
Paper ID #18717

Engaging Multidisciplinary Engineers in an Introduction to Programming
Laboratory

Dr. Ira Hill, University of Florida

Ira Hill is a faculty member in the Institute for Excellence in Engineering Education at the University
of Florida, which focuses on improving large-enrollment, introductory engineering courses. Dr. Hill
currently teaches programming for engineers across all majors. His research interests include developing
and incorporating engaging demonstrations into the classroom and faculty development. His educational
background includes a B.S. in Mechanical Engineering from the University of Pittsburgh and a M.S.
and Ph.D. from the University of Florida. He has experience in implementing robotics solutions for
biomechanics applications, including a postdoctoral fellowship with the UF Orthopaedics and Sports
Medicine Institute.

c©American Society for Engineering Education, 2017

Engaging Multidisciplinary Engineers in an Introduction to Programming
Laboratory

Abstract

Engineering students outside of computer science are required to take an introductory course in
computer programming in one of several languages (MATLAB, C++, VB.net), including a
laboratory component. This provides a unique challenge in engaging a group of multidisciplinary
students with different programming backgrounds, especially since the lab is required by some
engineering majors but optional for others. The lab had essentially turned into a recitation
session with additional lecturing and reviews of homework solutions. Over the last several
semesters the college has reevaluated how the lab can be useful to all disciplines, and this paper
outlines the curriculum redesign to problem-based learning in a collaborative classroom.
Students now work in a space designed for active learning for two periods each week, grouped in
teams of six. Their goal is to solve programming challenges that range from programming
fundamentals to image processing and manipulating experimental data, which stimulates the
interest of all engineering disciplines. Example labs include solving programming interview
questions, using image kernels to sharpen digital images, and developing a simple Microsoft
Paint application. These challenges correspond to the latest lecture material, forcing students to
actively work through the current learning objectives and keep pace with the course. Each lab
session has the support of a faculty member and teaching assistants to guide discussions and
provide just-in-time teaching. Student feedback and grades have shown students are meeting the
desired learning objectives while also enjoying the challenging nature of the problems. Students
with no prior programming experience have especially benefited from the new lab format with
strong improvements in critical thinking, creativity, and problem solving skills.

Introduction

 Teaching non-computer science majors programming fundamentals has posed several
unique challenges in our Introduction to Computer Programming course (COP2271) at the
University of Florida. The course traditionally supported several majors and different
programming languages through separate sections, including the Fortran and C languages, with a
lecture and laboratory component that combined for 3 or 4 credits. Previous faculty members
took different approaches about the content and learning objectives of the course, leading to
inconsistent learning outcomes for students. This also made it difficult for departments to predict
the programming skills their students would have in future classes; invested departments include
Aerospace, Biological, Biomedical, Chemical, Electrical, Environmental, Material, Mechanical,
and Nuclear.

 While changes have been made to the lecture component of COP2271, the laboratory
component has been significantly improved. Traditionally, the lab functioned as a recitation led
by a teaching assistant who covered previous homework solutions or worked example problems.
This was generally not well received by students and a curriculum change was implemented
beginning in 2015. It was our belief that students needed to physically code more through guided
practice on complex problems to be successful programmers. Programming fundamentals such
as variables, if statements, and loops have a relatively easy syntax to memorize but are difficult
to creatively apply to practical engineering problems. Felder and Brent confirm this intuition

with several studies that show students need repetitive practice with consistent feedback to
develop new skills (1). Simply showing students how to solve a particular problem doesn’t
guarantee they can apply these concepts on their own. With these ideas in mind, the lab morphed
from a traditional recitation to weekly programming challenges solved in a group setting. The
laboratory and lecture now focus on the C++ and MATLAB languages with plans to also
incorporate Python in future semesters.

 This paper details the changes to the laboratory portion of the course to use problem-
based learning (PBL) and just-in-time teaching (JiTT) in a collaborative student space and gives
examples of the group activities and their relationship to the course learning objectives. The
success of the changes is shown through student feedback and survey results.

Methodology

Students now meet once a week in an active learning space designed with 10 rounded
tables holding six students apiece. Each table is equipped with two large monitors and
connections for students to share their laptop screens while still viewing notes from the faculty
member. Following a brief introduction, students are presented two or three programming
challenges focused on the current lecture material. The activities are in-class only and must be
completed with their group in the two-hour span of the lab (students that finish early often work
on the weekly homework). Students are encouraged to discuss the challenges as a group,
leveraging their class notes and online resources. The problems are purposely designed to
challenge their understanding of the current material, and typically two undergraduate teaching
assistants help the faculty member circulate the room and provide assistance.

Figure	 1:	 Collaborative	 learning	 space	 for	 Introduction	 to	 Programming	 Laboratory	

This setup is ideal for problem-based learning (PBL) and just-in-time (JiTT) teaching
which are inductive teaching methods that combine interactive mini-lectures and collaborative
recitations on problems intended to challenge students. Case studies have shown that students
should work through problems and misconceptions within in their groups to arrive at a solution
(2). At the discretion of the faculty member, a handful of mini-lectures are given to address

common issues; groups of students can easily move to a nearby white-board to listen and take
notes. It is important to emphasize that each student within a group must complete and submit
his or her own code. This guarantees that students who depend on group members to arrive at a
solution still have to physically go through process of creating and debugging code.

