
Paper ID #37328

Enabling Generic Sensing Devices to use LoRa
Communication
Ciprian Popoviciu (Assistant Professor)

Dr. Ciprian Popoviciu, East Carolina University – Assistant Professor Dr. Ciprian Popoviciu has over 20 years of
experience working in technical and leadership roles in the IT industry. He is an industry-recognized domain expert in
IPv6 who has worked with large service providers, enterprises, and governments. Popoviciu founded Nephos6, which did
groundbreaking work OpenStack for IPv6, authored two books on IPv6, and has worked on IPv6-related internet
standards and patents. He is an IPv6 Forum Fellow, IPv6 Hall of Fame 2019 inductee, and a technology expert for the
European Commission. His research focuses on next generation infrastructures and IOT. Dr. Popoviciu completed his
Executive MBA at Kenan-Flagler Business School, University of North Carolina at Chapel Hill. Dr. Popoviciu is
currently an assistant professor at East Carolina University's College of Engineering and Technology, where he teaches
and participates in cyberinfrastructure research.

Colby Lee Sawyer

Colby Sawyer, East Carolina University – Software Developer

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Enabling Generic Sensing Devices to use LoRa Communication

Colby Sawyer, Ciprian Popoviciu

Abstract: There is a rapidly increasing need for real-time sensing data; data typically

collected by devices deployed in remote locations, inaccessible by standard wireless and

cellular technologies at scalable costs. With the emergence of LoRa wireless technology

as a viable data communication methodology, there is a clear opportunity to instrument the

environment at scale with sensors to collect real-time data at low cost and low power

budgets. In this paper, we cover the approach used to develop an edge device capable of

interfacing with any environmental sensor to transmit collected data via LoRa to a cloud-

based data collection service. We document the development of the physical edge node,

the development of a methodology to generalize connectivity to sensing devices, the

development of software capable of interfacing with the connected sensors, the

development of software capable of translating data into meaningful information, and the

development of software to send/receive data over LoRa to a cloud-based infrastructure

monitoring service. We aim to streamline the instrumentation of this device to enable any

scientific group to easily set up an instrumentation infrastructure to collect data over large

geographical footprints.

Key words: IOT, LoRa, Sensors, Monitoring.

Neither the entire paper nor any part of its content has been published or has been
accepted for publication elsewhere. It has not been submitted to any other journal.

1. Introduction

The emergence of the Internet of Things (IoT), a collection of technologies, products, and services

facilitating easy, inexpensive deployment and management of devices to instrument environments and

processes. By combining the data collection and data-based actuation provided by IoT infrastructures

with analytics, machine learning and artificial intelligence, the generated value is clear with respect to

data gathering, gaining insights, and driving workflow optimizations.

New wireless communications technologies optimized for range, power consumption, interference

avoidance and finally for cost are making it easier to build IoT infrastructures. Deploying and managing

sensors on these infrastructures is dependent on the communications interfaces built in the sensors. Most

traditional sensors include a serial interface SDI-12 (Serial Digital Interface at 1200 baud) [1] or I2C [2][3]

and at times a short-range communication interface such as Bluetooth for proximity reading of logged

data. While newer sensors are catching up with long-range communications technologies integrating

interfaces such as LoRa, WiFi, and cellular, the diversity in technology options makes modular designs,

where the sensing and communications pieces are distinct, more practical.

Additionally, the practitioners who are most interested in leveraging sensing infrastructures and

innovating on top of them are typically specialized on the technology and science residing at the two ends

of the IoT environments: Sensing and Analytics. Researchers, Educators, and Practitioners are often

faced with the challenge of connecting existing or new types of sensors, work that takes away from the

focus of their research: development of new sensing methods or analyzing sensor data. Enabling users to

simply deploy their sensors and gain access to the collected data would optimize the use of their own

time and funding.

In this paper we detail the work of designing and implementing an interface, called Communications Shim
(CS), facilitating the integration of commercial and experimental sensors with a serial interface into a
LoRaWAN (Long Range Wide Area Network) infrastructure. This project is part of a larger initiative within
the Technology Systems department at East Carolina University [4] to develop the Campus-as-a-Lab
(CaaL) platform to enable instrumentation in support of researchers, educators, students, and facilities
managers. The CaaL architecture is described in a separate paper [5]. This paper covers the approach,
design, and implementation of the Communications Shim and its testing within the CaaL infrastructure.

