
Paper ID #14470

Encouraging Student Innovation in a Freshman-Level Computer Science Course

Ms. Cynthia C. Fry, Baylor University

Cynthia C. Fry is a Senior Lecturer of Computer Science and the Director of the Computer Science Fel-
lows program at Baylor University. She teaches a wide variety of engineering and computer science
courses, deploys a series of faculty development seminars focused on Curiosity, Connections, and Cre-
ating Value, and works collaboratively and remotely with a series of colleagues on the development of
EML-based courses. She is a KEEN Fellow.

Dr. Kenneth W. Van Treuren, Baylor University

Ken Van Treuren is an Associate Professor in the Department of Engineering at Baylor University. He
received his B. S. in Aeronautical Engineering from the USAF Academy in Colorado Springs, Colorado
and his M. S. in Engineering from Princeton University in Princeton, New Jersey. After serving as USAF
pilot in KC-135 and KC-10 aircraft, he completed his DPhil in Engineering Sciences at the University
of Oxford, United Kingdom and returned to the USAF Academy to teach heat transfer and propulsion
systems. At Baylor University, he teaches courses in laboratory techniques, fluid mechanics, energy
systems, and propulsion systems, as well as freshman engineering. Research interests include renewable
energy to include small wind turbine aerodynamics, UAS propeller design and experimental convective
heat transfer as applied to HVAC and gas turbine systems.

c©American Society for Engineering Education, 2016



Encouraging	Student	Innovation	in	a	Freshman-Level	Computer	Science	
Course	

	
	
Abstract:	
	
In	a	world	where	the	demand	is	high	for	employees	who	can	think	creatively	and	
apply	entrepreneurial	behaviors	and	thought	processes	to	their	work,	it	is	critically	
important	for	engineering	and	computer	science	programs	to	provide	more	
educational	opportunities	that	take	the	essential	basics	of	the	disciplines	and	add	to	
that	content	the	experiences	that	will	also	encourage	the	development	of	
entrepreneurial	behaviors	in	students'	development	of	solutions	to	the	challenges	
they	face.		In	a	second-semester	project-based	learning	course	in	computer	science	
at	Baylor	University,	the	students	were	introduced	to	an	idea-generation	technique	
called	Painstorming	chosen	to	encourage	opportunity	recognition,	and	asked	to	
develop	their	own	idea	for	a	semester	project.		This	paper	will	cover	the	success	of	
project-based	learning	in	engineering	and	computer	science	courses,	show	a	method	
of	idea	generation	called	Painstorming,	the	application	of	Painstorming	to	software	
applications	as	a	means	to	generate	group	project	ideas,	the	adjustments	necessary	
for	the	successful	implementation	of	this	approach	in	an	already	busy	course,	and	
the	preliminary	results	of	the	experiment.	
	
An	Introduction	to	Problem-Based	Learning	
	
Problem-Based	Learning	is	an	“instructional	(and	curricular)	learner-centered	
approach	that	empowers	learners	to	conduct	research,	integrate	theory,	and	
practice,	and	apply	knowledge	and	skills	to	develop	a	viable	solution.”1		Figure	1	
compares	traditional	learning	to	PBL.		Instead	of	the	traditional	lecture,	memorize,	
and	test,	PBL	is	more	of	a	discovery	knowledge	process	which	results	in	application	
of	this	knowledge	to	solve	problems.		PBL	is	an	opportunity	for	the	instructor	to	be	a	
“coach”	and	the	student	to	take	charge	of	their	learning.		With	all	the	technology	
available	today	to	access	knowledge,	using	technology	is	increasingly	becoming	the	
desired	method	of	learning.		These	days	it	is	frequently	possible	to	observe	students	
who	ask	a	question	and	then	immediately	seek	the	answer	on	their	smart	phones.		
Students	seem	empowered	with	knowledge,	having	the	world	at	their	fingertips.		
Now,	students	need	to	understand	how	to	use	this	knowledge	and	PBL	offers	a	way	
to	shape	how	students	learn	and	apply	this	knowledge	to	carefully	crafted	problems	
in	the	classroom.		It	is	thought	that	PBL	does	the	following2:	
	
1.		Develops	critical	thinking	and	creative	skills.	
2.		Improves	problem-solving	skills.	
3.		Increases	motivation.	
4.		Helps	students	learn	to	transfer	knowledge	to	new	situations.			
	



