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Embedding computation with experimentation in the  
sophomore and upper-level Physics curriculum 

 
In the University of St. Thomas physics department, we have begun an ambitious, collaborative 
project to embed computation and experimentation in five required physics courses that span our 
sophomore and upper-level offerings. The laboratory for our sophomore Applications of Modern 
Physics course, which is a required course for all physics and electrical engineering majors, is 
being redeveloped to serve as an introduction to computer simulation. All of our students are 
now expected to be proficient in a common computational language—MATLAB—which can then 
be used as a tool in upper-level courses. We are embedding MATLAB in large and small ways 
throughout the curriculum, from simple tasks such as plotting functions, to sophisticated tasks 
such as simulating the dynamics of a complex system. We are also connecting the theory of 
idealized physical systems with real systems through the combination of computer simulations 
and validation experiments. Through continued exposure, we anticipate that our students will 
embrace computation as a useful tool in their arsenal. This paper describes our project, which 
involves five physics faculty and an advisor from the School of Engineering who has expertise in 
education. 
 
Introduction 
 
Most physics research these days involves the use of computers for data collection and analysis, 
simulations, symbolic manipulation, and numerical analysis. As the American Association of 
Physics Teacher’s “Statement on Computational Physics” says, “Computational physics has 
become a third way of doing physics and complements traditional modes of theoretical and 
experimental physics.” 1 Computation should be an important component in the physics 
undergraduate curriculum, and ideally it should merge seamlessly with the rest of the curriculum. 
 
Throughout the past 15 years, the University of St. Thomas physics department has been 
implementing an integrated physics curriculum where students gain the theoretical, experimental, 
computational, and communication skills they will need to succeed in their careers. The 
computational work in our department began with an NSF-sponsored effort (DUE-0311432) to 
develop computational modules in several upper-division physics classes.2 Our current efforts 
seek to strengthen the connection between a variety of physical systems and the theory and 
computational models that describe them: experiment grounds the theory while computation 
allows us to study more complex, less idealized systems. In this paper, we describe these 
curricular projects that use computation as a link between theory and experiment in our 
sophomore and upper-level courses. Our hope is that students will show a clear benefit from this 
continued and systematic exposure in a multitude of settings, both in their embrace of 
computation and in their ability to communicate results in an organized and professional manner.  
 
We are currently developing curricula that embed computation and experimentation in five 
required3 physics courses that span our sophomore and upper-level offerings: PHYS 225: 
Applications of Modern Physics, PHYS 341: Electricity and Magnetism, PHYS 331: Theoretical 
Mechanics, PHYS 347: Optics, and PHYS 431: Quantum Mechanics.  
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PHYS 225: Applications of Modern Physics 
 
This sophomore-level course covers modern physics from a materials science perspective, 
building from the properties of single atoms to collections of atoms (quantum dots and other 
nano-scale systems), and then to solids, with applications interwoven throughout. The course has 
a separate laboratory that meets for 3.5 hours once a week. Time in the laboratory is used to 
reinforce concepts learned in class through the use of simulations and tutorials, while also 
introducing students to computational modeling using MATLAB.  Descriptions of all laboratories 
developed for this course can be found in the course’s curriculum development webpage.4 

 
We have extended two tutorials adapted from materials from the University of Colorado-Boulder 
PhET5 simulations to include a computational component along with short validation 
experiments: 
 

Laboratory: The Wave Equation 
Conceptual goal: Become comfortable with the mathematical formalism of differential 
equations with boundary conditions. Understand how applying boundary conditions leads to 
quantization.  
Experimental goal: Use the pattern of standing waves in a microwave oven to estimate the 
speed of light.  
Computational goal: Learn how to plot surfaces using MATLAB. 
 