2. Problem Definition and Requirements

IOT infrastructures consist of three main domains (Figure 1). Sensing covers all aspects related to the

ways in which data such as water level, temperature, humidity is collected. The sensing domain is also

focused on local data management. Connectivity covers the various technologies and methods to

connect sensors with data collectors and connect sensors amongst themselves. The connectivity domain

also addresses the manageability of the sensors. Finally, Data and Analytics covers all aspects of storing

and managing collected data, covers the processes to analyze data, deliver insights and enabling action

based on the collected data. This domain is responsible for data lifecycle management and access to

data analytics tools.

3

Figure 1. Main domains of a sensing platform [3].

Most researchers focus on the sensing, data & analytics or both domains. In the sensing area,

researchers are investigating and developing new sensing technologies or way to lower the cost of

existing sensors leading to new sensors. At the same time, in their goal to deploy instrumentation,

researchers would like to deploy traditional sensors in an IoT environment and eliminate the need to

periodically visit sensors in the field to download collected data. Since each sensing project might be best

served by a different communication technology, it is important to facilitate easy integration of sensors

into available communications technologies.

In the context of the CaaL project we interviewed the key users and stakeholders to gather requirements

for the solution. One of the key requirements was to facilitate the integration described above, specifically,

this integration should:

• Accommodate Various Types of Long-Range Communications Interfaces – Integrate

sensors in various communications infrastructures such as: LoRa [6], Cellular [7], CBRS (Citizens

Broadband Radio Service) [8], etc.

• Accommodate Multiple Sensing Device Types – Interface commercial and development

sensors using standard serial interfaces.

• Provide Edge Computing and Data Store Resources – Provide compute and memory

resources close to the sensing devices to facilitate data management and edge computing.

Within the CaaL architecture (Figure 2) we identified a sensor integration module we called:

Communications Shim (CS).

4

Figure 2. High-Level CaaL Architecture and Use Cases [3]

In the following section we described the implementation of CS at hardware and software level.

3. Implementation and Results

Creating a device that can communicate via LoRa technology and support a very wide range of

commercial and experimental sensing devices presented several challenges related to hardware and

software options. The hardware selection was driven by performance, power consumptions restraints,

portability, and overall product ease-of-use. Several software components are required to facilitate the

interface between interfaces while running on embedded platforms with limited resources. In this section

we describe the hardware setup, software elements and security provisions that were integrated and

developed to create the production level Communication Shim (CS).

3.1. Hardware Selection

Originally, the CS was intended to operate on a low-power platform, to align with one of the key benefits

of LoRa. During the process of developing the supporting code, the sensor connectivity, and translating

the sensor readings to human-readable format; a necessary pivot was identified, a pivot that turned the

project away from the ultra-low-power platforms which did not have enough memory to support all

intended CS functionality. The first iteration focused on the Adafruit Industries “Feather” line of platforms

with a highly supported set of integrated LoRa radios [9]. The Feather M0 is a flexible platform, and it

facilitated the process of learning how to connect devices to a LoRa gateway. The issue that eventually

made the Feather platform unsuitable was the limited amount of usable memory.

Next, we focused on the Mayfly platform [10] and mDOT LoRa module [11] integration which proved

difficult due to a lack of community support and issues in communication protocol configurations.

The Raspberry Pi 0 platform, developed by the Raspberry Pi Foundation [12] combined with LoRa radio

bonnets, provides integration with various serial communication protocols, and has a sufficient memory

available for the needs of CS. The Raspberry Pi 0 doesn’t meet the original expectations of low-power

consumption, but the benefits of the larger compute resource outweighed the concern of increased power

consumption. Further encouraged by the evidence from D. Patnaik Patnaikuni and M. Maksimovi who

found “based on the specs and performance analysis Raspberry Pi definitely emerges as a winner when

it comes to satisfying most of functional requirements of an IoT systems’ basic blocks” [13][14] Also, the

very nature of the rapid prototyping and community support for the Raspberry Pi foundation is highly

5

advantageous. While PI 0 supports the simplest version of CS, it can easily be scaled up to more

powerful PI boards. The CS that was created with the Raspberry Pi 0 and Adafruit LoRa Radio Bonnet

[15] meets the expectations set for CS.