Critical	thinking	and	creative	skills	refer	“to	the	ability	to	analyze,	synthesize,	and	
evaluate	information,	as	well	as,	to	apply	that	information	to	a	given	context.”3		This	
is	the	heart	and	soul	of	PBL.			
	

	
	
Figure	1		Traditional	vs	Problem-based	Learning4	
	
The	Problem-based	Learning	Initiative	(PBLI)	identifies	some	generic	essentials	of	
PBL5:	
	
1.		Students	must	have	the	responsibility	for	their	own	learning	
2.		Problems	must	be	ill-structured	and	allow	for	free	inquiry.	
3.		Learning	should	cover	a	wide	range	of	disciplines	or	subjects.	
4.		Collaboration	is	essential.	
5.		Self-directed	learning	must	be	applied	back	to	the	problem.	
6.		Closing	analysis	is	essential	to	reinforce	learned	principles	and	concepts.	
7.		Self	and	peer	assessment	should	be	accomplished.	
8.		PBP	activities	must	be	valued	in	the	“real”	world.	
9.		Student	examinations	should	measure	PBL	progress	
10.		PBL	should	be	the	basis	for	the	entire	curriculum	not	just	one	course.			
	
The	last	statement	is	part	of	the	challenge	that	faces	PBL.		The	majority	of	the	large	
number	of	papers	presented	at	ASEE	conferences	concerning	PBL	highlight	
application	of	PBL	for	a	particular	classroom	scenario.		Typically,	PBL	is	placed	into	
a	course	by	a	professor,	assessed,	and	then	refined.		While	the	students	in	that	
course	are	exposed	to	PBL,	unless	it	is	part	of	the	entire	curriculum,	the	skills	
learned	with	PBL	are	not	adequately	reinforced.		Very	few	curriculums	are	based	
solely	on	PBL.		If	curriculums	were	based	more	on	PBL	there	would	be	improved	
critical	thinking	and	problems	solving	by	the	students,	skills	valued	by	industry.			
	
Instructor	Role	in	Problem-based	Learning	
In	PBL	the	instructor	changes	from	the	knowledge	expert	to	one	of	a	coach	or	guide.		
This	puts	the	instructor	in	the	often	uncomfortable	position	of	allowing	students	the	



freedom	to	plan	their	direction.		Relinquishing	this	control	is	something	instructors	
who	use	PBL	struggle	with	the	most.6		Another	challenge	for	the	instructor	is	to	
develop	appropriate	ill-structured	problems.		Stanford	University	uses	the	following	
guidelines	for	ill-structured	problems7:	
	
1.		Require	more	information	for	understanding	the	problem	than	is	initially	
available	
2.		Contain	multiple	solution	paths	
3.		Change	as	new	information	is	obtained	
4.		Prevent	students	from	knowing	that	they	have	made	the	right	decision.	
5.		Generate	interest	and	controversy	and	cause	the	learner	to	ask	questions.	
6.		Are	open-ended	and	complex	enough	to	require	collaboration	and	thinking	
beyond	recall.	
7.		Contain	content	that	is	authentic	to	the	discipline.			
	