In the wave equation tutorial, students solve the wave equation for electromagnetic radiation 
inside a microwave oven and find that the boundary conditions lead to only certain allowed 
wavelengths (a first glimpse of quantization). The tutorial developed at UC-Boulder was 
extended to include visualization of the stationary waves in two dimensions by plotting in 
MATLAB. Students use paper moistened with a CoCl2 solution to reveal the pattern of 
microwaves in an oven.6 They then estimate the speed of light from the distance between nodes 
on the paper and the known operating frequency of the microwave. 
 

Laboratory: Lasers 
Conceptual goal: Develop a basic understanding of the relationship between energy levels in 
an atom and how lasers work. 
Experimental goal: Use of a spectrometer to record intensity vs. wavelength. Relate results to 
an energy level diagram. 
Computational goal: Learn how to open and read a data file using MATLAB; practice array 
manipulation and basic plotting. 

 
Students discover the requirements for building a laser while following a tutorial and exploring 
the associated PhET5 simulation.  We have extended this laboratory by having students develop 
expected emission spectra for a He-Ne laser from energy level diagrams for helium and neon. 
Students are given NIST Atomic Spectra Database7 files with a large number of energy levels for 
helium and neon along with relative intensities for transitions between levels. Students 
manipulate the data in MATLAB in order to find energy differences and compute the 
corresponding wavelengths of emitted photons. They then use the computed wavelengths along 
with relative intensities to plot the expected emission spectra. Students use spectrometers to 
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record the spectra of the transversely emitted (non-lasing) light of a clear-case HeNe laser, and 
compare these results with their previously-calculated spectra. 
 
PHYS 331: Theoretical Mechanics 
 
Theoretical Mechanics is an upper level course focusing on the study of physical systems 
through the application of classical mechanics.  During the semester, the ideas of Newton, 
Lagrange, and Hamilton are developed and applied to a wide spectrum of problems ranging from 
the motion of charged particles to coupled oscillators.  Mathematical techniques are infused 
throughout the course; vector calculus, differential equations, matrix algebra, complex variables, 
and variational calculus all find their way into the discussion.   
 

Homework Module: Large Angle Pendulum Motion 
Conceptual goals: Use energy techniques to develop the equation of motion for a physical 
pendulum.   
Experimental goal:  Measure the period and compare with predictions from the numerical 
model.  
Computational goals: Demonstrate the ability to numerically integrate differential equations 
using MUPAD.  

 
The behavior of a physical pendulum swinging through large angles provides an excellent 
example where traditional analytical tools breakdown.  Students quickly recognize that the 
system is not a simple harmonic oscillator.  Predicting the period requires numerical integration 
and introduces students to the power of MUPAD, which is included in the Symbolic Math 
Toolbox add-on for MATLAB.  The experimental system consists of a large metal pendulum 
supported by a ball bearing shaft.  The large mass is necessary to reduce dampening by air 
resistance.8  
 

Homework Module: Catenary Curves 
Conceptual goals: Implement variational calculus techniques to model how the shape of a 
hanging chain depends on the chain density, length, and the separation of the supports.  
Experimental goal:  Verify that the model predicts the correct shape.  
Computational goals: Develop a facility with MATLAB fitting tools by comparing the actual 
catenary shape with the predicted shape.  

 
Variational calculus techniques are rather abstract and difficult for students to apply the first time 
they are introduced to the topic.  Having a concrete example helps to remove some of the 
abstraction from the problem.  Determining the overall shape of a catenary is a fairly standard 
problem in variational calculus; however, understanding how the shape depends on specific 
boundary conditions is a bit more difficult.  To help guide their study, the students are given an 
expanded reference to the problem.9   Because the catenary is stationary, it lends itself nicely to 
simple measurements demonstrating how its shape depends on chain length, separation, and 
mass.  Using segments of ball-chain, different configurations can be rapidly set up and 
characterized.  
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Homework Module: Chain Falling From a Heap (g/3 -vs- g/2) 
Conceptual goals: Use Lagrangian and Hamiltonian techniques to investigate the behavior of 
a falling chain.   
Experimental goal:  Experimentally resolve the conflicting theoretical results that arise from 
different starting assumptions about the system. Computational goals: Refine curve fitting 
skills in MATLAB.  