Figure 3.0: Raspberry Pi 0 and Adafruit LoRa Radio Bonnets (separated for example)

Raspberry Pi 0 has an extensive level of support for interfacing with serial devices on the native GPIO,

enabling the initial use of I2C sensors. The CS can communicate with simple I2C environment sensors

(Temperature, Humidity, Atmospheric Pressure) and translate the serial protocol to LoRa transmittable

packets. L. Barik noted during their experiment with a very similar system, that “The system also provides

a corrective movement or decision-making system … also allows the consumers to research the correct

modifications within the surroundings and for taking possible action” [16]. At this stage of the CS

development, this is exactly what we wanted to provide to our process. Testing proved this operation was

stable and replicable, leading to extending the experiment to different sensors that utilize communications

protocols other than I2C. We identified, based on a user sample, that many environmental sensors

communicate via the SDI-12 protocol [1].

6

Figure 3.1: CS connected with I2C Sensor

The limitation experience in this integration is that the LoRa Bonnet [15] required the use of GPIO pins

typically used by other serial interfaces such as SDI-12. This issue was solved by introducing an external

SDI-12 to USB translation board from Dr. John Liu [17]. This external board allowed the CS to interface

with up to four SDI-12 communicating devices while also allowing for external power to be passed directly

to the sensors. The CS was now able to support the two most common environmental sensor

communication protocols (I2C, SDI-12).

Figure 3.3: Hydros Water sensor connected to SDI-12 External board with 3-Channel audio input to USB

Figure 3.2: BME280 I2C Environmental Sensor

7

3.2. Software

With the hardware configuration defined, the work started on software implementation supporting protocol

translation between the connected interfaces. The decision to use the Raspbian OS [18] was based

primarily on its ability to rapidly flash the device while also gaining access to all the standard tools that

one could expect in a UNIX-like environment. A useful set of tools were developed by the Raspberry Pi

Foundation to use and secure the various serial interfaces natively supported on the board. These tools

became instrumental in laying the foundation for the CS software suite.

Along with the Raspbian OS, additional code had to be developed to communicate with the Adafruit LoRa

radio and the various sensors. There is a community project sponsored by the LoRa Alliance [19] to

support wide ranges of LoRa devices in various languages such as Python, C++, and Java. This

community produced a set of Python classes that would become instrumental in our development of a

stable library capable of communicating with the Adafruit Radio Bonnet [15] based on the RFM95W

module (Figure 3.4). Changes made to the community code base centered around protocol

characteristics, adaptation to the US LoRa frequency band and multiplexing capabilities [20,21].

Figure 3.4: GitHub Repository of LoRaPy library source

8

Figure 3.5: PyPi location of LoRaPy library

With the LoRa communication software developed and tested, the next step was to develop the code

needed to communicate with the serial devices, report back their readings, translate the readings into a

human-readable format and package them to be used in the LoRa transmissions. The initial efforts to

include sensors based on the I2C protocol leveraged product libraries [22]. To integrate the SDI-12

communication protocol we leveraged a portion of the Python code provided by Dr. John Liu [17][23]. The

effort to support a generic communication protocol with the external board essentially leveraged a set of

pre-existing open-source Python libraries, community-developed to communicate with serial devices.

Figure 3.6: SDI External Board driving code example

Finally, to address embedded platform constraints, purpose-built software was developed to manage data

regardless of interfaces (SDI12, I2C, etc). To test the capabilities of the CS, a Hydros 21 [24] water level

sensor was used to model a new Python class that could communicate and translate its readings (see

Figure 3.2). With the development of this new Hydros specific library the CS was able to communicate

with the external board, send serial commands to the Hydros sensor and retrieve the response.

9

Figure3.7: Hydros specific code example

The Hydros sensor integration proved that CS meets the original functional requirements. To achieve

generic adherence to standards, additional community driven packages were included in the code

repository. We applied a modular approach to developing the CS code to facilitate, extensibility,

continuous-development, and integration.