Assessing	Problem-based	Learning	
Because	this	is	a	much	different	learning	strategy,	traditional	assessment	tools	are	
not	always	useful.		Tools	that	measure	knowledge	do	not	measure	abilities	to	solve	
problems.		The	assessment	technique	will	ultimately	depend	on	the	
problem/project	and	the	instructor’s	experience.6		Gentry	lists	the	following	as	
possible	assessment	techniques8:	
	
1.		Portfolio	of	completed	assignments	
2.		Journal	containing	reflections,	summaries,	etc.	
3.		Peer	review	
4.		Scoring	rubric	
5.		Team	self-evaluations	
6.		Teacher	observation	and	monitoring	
7.		Periodic	presentations	and	updates		
8.		Written	reports	
9.		Skills	tests	
10.		Tests	or	quizzes	
11.		Final	presentations,	papers,	or	displays	
	
Assessment	needs	to	be	flexible,	fair	and	equitable,	timely,	and	focused	on	the	
process	rather	than	the	topic.8			
	
Application	of	Problem-Based	Learning	to	an	Intro	to	Computer	Science	Class	
In	computer	science,	as	in	most	disciplines,	group	projects	introduced	into	the	
curriculum	early,	can	help	students	develop	a	host	of	skills	that	are	increasingly	
important	in	the	professional	world.9		A	challenge,	however,	is	in	where	and	how	to	
integrate	the	experience	into	the	semester.		In	the	introductory	courses	in	computer	
science,	the	curriculum	is	full	of	necessary	and	essential	topics	–	problem-solving,	
the	basic	structures	of	a	program,	the	syntax	and	semantics	of	a	programming	
language	–	making	it	difficult	to	find	the	time	in	lecture	to	include	a	group	
programming	project.			



	
Our	second	introductory	course	(CS2),	CSI	1440,	“Introduction	to	Computer	Science	
II	with	Laboratory,”	provides	an	opportunity	to	take	advantage	of	several	of	the	
benefits	of	problem-based	learning,	namely	the	tackling	of	larger	tasks,	demanding	
the	power	of	an	object-oriented	programming	paradigm.10		Our	CS2	course	picks	up	
from	the	first	introductory	course	(CS1)	course,	CSI	1430,	“Introduction	to	
Computer	Science	I	with	Laboratory,”	where	the	basic	syntax	and	semantics	of	C++	
are	taught,	along	with	sequence,	branch,	loop,	objects,	classes,	arrays,	and	searching	
and	sorting.		As	such,	we	start	with	the	basic	tenants	of	dynamic	memory	allocation	
and	then	move	into	a	deeper	understanding	of	classes	and	object-oriented	
programming	(string	class,	advanced	file	I/O,	recursion,	polymorphism,	virtual	
functions,	exceptions,	templates,	the	standard	template	library	(STL),	linked	lists,	
stacks,	queues,	and	binary	trees)11,	and	a	group	project	provides	an	excellent	
environment	to	apply	what	is	being	learned	to	a	problem	requiring	these	design	
tools.	
	
Normally,	the	group	project	is	determined	for	the	class	by	the	instructor,	who	plans	
the	scope	of	the	project,	as	well	as	the	requirements	of	the	project,	in	a	way	that	best	
fits	the	constraints	of	the	course	and	the	learning	objectives	of	the	students.		
However,	in	the	spring	of	2015,	a	new	approach	was	taken	in	the	design	and	
development	of	the	group	programming	project,	and	this	approach	was	tested	in	
two	of	the	six	sections	taught	in	spring	of	2015	(30	of	the	97	students	enrolled	in	CSI	
1440	during	that	semester).	
	
“Painstorming”	as	an	Ideation	Methodology	
In	order	to	push	the	students’	understanding	of	the	total	software	lifecycle	of	a	
project,	we	forced	student	teams	to	select	their	own	software	design	project	by	
introducing	them	to	an	idea	generation	technique	known	as	“Painstorming,”	as	the	
front	end	of	the	design	process.		In	so	doing,	the	student	had	to	develop	a	much	
higher-level	understanding	of	the	design	challenge,	along	with	the	details	required	
to	execute	the	project	in	the	fixed	amount	of	time	given.		Instead	of	merely	
responding	to	the	design	criterion	identified	by	an	instructor,	they	had	to	evaluate	
the	feasibility	of	various	design	changes	based	on	the	pains	identified	with	an	
existing	software	application.		In	this	way,	they	learned	to	practice	some	of	the	
essentials	of	PBL	mentioned	earlier	in	this	paper,	including		

