the south pole had to be large enough to not touch the 

headers of the contacts (about 3 cm of gap).   Taking into consideration the additional gap 

created by the aluminum stock holding the magnets, the applied magnetic field is considerably 

weaker than 0.7 T.  As shown in the equation below, the Hall Voltage is also dependent on the 

mobility and sheet resistance of the device.   

 

sRµIBVH =  

 

Semiconductor device characterization techniques, including four-point probe analysis, provide 

only estimations of these terms, adding more uncertainty to attempts to calculate an accurate 

expected Hall Voltage.  Nevertheless, despite the difficulties in predicting the magnitude of the 

Hall Voltage, the Hall Effect is clearly observed and the device will sufficiently serve as a class 

demonstration tool.  Our next version of the Hall Effect device will move the contact locations 

out of the way so that the gap between the poles of the magnet can be reduced, thus 

strengthening the B-field.  After that, we will experiment with making a p-channel Hall Effect 

device. 

 

Expected Uses in the Classroom 

 

As stated in the introduction, the purpose of this research project is to build a Hall Effect device 

to demonstrate different charge carriers of the electrical current flow in p-type and n-type 

semiconductor materials.  All of the effort so far has been toward creating the n-type device.  

However, the solutions to the problems encountered with the magnetic flux density, the current 

density, and the doping levels are expected to be directly applicable to the p-type device.  Hence, 

we expect only minor problems creating the p-type device.  We are expecting some problems 

creating the p-type device because we have no experience doping silicon with p-type material 

with our laboratory equipment. 

 

Eventually, the demonstration will consist of three Hall Effect devices: one with an intrinsic 

silicon channel, one with a p-channel conductor, and the final one with an n-channel conductor.  

Students will connect a power supply to the conductive channel of one of the wafers and use a 

voltmeter to measure the transverse voltage.  A magnetic field from permanent magnets will be 

applied with a known north/south polarity and the students will observe the change in the 

transverse voltage caused by the magnetic field. The change in the voltage caused by the 

magnetic field is the Hall voltage.  The students will use the right hand rule to determine the 

expected polarity of the Hall voltage and determine the type of semiconductor the conductive 

channel is made from (either intrinsic, p-type, or n-type).  The students will repeat the 

experiment for each of the silicon wafers. 

 

With the students observing that the polarity of the Hall voltage is determined by whether 

electrons or holes are the majority carrier in the semiconductor, it is hoped they will better 

understand the concepts of electron flow and hole flow.  Once all of the Hall effect devices are 

built, pedagogical studies will be used to test the efficacy of the laboratory exercise. 
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Conclusions 

 

It is feasible to build a Hall Effect device to determine the majority carrier of a doped channel of 

silicon material.  Currently, we can consistently measure a Hall Voltage of about 0.3 mV, but we 

expect to improve on that by moving the contacts out of the way and reducing the gap between 

the poles of the magnet.  Even if this does not affect the answer, we already have a design for the 

device that works well enough for a demonstration.  Once we have perfected the Hall Effect 

devices, we will use them as a demonstration of semiconductor physics in an electronics course. 
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