10

Figure 3.8: GitHub project management dashboard

To enable the continuous collection of data at configurable time intervals, a cron scheduler [25] is used.

The cron scheduler is a command-line utility for Unix-like operating systems that will issue a job to run

continuously at regular intervals set by the user. In the case of the lab environment, the cron scheduler

was utilized to run the CS code every ten minutes. The goal is to have the application manage poling

dynamically to facilitate adaptable polling rates.

 Figure 3.9 Crontab example configuration

11

To manage the device specific software and facilitate continuous development and community

participation, a management framework was implemented.

Figure 3.10: Code Management Schema

GitHub is utilized to manage the version control of the entire library allowing the community to contribute

additional code in a manageable, controllable way. The Python Package Index (PyPi) [26] allows the

developed Python software to be published in a secure, public space as a usable library for any Python

application. The packages are compiled on the developed environment using default Python tooling

before being published to PyPi using a tool named twine [27]. ReadTheDocs [28] and Sphinx [29] are

tools used to manage the documentation process of the codebase. Contributions internal or external must

provide written documentation for every contribution to the library and, using Sphinx, those comments can

be directly published on a ReadTheDocs hosted website. The importance of early forced adoption of

documentation styling was proven by C.J.Satish and M.Anand as they noted that “Enforcing higher

documentation standards and stringent reviews on documentation content and structure can solve much

of the problems with documentation even without the tool support” [30]. Since they also concluded that it

is important for specific working projects to tailor their environment to not hinder development, we focused

on incorporating both styling procedure and tooling meant to advance development efforts without forcing

developers to get trapped spending more time on documentation than development. Our tooling in this

case, (Sphinx) adheres to a very commonly practiced documentation style, like that of Google’s Python

docstring formatting guidelines meant to be simple and quickly implementable [31]. An example of our

defined documentation style is shown in Figure 3.8.

Figure 3.11: Docstring formatting example

12

3.3. Security Considerations

In the context of the CaaL architecture, the end-to-end solution implements the best practices for securing

cyberinfrastructures. Transport is secured using protocol specific security features and by applying

layered security to harden the infrastructure. To avoid making the CS the weak link in the solution security

architecture, the CS had to be explicitly hardened against security threats.

To secure the LoRa interface we implemented the LoRaWAN security options. According to the

LoRaWAN specifications there are two activation modes recommended for all LoRa communication

devices. ABP (Activation by Personalization) and OTAA (Over the air Activation) are responsible for

managing the verification of each endpoint during the LoRa transmission [32]. In this case, the gateway is

responsible for communicating with the stack to properly verify each device that communicates with it by

using fixed or dynamic keys. It is generally recommended to use the OTAA activation mode as it relies on

dynamic keys rather than the less secure fixed keys utilized by the ABP mode. The incorporation of

software that supports both ABP and OTAA happened upon to original creation of the CS software-suite.

This means that our CS utilizes the more secure OTAA mode when communicating with the gateway, but

ABP could be used for test or lab environments. However, its detailed by Aras et al “most LoRaWAN

security measures such as the key management and frame counters need to be implemented and taken

care of by developers or manufacturers. Therefore, poor implementation also may put end-devices and

gateways in danger” [33]. We knew that the CS device would need to properly deploy the LoRaWAN

security protocol to integrate with the CaaL and this why we took care in implementing OTAA for all

deployable CS devices.

Securing the Raspberry Pi was based on the principles of host hardening. The Linux-based OS is

secured by properly separating user permissions and by creating secure authentication for the admin

user. The CS adheres to this standard by utilizing a single admin user that is configured with a 12-

character cryptographic password. The Raspberry Pi also needed to have its many unused interfaces

disabled. Utilizing a Raspbian configuration tool we were able to manage any interface supported on the

device [34].

Figure 3.12: Raspbian Configuration Tool

At the time of this writing, the CS does not provide Layer 3 connectivity, so security measures are limited

to OS, Layer 1 and Layer 2.

13

3.4. Case Development

To properly secure and protect the CS hardware and the access to its interfaces while making it easy to

connect sensors and power sources, a separate, dedicated project was launched. This interdisciplinary

project involves the CS development team, researchers working on a wide range of sensors and a team

of students majoring in Industrial Engineering and Design.