• taking	responsibility	for	their	own	learning,		
• requiring	collaboration	among	project	team	members	from	the	beginning,		
• formative	and	summative	individual	and	peer	assessment,	and	
• identifying	new	features	of	an	existing	software	application	by	identifying	the	

next	pains	or	frustrations	to	be	redesigned.	
	
Painstorming	as	a	method	of	ideation	has	been	used	extensively	in	engineering	
design,	as	a	means	of	detecting	daily	hardships	that	might	be	mitigated	by	
innovation	in	design.12		It	is	the	process	of	uncovering	pain	points	to	drive	
breakthrough	innovation.13		Instead	of	jumping	to	solutions,	Painstorming	uncovers	



“pains”	or	irritations	or	frustrations	in	existing	designs,	providing	an	opportunity	to	
redesign	functionality	to	alleviate	the	source	of	pain.		As	an	ideation	methodology,	it	
helps	students	to	focus	on	a	true	pain/opportunity	in	the	market	place,	increasing	
the	likelihood	of	developing	a	high-value	solution.14			
	
Painstorming	as	an	ideation	methodology	came	out	of	the	disadvantages	of	
brainstorming:	

• The	“right	idea”	may	not	come	at	the	right	time	
• Group	convention	may	inhibit	original,	innovative	ideas	
• Team	may	be	distracted	by	misdirected	focus	
• Domination	of	discussion	by	a	few	of	the	group	members	
• Aside	from	encouraging	unconstrained	thinking,	there	is	little	to	actively	

stimulate	new	ideas15	
	
In	the	spring	of	2015,	CSI	1440	students	were	introduced	to	the	critical	skill	set	for	a	
successful	computer	scientist.		These	include:	

• Curiosity	-	In	a	world	of	accelerating	change,	today’s	solutions	are	often	
obsolete	tomorrow.	Since	discoveries	are	made	by	the	curious,	we	must	
begin	to	learn	how	to	investigate	a	rapidly	changing	world	with	an	insatiable	
curiosity.		

• Connections	-	Discoveries,	however,	are	not	enough.	Information	only	yields	
insight	when	connected	with	other	information.	We	must	learn	to	habitually	
pursue	knowledge	and	integrate	it	with	their	own	discoveries	to	reveal	
innovative	solutions.		

• Creating	Value	-	Innovative	solutions	are	most	meaningful	when	they	create	
extraordinary	value	for	others.	Therefore,	we	must	become	champions	of	
value	creation.	Part	of	the	objective	of	this	group	project	is	to	help	you	to	
persistently	anticipate	and	meet	the	needs	of	a	changing	world.16	

	
In	the	first	two-hour	lab,	the	students	were	introduced	to	Painstorming,17	and	were	
led	through	a	brief	workshop.		The	class	was	divided	in	half,	where	one	half	was	
asked	to	list	as	many	pains	regarding	a	typical	school	chair/desk	unit	(chair	with	
book	rack	below,	small	table	top	connected	to	right	side)	as	possible,	and	the	other	
to	list	as	many	pains	regarding	a	shopping	basket	(plastic,	with	metal	handles;	
meant	for	small	trips	to	grocery	store)	as	possible.		The	teams	were	given	15	
minutes	to	list	as	many	pains	as	they	could.		Once	they	had	finished,	the	two	groups	
were	switched	(those	who	had	painstormed	the	school	desk	were	now	tasked	with	
the	shopping	basket,	and	vice	versa)	and	spent	another	15	minutes	developing	as	
many	pains	on	the	other	item	as	possible.		The	lists	for	each	item	were	combined,	
eliminating	duplicates,	and	the	class	spent	a	few	minutes	determining	which	of	the	
pains	were	feasible	(in	terms	of	cost,	value	to	society,	manufacturability,	etc.).		
	