 
Variable mass problems often have subtle effects that are easy to get wrong.  A chain falling 
from a stationary heap is a classic variable mass problem that is frequently solved incorrectly.  
Students are introduced to the problem and develop models of the system dynamics.  After 
grappling with the problem, they are presented with a paper10 which leads them to a theoretical 
understanding of the system using Lagrangian and Hamiltonian techniques.  After deciding on 
the proper approach, students test their theory by recording a video of a falling chain and extract 
the time-position data using video analysis software.  The time series is fit using MATLAB to 
determine the acceleration of the chain. 
  

Homework Module: Coupled Mechanical Oscillators 
Conceptual goals: Use Lagrangian techniques to set up the differential equations describing a 
coupled mechanical oscillator.  Solve the resulting eigenvalue problem and describe the 
normal modes for the system as well as the general behavior.  
Experimental goal:  Verify that the model predicts the expected behavior for a variety of 
initial conditions using actual mass-spring-pendulum systems 
Computational goals: Develop linear algebra and plotting skills in MUPAD. 

 
Modeling the behavior of coupled systems is a complicated topic where symbolic linear algebra 
tools are particularly useful.  By solving the eigenvalue problem and plotting the expected 
system behavior for different initial conditions and then comparing the predicted behavior with 
an actual system, students solidify their conceptual understanding as they develop modeling 
skills.    
 
PHYS 341: Electricity and Magnetism 
 
The first half of a two-semester sequence, this junior/senior level course covers electro- and 
magneto-statics and Maxwell’s equations, while the second semester covers wave propagation 
and applications such as antennas and transmission lines. This course does not have a lab 
component, and many students find the abstract material difficult to grasp.  Since the course 
deals with fields that are invisible and remote from daily experience, the material is typically 
presented mathematically, and analytical methods are used to solve problems.  However, only 
the simplest of cases can be solved analytically, and most real-world applications of 
electromagnetics use finite element methods to find numerical solutions.  We believe that the use 
of experimental and computational elements in this course will improve student understanding of 
the material and provide them useful professional tools. Our goal in this class is to use MATLAB 
to perform calculations of electric potentials to introduce finite difference methods to the 
students. Coupled with in-class validation experiments, the calculations help students visualize 
the meaning of the mathematical formalisms used throughout the semester. 
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In-class Exercise: Electric Potential of Two-dimensional Systems 
Conceptual goals: Understand how finite difference methods can be used to solve Laplace’s 
equation to determine electric potentials. Visualize electric fields for non-trivial geometries, 
such as microstrip transmission lines. 
Experimental goal: Use electrodes in a water tank to map the electric potential for two-
dimensional systems. 
Computational goal: Learn how to use finite difference methods in MATLAB.   

 
Prior to this unit, students have learned to find the electric potential analytically for several 
simple geometries such as infinitely long concentric cylinders. However, these analytical 
approaches do not yield solutions for more complex geometries that lack symmetry.  In this unit, 
students see through in-class demonstrations that potentials in a water tank can be used to map 
electric potentials and that these experimental results match analytical results calculated in class 
for a case where an analytical result is available (e.g., the electric field and potential in a coaxial 
cable).  Although this method provides a way to measure potentials for more complex 
geometries, the approach is labor intensive and tedious. 
 
We then introduce finite difference methods for solving Laplace’s equations. Previously, this 
method was discussed in class, but the students did not have the opportunity to use the technique 
in homework assignments. Thus, we have developed a MATLAB assignment in which students 
use finite difference methods to find a potential, allowing them to test their understanding and 
practice this useful skill.  In the case of a coaxial cable, the calculation is done in a one-
dimensional or two-dimensional approach, and the results are compared to both experiment and 
theory for verification. 
 
