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End Fixture Design to Enhance Column Buckling  

Laboratory Experiment 
 

Abstract 

 

 

 Column buckling is an important topic in strength of materials courses.  This topic has 

been emphasized with a compression/buckling experiment using a Satec uni-axial testing 

machine to compressively load 1/2 inch diameter Polyvinyl Chloride (PVC) pipe columns to 

failure due to buckling.  Several lengths of pipe have typically been used to demonstrate failures 

due to both normal compressive stresses and column buckling for a variety of slenderness ratios 

and end fixity conditions.  In the past, the butt ends of the PVC pipes were placed against the 

moving loading platform and the stationary stage of the Satec machine to approximate an end 

fixity condition similar to that of a “fixed-end”; however, often buckling would occur in two 

stages, especially for taller PVC columns.  First, the PVC columns would behave as if they were 

fixed at both bearing surfaces.  Minor lateral deflection prior to the critical buckling load lead to 

eccentric loading conditions at the bearing surfaces as the neutral axis shifted.  This eccentric 

load caused local deformation in the portion of the PVC loaded highest in compression at the 

surface, which accelerated the asymmetry and caused the opposite portion of the pipe to 

experience lower and lower compressive loads.  At a critical point, the end fixity transitioned 

from an approximately cantilevered connection to something more closely related to a pinned 

connection when the butt end dramatically pivoted about a corner of the PVC tube resulting in a 

single point of contact remaining between the tube and the surface.  Although this transition was 

interesting and provided an opportunity to discuss in more detail why the demonstration 

progressed the way that it had, the ambiguity of end fixity made it difficult for students to 

correlate the resulting load-deflection curves to those predicted by theory.   



 

To better simulate loading conditions discussed in lecture, two sets of fixtures were 

designed and fabricated.  One set (top and bottom) was rotationally fixed and provided support 

for the pipe ends to simulate a cantilevered/fixed end condition.  The second set was designed to 

hold the pipe end securely but allowed rotation about one axis to better approximate a “pinned” 

joint.  Both sets of fixtures worked very well in practice.  The effective length factor calculated 

by the students as a result of using these fixtures was very comparable to predicted values.    

 



 

Introduction 

 Buckling of axially loaded columns is an important topic for mechanical and civil 

engineering students.  Compressive stresses can be below the yield strength of the material, but 

the column may still fail due to a lateral deflection, called buckling.  This concept is obviously 

relevant to the design of building structures and is also critically important for machine design as 

well.  Teaching buckling to engineering students through hands-on experiments helps to 

reinforce the concept but can be challenging to properly simulate.   

 The Strength of Materials course lectures at Pitt-Johnstown are supplemented by a 

laboratory activities intended to reinforce theory with hands-on experience with various modes 

of failure.  In lecture, students are taught that the critical buckling load is dependent on four 

factors:  the material’s modulus of elasticity or Young’s Modulus (E), the column’s second area 

moment of inertia (I), the column length (L), and an effective length factor (K) that depends on 

the end conditions of the column.  End conditions include pinned (restricted position), fixed 

(restricted position and angle), and others. 

In the column buckling laboratory activity, students observe behavior predicted by theory 

and collect data for comparison between theoretically predicted and experimentally measured 

failure loads. A Satec uni-axial testing machine is used to compress ½ inch PVC pipe of various 

lengths to failure.  PVC pipe was chosen because it is inexpensive and fairly easy to buckle (low 

critical loads) resulting in minimal wear-and-tear on the Satec machine.  A 5” long piece (which 

failed due to compression and not buckling), a 20 inch piece, a 24 inch piece, a 30 inch piece and 

a 35 inch piece have typically been tested. The purpose of the shorter piece, which failed due to 



 

compression, was to provide a stress-strain curve for estimation of the material’s elastic 

modulus.  As longer PVC pipe specimens were tested, the force required to cause buckling 

decreased.  This procedure worked reasonably well, but the inconsistent nature of PVC piping 

(not a truly straight column) obscured the concept that the experiment was designed to 

demonstrate, especially for longer pipe sections. 

In the past, the pieces of pipe were pressed between the loading table and the crossbar of 

the Satec machine (see Figure 1).  This end-to-surface connection condition is not described by 

the theory as presented in lecture and has no recommended effective length factor.  Lateral 

motion is restricted by the friction between the ends of the pipe and the support surfaces and the 

angle (with respect to horizontal) of the column ends is restricted to some extent by the flat ends 

of the pipe contacting the rigid support surfaces.  However, at higher loads, one side of the pipe 

can separate from the table and crossbar prior to the critical buckling load being reached.  

Without fixtures holding the ends of the pipe in place, the butt-to-surface end fixity condition 

initially most closely resembles a fixed/cantilevered condition, but, upon lifting, more closely 

resembles a pinned connection. 



 

         

Figure 1:  Pipe column buckling in the Satec testing machine showing original end condition. 

Background 

 Using experimental data, students calculated the critical load using Euler’s formula1 

provided in Equation 1.   

                                               𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(𝐾𝐿)2
                                                      𝐸𝑞𝑛 (1)    

Where:  Pcr  = Critical load that will cause the member to buckle. 

  E  = Young’s modulus (Modulus of Elasticity) 

  I  = Moment of Inertia of the cross section. 

  L = Length of the column 

  K = Effective length factor2 



 

 Young’s modulus, E, is determined through examination of the stress-strain curve 

produced from the data collected during compression of the shortest (5 inch) pipe.  Using the 

initially linear portion of the stress-strain plot from that test, Young’s modulus is calculated by 

Hooke’s Law3, Equation 2. 