Students	in	the	class	were	assigned	to	small	groups,	and	asked	to	go	through	a	
painstorming	exercise	where	they	could	choose	any	software	application,	develop	a	
list	of	pains,	and	then	choose	the	top	two	or	three	pains	they	thought	were	feasible.		



The	students	did	this	individually,	then	shared	their	chosen	software	application	
and	list	of	pains	with	their	teammates.		As	a	team,	they	were	then	asked	to	rank	each	
team	member’s	idea,	and	either	choose	one	as	the	team	project,	or	combine	aspects	
of	several	(where	there	was	convergence	in	the	software	applications	chosen).	
	
Determining	the	Scope	of	the	Projects	
Probably	the	biggest	challenge	in	allowing	students	to	design	their	own	group	
projects	is	the	time	involved	in	the	determination	of	whether	the	project’s	scope	will	
fit	within	the	content	of	the	course	as	well	as	the	timeline	for	the	semester.		During	
weeks	3	and	4	of	the	semester,	the	small	groups	were	required	to	meet	with	the	
instructor	for	15	minutes.		At	this	first	“progress	report,”	teams	had	to	submit	a	
preliminary	scope	of	work	and	project	plan.		Each	team	presented	their	top	idea	
(and	their	alternate	project	ideas),	answering	questions	about	design	approach	and	
feasibility.		Based	on	this	meeting,	if	the	project	was	well	thought	out	and	feasible,	
given	the	experience	of	the	students	and	the	time	remaining	in	the	semester,	the	
scope	of	each	project	was	either	approved	or	revised.	
	
During	week	9	project	teams	had	to	schedule	a	second	progress	report	to	finalize	
the	design	and	planning	for	their	projects.		Student	teams	submitted	a	refined	scope	
of	work	and	project	plan,	discussing	work	completed,	challenges	anticipated,	and	
their	plan	for	completion.	
	
At	the	end	of	the	semester,	each	team	presented	their	final	projects	to	the	entire	
class.		At	the	beginning	of	their	presentation,	each	team	presented	the	
client/instructor	with	the	final	report.		Required	elements	of	this	final	report	were:	

• Software	Application	
o Design	documentation	
o Source	code	
o Executable		

• Documentation	
o Statement	of	Work	
o Purpose	
o Benefits	
o Project	Plan	
o User’s	manual	
o Systems	requirements	

• Presentation	
o Oral	presentation	(using	tools	like	powerpoint,	prezi,	etc.)	
o Demonstration	of	code	

• Final	Report	
o Description	of	application	
o Discussion	of	how	the	team	arrived	at	final	design	
o Design	
o Test	plan	

• Appendix	A	–	Each	member’s	original	design	



• Appendix	B	–	Source	Code	
	
These	items	form	the	assessment	instruments	that	were	measured	and	compared	to	
the	students	in	the	control	group	(sections	3-6	of	the	spring	2015	term).	
	
Assessment	of	Student-Chosen	Projects	
Several	assessments	were	conducted	throughout	the	semester	to	measure	the	
effectiveness	of	student-chosen	projects,	including	a	pre-	and	post-survey	on	the	
fundamentals	of	project	idea	generation,	formative	assessment	of	peers,	summative	
assessment	of	peers,	and	rubrics	used	for	both	the	final	design	and	the	final	
presentation.	
	
A	pre-	and	post-survey	were	conducted	to	measure	basic	knowledge	regarding	
curiosity,	making	connections,	and	creating	value	with	regard	to	generating	their	
own	ideas	for	a	CS2	software	project.		In	the	pre-survey,	conducted	during	the	first	
week	of	class,	questions	included:	
	

1. On	a	scale	of	1	(not	curious	at	all)	to	10	(extremely	curious),	rate	your	
curiosity:	

2. On	a	scale	of	1	(I’m	not	curious	at	all)	to	10	(I	use	curiosity	in	my	work	all	the	
time),	how	often	do	you	consciously	use	curiosity	in	the	work	that	you	do	as	
a	student?	