The requirements identified by the project team are listed below:

• Accommodate the CS hardware (Raspberry PI, Aggregating Board, Antennas)

• Accommodate the form factor of the various Raspberry PI boards

• Provide easy, secure, and waterproof access to the CS interfaces

• Allocates proper space for a battery or other forms of external power

• Cost efficient

The design work will combine rapid prototyping with continuous integration to achieve a product that both

meets the above requirements and the 3D printing production considerations. The design work will be

done in Autodesk Inventor 2019 with CAD files of the mounting and other hardware imported via

McMaster-Carr. The printing of the prototype will use a Stratasys Dimension SST 1200ES [35] with

GrabCad Print [36] dedicated slicing software to estimate print times and material. We previously found

this to be an efficient methodology for case development in a separate study [37]. The results of this

aspect of the project will be reported in a future publication.

4. Conclusions and Future Work

The development of the Communication Shim was completed to support the interface of SDI-12 and I2C
with LoRaWAN. The CS was tested extensively, and it was integrated in our Campus as a Lab
deployment. The CS was used in proof-of-concept environments and shown to operate well. We are now
proceeding to deploy it broadly in support of education, research, and campus operations.

The CS is more than an enabler of sensor integration, it is also a development platform that will be used
for education purposes, particularly in scripting. Students will have the opportunity to develop integration
scripts for sensors that need to be onboarded for various projects.

The CS will continue to evolve according to a clear roadmap. To further increase the usability of the CS,
we plan to add local caching, additional communication interfaces, monitoring capabilities, security with a
PUF (Physical Unclonable Function) [38], and a field provisioning/troubleshooting tool capable of
communication via Bluetooth. The development of local caching will enable the mitigation of data loss by
utilizing the CS software to store small amounts of data. This will allow researchers multiple data
extraction options outside of the standard wireless communication protocol. This becomes critical when
errors occur, and complete datasets must remain intact.

Additional communication protocol support will become necessary as we gain more insight from research
groups on their intended sensors. We plan to support any sensor that can interface with the CS but there
will be some slight configurations needed to implement communication protocols outside of SDI-12 and
I2C.

We plan to tool the CS to support multiple monitoring tools to ease the process of troubleshooting and
maintenance. This will become instrumental during the initial deployment phase and will allow us to
maintain the deployed CS devices more efficiently as we expand the infrastructure. This will also provide
the administration group invaluable information for various device usage metrics, error reporting and
lifecycle management.

To further secure the CS devices we will put a plan in place to introduce PUF (Physical Unclonable
Functions) technology “closing any security loopholes and providing a defense against attacks” [38]. As

14

previously discussed, we utilize the OTAA (Over The Air Activation) activation mode of LoRaWAN to
protect against some security vulnerabilities, but OTAA is not a perfect protocol. The use of the PUF
technology is important to protect against the proven OTAA vulnerability to sniffing attacks detailed by a
research group from Ajou University. They stated “We can check all of the contents in join request
message including frequency and SF (Spread Factor) information without decryption process. In the
same way as this practical experiment, attackers could look inside the packet without any hindrance and
cause serious damage by abuse it” [39]. PUF usage will enable the CS to be further verified before it’s
allowed to communicate, over any wireless protocol, to the datastore. This will become instrumental as
we focus on security with the incorporation of multiple data sources.

Opening Bluetooth communications on the CS devices will allow us to provide users with tooling capable
of troubleshooting the CS and attached sensors while in the field. This will be extremely beneficial as it
allows researchers to quickly correct any errors without removing devices and costing hours of lost work
and effort. Mitigation of downtime also becomes important as we look to prove the stability of the CS. This
adheres to our goal of enabling users of any discipline to deploy their sensors quickly and easily.

15

References

[1]. Sdi-12.org, SDI-12 Support Group. [Online] Available: https://sdi-12.org/ [Accessed 26 Jan 2022].

[2]. I2C Info – I2C bus, interface and Protocol,” I2C Info – I2C Bus, Interface and Protocol. [Online].
Available: https://i2c.info/. [Accessed: 28 Jan 2022].