Once students are comfortable with their ability to model two-dimensional problems, we ask 
them to model a practical configuration like a microstrip transmission line that lacks the 
symmetry needed for analytical solution, but is commonly used in circuit boards.  This geometry 
is also modeled via electrodes in a water tank so that students can validate their simulation 
results with experimental data. 
 
PHYS 347: Optics  
 
This junior/senior level course focuses on “physical” optics: wave theory, polarization, 
interference, diffraction, and light-matter interactions. The first half of the course’s laboratory 
component deals with practical optical techniques, while the second half comprises a series of 
advanced, modern applications of those techniques. The laboratory is closely tied to lecture 
material, but missing from this course was a significant computational component that provides a 
more sophisticated link between theory and experiment.  As a first step, we developed additions 
to the two-part laboratory unit on polarized light, in which students simulate and analyze optical 
systems using MATLAB.  In the future, we will add similar modules to the interference and 
diffraction units. 
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Laboratory: Creation and Manipulation of Polarized Light (Part 1: Imaging) 
Conceptual goals: Understand the nature of polarized light, how polarization changes upon 
reflection and transmission, and how insects use polarized light for navigation and 
communication. 
Experimental goals: Learn how to operate CCD cameras in conjunction with 
linear polarizers. Quantify how various materials either polarize or depolarize 
scattered light. 
Computational goals: Use MATLAB’s Image Acquisition Toolbox to acquire images from 
CCD cameras. Learn basic image processing in MATLAB to create polarization maps of 
optical targets. 

 
This first experiment in the polarized light lab introduces students to polarimetric imaging, a 
method that is widely used in science, engineering, and medicine. Using a CCD camera followed 
by a rotatable linear polarizer, they acquire two images of an optical target with the Image 
Acquisition Toolbox.  The first image is taken through the polarizer when its axis is horizontal, 
and the second image uses a vertical polarization axis. Students process their images in MATLAB 
by taking the difference-over-sum of the two images to produce a map that quantifies how the 
target influences polarized light. Pixels on the map have values between zero and one, and they 
equal the scene’s “degree of polarization.” By applying an appropriate color palette to this map, 
students optimize their visual sensitivity to small changes in polarization. Optical targets include 
dielectrics, metals, diffusers, commercial optical films, objects buried in turbid media, butterfly 
wings, and scarab beetle elytra. In this laboratory, special emphasis is placed on its application to 
insect vision. Many insects are very sensitive to polarized light and use it to identify mates as 
well as navigate during migration. The polarization maps that students create are meant to 
approximate what insects might see. The experimental portion of this project was previously 
developed and was largely based on our publication in the Physics Teacher.11 

 
Laboratory :Creation and Manipulation of Polarized Light (Part 2: Electro-optics) 
Conceptual goals: Understand the nature of polarized light, how polarization changes upon 
reflection and transmission, and how it can be precisely manipulated and measured with 
modern instruments. 
Experimental goals: Learn how to operate an electro-optic modulator and use it to control 
polarized light for a variety of polarimetry experiments. 
Computational goals: Learn how to use various linear algebra, Fourier analysis, and plotting 
functions in MATLAB. Translate the matrix representation of polarized light into a simulation 
of an electro-optic modulator in order to understand experimental results and calibrate an 
optical system. 