3. On	a	scale	of	1	(not	at	all)	to	10	(all	the	time),	how	often	have	you	connected	
the	content	you	are	learning	to	the	world	around	you?	

4. On	a	scale	of	1	(not	at	all)	to	10	(all	the	time),	how	often	have	you	realized	
your	own	potential	to	create	value	through	what	you	do	as	a	computer	
scientist?	

	
The	same	set	of	questions	were	asked,	along	with	some	open-ended	questions	
regarding	improvements,	during	the	last	week	of	classes.		The	results	showed	an	
encouraging	improvement,	in	the	students’	own	perception,	in	their	awareness	of	
curiosity,	making	connections,	and	creating	value	within	their	discipline.	
	
	 	



CSI	1440	Spring	2015	Pre-/Post-Survey	Results	
	
	
Questions	

Pre-
Survey	
Class	
Average	

Post-
Survey	
Class	
Average	

On	a	scale	of	1	(I’m	not	curious	at	all)	to	10	(extremely	
curious),	rate	your	curiosity.	
	

6.1	 8.2	

On	a	scale	of	1	(I’m	not	curious	at	all)	to	10	(I	use	curiosity	
in	my	work	all	the	time),	how	often	do	you	consciously	use	
curiosity	in	the	work	that	you	do	as	a	student?	
	

4.9	 5.5	

On	a	scale	of	1	(not	at	all)	to	10	(all	the	time),	how	often	
have	you	connected	the	content	you	are	learning	to	the	
world	around	you?	
	

7.4	 8.7	

On	a	scale	of	1	(not	at	all)	to	10(all	the	time),	how	often	
have	you	realized	your	own	potential	to	create	value	
through	what	you	do	as	a	computer	scientist?	
	

4.6	 6.8	

	
The	formative	peer	assessment,	the	summative	peer	assessment,	as	well	as	the	
rubrics	for	the	presentation	and	the	final	report	can	be	found	on	the	course	
website.11	
	
Future	of	Problem-based	Learning	
Problem-based	learning	is	a	pedagogical	technique	that	will	be	part	of	the	academic	
process	for	years	to	come	however,	change	is	slow.		For	PBL	to	be	successful	
requires	a	mindset	be	developed	from	elementary	school	through	the	university.		
Unfortunately,	many	public	school	curriculums	are	driven	by	state-sponsored	
mandatory	testing	preparation	for	these	tests	is	addressed	by	schools	using	
traditional	lecture	and	memorization	techniques.		These	are	the	skills	and	
experiences	that	form	the	foundation	for	students	and	that	are	brought	to	the	
university	instead	of	a	foundation	in	creative	problem	solving	and	independent	
learning.		A	creative	approach	to	solving	problems	and	the	ability	to	use	all	the	
technological	resources	available	at	one’s	disposal	will	be	essential	for	the	future	
success	of	today’s	university	students.		No	one	knows	what	the	future	will	hold	and	
students	will	need	to	be	flexible	to	adapt	to	new	technologies	and	methods.		This	
will	lead	to	life-long	learning,	something	that	is	necessary	for	the	student	to	stay	
viable	for	the	future.			
	
	
	
	
	



References	
1.		Savery,	J.	R.,	2006,	“Overview	of	Problem	Based	Learning:	Definitions	and	
Distinctions,	Journal	of	Interdisciplinary	Journal	of	Problem-Based	Learning,	1	(1),	
pp.	8-20.	
	