[3]. Mankar, J., Darode, C., Trivedi, K., Kanoje, M., & Shahare, P. “REVIEW OF I2C PROTOCOL”
International Journal of Research in Advent Technology, vol.2, no.1, pp. 474–479. Available
CiteSeer http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.429.1402&rep=rep1&type=pdf

[4]. East Carolina University, College of Engineering and Technology, Department of Technology
Systems, Information and Computer Technology, Available:
https://cet.ecu.edu/techsystems/undergraduate-programs/information-computer-technology/
[Accessed: 28 Jan 2022]

[5]. Popoviciu, C., Sawyer, C., "Building the Campus-as-a-Lab Platform", 2022 ASEE Annual
Conference

[6]. LoRa Alliance LoRa — “LoRa documentation”, [Online] Available:
https://lora.readthedocs.io/en/latest/ [Accessed: 28 Jan 2022].

[7]. Gaddam, S. C., and Rai, M. K., "A Comparative Study on Various LPWAN and Cellular
Communication Technologies for IoT Based Smart Applications," 2018 International Conference
on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR),
2018, pp. 1-8, doi: 10.1109/ICETIETR.2018.8529060.

[8]. FCC. Mar 10, 2021. “3.5 GHz Band Overview”, [Online] Available: https://www.fcc.gov/35-ghz-
band-overview [Accessed: 28 Jan 2022].

[9]. Industries, A, 2022, “Adafruit Feather M0 with RFM95 LoRa Radio - 900MHz”, [Online] Available:
Adafruit Industries. https://www.adafruit.com/product/3178 [Accessed: 28 Jan 2022].

[10]. “Getting Started With the Mayfly Data Logger”. [Online]. Available:
https://www.envirodiy.org/mayfly/ [Accessed: 28 Jan 2022].

[11]. “Long Range RF Module for Sale | MultiTech mDot”. [Online]. Available:
https://www.multitech.com/brands/multiconnect-mdot [Accessed: 26 Jan 2022].

[12]. Raspberry Pi Foundation, “Teach, Learn, and Make with”. [Online]. Available:
https://www.raspberrypi.org/ [Accessed: 25 Jan 2022].

[13]. Maksimović, M., Vujović, V., Davidović, N., Milošević, V., & Perišić, B. 2014. “Raspberry Pi as
Internet of things hardware: performances and constraints”. design issues, vol.3, no.8, pp.1-6.

[14]. Patnaik Patnaikuni, D. 2017. “A Comparative Study of Arduino, Raspberry Pi and ESP8266 as
IoT Development Board”. International Journal of Advanced Research in Computer Science,
vol.8, no.5, pp.2350–2352.

[15]. Industries, A. “Adafruit LoRa Radio Bonnet with OLED - RFM95W @ 915MHz”. Adafruit
Industries LoRa Radio Bonnet. [Online]. Available: https://www.adafruit.com/product/4074
[Accessed: 28 Jan 2022].

[16]. Barik, L. 2019. “IoT based Temperature and Humidity Controlling using Arduino and Raspberry
Pi”. International Journal of Advanced Computer Science and Applications, vol.10, no.9.
Available: https://doi.org/10.14569/ijacsa.2019.0100966

[17]. Liu, J., “SDI-12 Sensors USB Adapter User Manual”. [Online] Available:
https://liudr.wordpress.com/ [Accessed: 28 Jan 2022].

16

[18]. Raspberry Pi Foundation. “Raspbian OS”. [Online]. Available: https://www.raspbian.org/
[Accessed: 28 Jan 2022].

[19]. LoRa Alliance. “Homepage”. [Online]. Available: https://lora-alliance.org/ [Accessed: 25 Jan
2022].

[20]. Sawyer, C. “GitHub - ColbySawyer7/LoRaPy: LoRaWAN implementation in python”. GitHub.
[Online] Available: https://github.com/ColbySawyer7/LoRaPy [Accessed: 28 Jan 2022].

[21]. Temperli, B. “GitHub - btemperli/LoRaPy: LoRaWAN implementation in python”. [Online]
Available: https://github.com/btemperli/LoRaPy [Accessed: 28 Jan 2022].