 
In this second experiment with polarized light, students use two types of electro-optic 
modulators—liquid crystal retarders and photoelastic modulators—to precisely quantify the 
polarization properties of targets such as stretched plastic, compressed gelatin, sugar-water 
solutions, commercial polarizing elements, calcite crystals, and so on. We have developed a 
computational component for this laboratory in which students translate the traditional matrix 
representations of polarized light into a versatile MATLAB simulation that accounts for all 
possible combinations of static and time-varying polarizing elements, including targets of 
interest. The program calculates output polarization states, plots intensity curves for reflected 
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and/or transmitted light, and performs Fourier decompositions of those curves. When students 
later perform their experiments, they validate their program’s predictions by analyzing signals 
displayed on oscilloscopes and lock-in amplifiers. Results from simple, nearly ideal optical 
targets initially build students’ confidence in both the physics and the simulations. Not only does 
the MATLAB simulation give students deeper understanding of polarized light, it is essential for 
proper calibration of their optical systems. After calibration is complete, more complex optical 
targets reveal the true power of the simulation because some materials affect polarized light in 
complicated ways that are tough to analyze with only paper and pencil. Much of the theoretical 
and experimental groundwork for this module is highlighted in our American Journal of Physics 
publication.12 

 
Physics 431: Quantum Mechanics 
 
This one-semester course studies the fundamentals of quantum mechanics with mathematical 
rigor. Students are mostly seniors, though a few juniors typically take the class as well. Students 
in the class have all taken Modern Physics, and most have taken the other 300-level courses 
listed above. In that sense, Quantum Mechanics is a capstone course and can build on the 
knowledge and skills gained in the previous courses  
  
We currently incorporate a computational component as a final project in the course, developed 
through the NSF grant for computation mentioned above (DUE-0311432). In this module, 
students calculate and plot several electron density functions for a hydrogen atom using the von 
Neumann accept/reject Monte-Carlo technique.13 We have developed an additional 
computational project that builds explicitly on the two-week quantum dots lab that students 
perform in PHYS 225.  
 

Homework Module: Modeling Quantum Dots as Infinite Spherical Wells 
Conceptual goal: Understand the connection between quantum dots and the infinite spherical 
well model. 
Experimental goal: Revisit the quantum dot system and understand how different 
wavelengths of light are produced from dots of different radii. 
Computational goals: Use MATLAB to numerically model the infinite spherical well for the 
case that is appropriate for quantum dots. Compare the numerical results to the analytical 
solutions derived in class.  

 
In PHYS 225, students spend one lab period measuring the spectral characteristics of several 
CdSe quantum dots, whose differing radii correspond to different emitted colors. They then 
analyze and plot their results with MATLAB. In the subsequent lab period, students are introduced 
to the three-dimensional infinite square well as an initial model for the quantum dots, and they 
use MATLAB to numerically solve the corresponding Schrödinger equation using a finite-
difference approximation. However, since quantum dots are roughly spherical, it would be far 
more appropriate to model them using the infinite spherical well. In PHYS 431, we analytically 
calculate the lowest order (l = 0) wavefunctions and corresponding energies for the infinite 
spherical well. We have developed a computational exercise in which students use MATLAB to 
numerically determine the solutions to the infinite spherical well for several values of l using 
Numerov’s method.14  We anticipate that students will benefit from the additional exposure to 
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numerical methods of solving differential equations, particularly in a system with which they are 
already familiar.  
 
Impact and Assessment 
 
This project improves five of the eight physics courses offered by our department beyond the 
introductory level. The curricula we have developed will give students continued exposure to 
computation and experimentation throughout their undergraduate years. Of particular 
importance, most curricula described in this paper can be included in traditional lecture-only 
courses, and the benefits of this work can be easily extended to other institutions. 

 
The materials described in this project were developed over Summer 2012 and continue to be 
refined.  During the 2012-13 academic year they are being phased into the classroom. We will 
assess results from this project by monitoring proficiency in MATLAB as students work through 
the physics courses involved. We are in the process of gathering this data and will report results 
at a future date. We expect to review and revise all materials in the summer of 2013, and will 
then post descriptions of the materials to the curriculum section of the UST Physics Department 
website (http://www.stthomas.edu/physics/research/Curriculum). We encourage readers to 
contact any of the authors if they are interested in trying the materials in their own courses. We 
expect to continue developing similar computational and experimental exercises in the coming 
years. 
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