2.		Problem-based	Leaning,	www.learning-theories.com/problem-based-learning-
pbl.html,		accessed	on	January	29,	2016.			
	
3.		Gallow,	D.,	“What	is	Problem-based	Learning?”		www.pbl.uci.edu/whatsipbl.html		
accessed	on	January	29,	2016.	
	
4.		Graphic	from	www.presentlygifted.weebly.com/problem-based-learning.html,	
accessed	on	January	29,	2016.			
	
5.		Barrows,	H.,	“Problem	Based	Learning	Initiative,”	
http://www.siumed.edu/dme/PBL-Home.html,		accessed	on	January	29,	2016.	
	
6.		Utecht,	J.R.,	2003,	“Problem-Based	Learning	in	the	Student	Centered	Classroom,”	
www.jeffutecht.com/docs/pbl.pdf	accessed	on	January	29,	2016.	
	
7.		“Problem-based	Learning,”	Speaking	of	Teaching,	Stanford	University	Newsletter	
on	Teaching,	Winter	2001,	11	(1).			
	
8.		Gentry,	E.,	2000,	“Creating	Student-centered,	Problem-based	Classrooms,”	
ASPIRE,	Huntsville:	University	of	Alabama,	www.aspire.cs.uah.edu,		accessed	on	
January	29,	2016.			
	
9.		Caruso,	H.M.,	and	Wooley,	A.W.,	2008.		“Harnessing	the	power	of	emergent	
interdependence	to	Promote	Diverse	Team	Collaboration,”	Diversity	and	Groups,	11,	
pp.	245-266.		
https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/group
projects/benefits.html,	accessed	on	January	31,	2016.	
	
10.		Drury,	H.,	Kay,	J.,	and	Losberg,	W.,	“Student	Satisfaction	with	Groupwork	in	
Undergraduate	Computer	Science:	Do	Things	Get	Better?”		Australasian	Comuting	
Education	Conference	(ACE2003),	Adelaide,	Australia.		
http://sydney.edu.au/engineering/it/~judy/Homec/Pubs/ACE_Drury_120.pdf,	
accessed	on	January	31,	2016.	
	
11.		Fry,	C.C.,	Course	materials	for	CSI	1440,	“Introduction	to	Computer	Science	II	
with	Laboratory,”	
https://classnotes.ecs.baylor.edu/wiki/CSI_1440_Fry_Spring_2015,	accessed	on	
January	31,	2016.	
	



12.		Kaplan,	S.,	“Forget	Brainstorming.		Use	Painstorming	for	breakthrough	
innovation.”		http://www.leapfrogging.com/2013/06/20/painstorming-for-
innovation/,	accessed	on	January	30,	2016.		
	
13.		Ryckman,	P.,	“Fostering	entrepreneurs,	and	trying	to	revive	a	city.”		
http://www.nytimes.com/2010/06/24/business/smallbusiness/24sbiz.html,	
accessed	on	January	31,	2016.	
	
14.		Daimi,	K.,	“Strengthening	Elements	of	Teamwork,	Innovation,	and	Creativity	in	a	
Software	Engineering	Program,”	The	Journal	of	Engineering	Entrepreneurship,	
Volume	3,	Number	1,	2012.	
	
15.		Weaver,	J.M.,	“Brainstorming	and	Painstorming,”	Presented	at	End-of-Semester	
workshop	at	Baylor	University,	Waco,	Texas,	December	2010.	
	
16.		“Entrepreneurial	Mindset	Defined,”	the	Kern	Engineering	Entrepreneurship	
Network,	http://www.kffdn.org/files/keen-entrepreneurial-mindset-defined.pdf,	
accessed	on	January	31,	2016.	
	
17.		Fry,	C.C.,	“Brainstorming	and	Painstorming,”	Powerpoint	adapted	from	Jonathan	
Weaver’s	presentation	in	2010,	designed	as	a	module	for	CSI	1440	lab,	spring	2015,	
https://classnotes.ecs.baylor.edu/w/images/4/48/PainStorming.pdf,	accessed	on	
January	31,	2016.	