                                                           𝜎 = 𝐸𝜖                                                        𝐸𝑞𝑛 (2)                

Where:  σ = Stress 

  ϵ = Strain 

  E = Young’s Modulus (Modulus of Elasticity) (490,000 psi)4 

 

The moment of inertia required in Equation 1 is a geometric property of the cross section of a 

column, in this case, the pipe,5 and is determined using Equation 3. 

                          𝐼 =  
𝜋[(𝑂𝐷)4 − (𝐼𝐷)4]

64
                                            𝐸𝑞𝑛 (3) 

 

Finally, the effective length factor (K) is multiplied by the column length (L) to account 

for the end conditions.  Table 1 shows K factors for commonly used end conditions.  Students 

were required to compare the numbers from this table to the numbers resulting from their 

analysis of the Satec data using Equation 1. 

Table 1:  End conditions and equivalent length coefficient (K) 

Condition K 

Both ends pinned 1.0 

Both ends fixed 0.5 

One end fixed and the other end free 2 

One end fixed and the other end pinned 0.7 

 



 

Problem Statement 

 The laboratory exercise requires students to predict the behavior of the columns based on 

what they learned in lecture.  Since the end conditions used in the original test set up are not 

included in any discussion of theory or table of equivalent length factors, the students are 

confused and the educational benefit lessened.  Data from the tests are used to calculate an actual 

K factor for the four lengths of pipe, and theory predicts that the K factor should be dependent 

only on end conditions, not on length.  When students see that the actual K factor varies with 

length, their confidence in the theory is compromised. 

Solution 

 The solution to the problem outlined is to secure the ends of the pipes so that they are 

fixed or pinned rather than just resting on the platform and crossbar.  To that end, two sets of end 

fixtures were designed and fabricated.  One set of fixtures held the end orthogonal to the surfaces 

and would not allow any rotation.  Figure 2 shows the weldment and plastic insert for these two 

end fixtures.   The fixture on the left was placed on the loading platform while the right fixture 

was bolted to the bottom of the stationary crossbar.   

 

Figure 2: Non rotation end fixtures. 



 

 Using these fixtures to secure the ends, a 24 inch piece of PVC pipe was compressed in 

the Satec machine until it began to buckle (Figure 3).  Student data obtained using this 

experimental set up yielded results that better matched theoretical values predicted using 

Equation 1.  

 A closer inspection of Figure 3 shows the relatively straight sections of pipe near the top 

and bottom fixtures.  This shows the effect of a “secured” end condition resulting in K = 0.5.  

The inflections were thus located about a quarter of the length of the pipe from both ends. 

 

Figure 3:  PVC pipe buckling with fixed end fixtures. 



 

 Another fixture was designed to replicate pinned ends (see Figure 4).  This fixture 

allowed the ends to rotate as if they were connected via pins to the Satec machine.  A small 

amount of lubricant is applied to the fixture to allow for better rotation.  According to theory, the 

K factor for pinned ends is 1, largely because the end-fixity does not allow any movement to be 

transferred from the connection to the load. 

Two of these pinned fixtures were produced; one for the horizontal loading platform and 

one for the stationary crossbar.  The axes of the pins were aligned to allow the pipe to bend in the 

same direction for both fixtures. 

 

Figure 4:  Bottom pinned end fixture.  The PVC is constrained by a small piece of rod welded 

across the bottom of the cylindrical “cup”.  That rod does never contacts the lower plate.  The 

“cup” can freely rotate about a left-to-right axis through its center. 

 

 With the pipe placed in the pinned fixtures, the Satec machine compressed the column.  

As shown in Figure 5, the pipe buckling shows a curved outline with no inflection points.  This 

corresponds to an effective length factor of K = 1. 



 

 

Figure 5:  Example of pinned end fixity buckling of the PVC pipe. 

 To verify the effectiveness of these buckling fixtures, the K factor was calculated for the 

24” pipe length.  Without a fixture, the end conditions were always assumed to be fixed (or 

K=0.5).  Table 2 shows the comparison of experiments conducted on the same machine, using 

the same size PVC pipe, both with the fixtures and without. 

  



 

Table 2:  The effective length factor, K, shows the effectiveness of the end fixtures. 

End Conditions No Fixtures With Fixtures  Theoretical 

Both Ends Fixed 0.958 0.675 0.5 

Both Ends Pinned N/A 0.721 1.0 

  

The fixtures increased the accuracy of the experiments numerically, but for the students, 

the visual aspects were more beneficial as the shape of the buckling columns mirrored the 

theoretical shapes as expected. 

 Although second order buckling was beyond the scope of this laboratory activity, this 

phenomena was briefly investigated for demonstration purposes.  Figure 6 shows before loading 

setup and the after buckling occurred.  The column was braced with duct tape and required very 

little support to resist first order buckling.  The pinned ends were aligned to aid in demonstration 

of this phenomena.  The second picture clearly shows how second order buckling affects the 

PVC column.  Higher order buckling is scheduled for future development. 

 



 

   

Figure 6:  Second order buckling showing before loading and after the column buckled. 

 

Conclusions 

 The Strength of Materials instructor has developed a simple laboratory procedure to teach 

engineering students the concept of column buckling.  To enhance the activity, and thus enhance 

the learning experience, two sets of fixtures were designed and built to hold the ends of PVC 

pipes during compression loading in a Satec testing machine.  The fixtures provide end fixity that 

more truly represents the ideal cantilevered and pinned end connections for a column subjected 

to compressive forces. 

 Column buckling is thoroughly studied in the Strength of Materials class (lecture).  By 

utilizing this simple buckling experiment in a supplementary laboratory class, many teaching 

elements can be demonstrated and discussed with the students.  One of these elements is higher 



 

order buckling.  A demonstration of second order buckling is shown, but higher order buckling 

can also be discussed. 
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