[22]. Adafruit Industries. “GitHub - adafruit/Adafruit_CircuitPython_BME280: CircuitPython driver for
the BME280”. [Online] Available: https://github.com/adafruit/Adafruit_CircuitPython_BME280
[Accessed: 28 Jan 2022].

[23]. Liu, J. “SDI-12 USB adapter - Liudr’s Blog”. [Online] Available:
https://liudr.wordpress.com/gadget/sdi-12-usb-adapter/ [Accessed: 28 Jan 2022].

[24]. Meter. “HYDROS 21 Water Level Sensor. Meter - HYDROS 21”. [Online] Available:
https://www.metergroup.com/en/meter-environment/products/hydros-21-water-level-sensor-
conductivity-temperature-depth [Accessed: 28 Jan 2022].

[25]. “crontab(5) - Linux manual page”. [Online] Available: https://man7.org/linux/man-
pages/man5/crontab.5.html [Accessed: 26 Jan 2022].

[26]. “PyPI · The Python Package Index”. [Online] Available: https://pypi.org/ [Accessed: 28 Jan 2022].

[27]. “twine 3.7.1 documentation”. [Online]. Available: https://twine.readthedocs.io/en/stable/
[Accessed: 26 Jan 2022].

[28]. ReadTheDocs. “Read the Docs: Documentation Simplified — Read the Docs user
documentation 7.1.0 documentation”. [Online] Available: https://docs.readthedocs.io/en/stable/
[Accessed: 26 Jan 2022].

[29]. Sphinx. “Overview — Sphinx documentation”. [Online] Available: https://www.sphinx-
doc.org/en/master/ [Accessed: 26 Jan 2022].

[30]. Satish, C. J., & Anand, M. “Software Documentation Management Issues and Practices: A
Survey”. Indian Journal of Science and Technology, vol.9, no.20, Available:
https://doi.org/10.17485/ijst/2016/v9i20/86869 [Accessed: 26 Jan 2022].

[31]. Google. “Google Python Docstring Style Guide”. [Online] Available:
https://google.github.io/styleguide/pyguide.html#s3-python-style-rules [Accessed: 26 Jan 2022].

[32]. The Things Stack for LoRaWAN. “ABP vs OTAA”. [Online] Available:
https://www.thethingsindustries.com/docs/devices/abp-vs-otaa/ [Accessed: 26 Jan 2022].

[33]. Aras, E., Ramachandran,G.S., Lawrence, P., and Hughes, D., "Exploring the Security
Vulnerabilities of LoRa,". 2017 3rd IEEE International Conference on Cybernetics (CYBCONF),
2017, pp. 1-6, doi: 10.1109/CYBConf.2017.7985777

[34]. The Raspberry Pi Foundation. “Raspberry Pi Documentation – Configuration”. [Online] Available:
https://www.raspberrypi.com/documentation/computers/configuration.html [Accessed: 26 Jan
2022].

[35]. “Stratasys SST 1200EX user guide”, [Online] Available: http://www.stratasys.com/-
/media/files/documentation/fdm/Dimension-1200es-and-1200/User-Guide/1200es-User-Guide
[Accessed: 1 Feb 2022].

[36]. “GrabCa Print”. [Online] Available: https://grabcad.com/print [Accessed: 26 Jan 2022].

17

[37]. Popoviciu, C., & Lunsford, P. J., & Pickard, J., & Sawyer, C. L., & Drummond, D., & Zynda, Z. R.,
& Lee, S., & Wear, S. (2020, June), “A Multidisciplinary Project: Deploying Edge Computing to
Augment Endpoint Functionality Paper”. 2020 ASEE Virtual Annual Conference

[38]. Bohara, R., Ross, M., & Popoviciu, C. (in press). “Physical Unclonable Functions for Identification
of Large Scale distributed IoT Assets”. Unpublished.

[39]. SeungJae N., DongYeop H., WoonSeob H. and Ki-Hyung, K., "Scenario and countermeasure for
replay attack using join request messages in LoRaWAN," 2017 International Conference on
Information Networking (ICOIN), 2017, pp. 718-720, doi: 10.1109/ICOIN.2017.7899580.