The central idea behind the course redesign was to incorporate active learning, allowing
students to collaboratively develop code to various challenging problems. The previous course
design combined a passive laboratory experience with a traditional lecture, preventing students
from receiving guided practice and providing little motivation to learn. This contradicts
educational theory that shows students learn best when shown the usefulness of the material and
how it can impact their lives (3). Numerous inductive or experiential learning techniques exist to
address these issues, including case-based learning, project-based learning, discovery learning,
and more. PBL and JiTT were chosen since these best matched the curriculum goal for students
to program more in a collaborative setting. Also, correctly incorporating PBL helps students
develop the following skills: 1) flexible knowledge, 2) effective problem solving, and 3) self-
directed learning which help promote lifelong learning and compliment the course’s learning
objectives (4).

The challenges used for PBL are not necessarily unique themselves but rather are tailored
to challenge the students at the current point in their learning process. There are numerous online
resources with good sample problems, including Nifty Assignments (http://nifty.stanford.edu)
and Project Euler (https://projecteuler.net). Code competition websites are also great resources
for developing assignments, including Hacker Rank (https://www.hackerrank.com) and Code
Chef (https://www.codechef.com). Problems were crafted to meet the following learning
objectives over the semester:

• Perform user input and output controlling formatting
• Create, change, and update variables using operators and operands
• Design if statements with compound conditions for decision making
• Implement mathematical algorithms given the underlying formulas
• Utilize while and for loops to control flow of programs
• Work with random numbers for simple games
• Use debugging tools to identify and fix mistakes in code
• Manipulate string data to implement basic encryption techniques
• Manipulate image pixels as three-dimensional data sets
• Develop basic graphical user interfaces (GUI)
• Collect and process data from data acquisition devices

The following table highlights previous activities chosen and the subsequent sections detail

three of the activities:

Table	 I	
	 A	 sample	 of	 the	 current	 laboratory	 activities	 used	 throughout	 the	 semester	 for	 both	 MATLAB	 and	 C++.	

Example Lab Activities Programming Concept Covered

Math based problems: resistors in parallel compound
interest, Taylor Series Approximation Variables, operators, basic syntax

Google Currency Converter If statements
Closest Fibonacci Number While loops, recursive equations

Simple Games: Game of Pig, Rock-Paper-Scissors Pseudo-code, random numbers
Google GPS Plotter File manipulation, strings

Microsoft Paint Clone Pixel manipulation
Image manipulation with kernels Multi-dimensional data

UPC Barcode Reader Algorithm Implementation
Speed Gait Data acquisition

Closest Fibonacci Number

The Fibonacci sequence is a classic computer science problem involving a recursive
equation. This gives students practice in implementing mathematical equations in a loop,
properly updating variables, and terminating loops appropriately. It is also a good example of
recursive programming for students looking for an additional challenge. Students are given a
brief overview of the following equation to begin the lab:

𝑭 𝒏 = 𝑭𝒏!𝟏 + 𝑭𝒏!𝟐

First, students are challenged to simply generate the sequence to an arbitrary value of n.
Next, students must take any user input and determine if that value is a Fibonacci number. If not,
the code must report the closest Fibonacci number (either lower or higher than the original). This
extra component forces students to incorporate if statements to make a final decision with their
data.

 Recursive equations are traditionally difficult for new programmers, especially as they
learn the basics of loops. This is a perfect example of the JiTT mini-lecture to help illustrate how
to translate the Fibonacci sequence into code. Groups that are doing well are encouraged to
continue working while other groups interactively decipher the sequence with the faculty
member at the closest white board. Typically this lab resonates with students once they grasp
how the individual parts of the equation are simply three variables that rotate values as the
sequence progresses.

Microsoft Paint Clone

It is important for new programmers to appreciate the complexity that goes into even the
more simplistic programs, such as the free paint program included in Microsoft Windows. While
this challenge isn’t engineering specific, it does get students thinking about implementing
programming solutions for tasks in their field. A difficulty of this lab is to not overwhelm
students with material since a graphical user interface (GUI) requires concepts not covered in the
lecture. To mitigate this, students are given a reference framework implementing more of the
complex graphical components but with blank sections for students to complete.

The framework for the C++ section of the course uses the Simple Fast Multimedia Library
(http://www.sfml-dev.org) while the MATLAB section uses the built-in graphical user interface
module. These frameworks create a blank window, allow the user to control the mouse and
keyboard, and provide a graphical component to draw in (see Appendix A and B for examples).
Note that students do not need to necessarily understand the framework to complete their
assignment but are encouraged to explore and ask questions. Students are tasked to complete the
program so the user can draw with at least 5 different paintbrush sizes (either square or circular)
in 5 different colors. Students then draw any school appropriate picture and submit their code
and drawing as the assignment. Examples from four different students from last semester are
shown in the collage below:

Figure	 2:	 Collection	 of	 student	 images	 drawn	 from	 their	 own	 Microsoft	 Paint	 Clone	 program	 written	 in	 C++	 and	
MATLAB.	

Speed	 Gait	

	 This lab activity is different from the others in that students don’t explicitly write code;
instead they reason through a design experiment to develop an apparatus for measuring a
person’s average gait speed. As a mini-lecture, students are shown various gait-measuring
techniques such as the Tekscan Gait Mat and camera-based motion capture, common devices
used in biomechanics lab. Each group then details how they would develop an alternative, low-
cost system to measure average gait that is more accurate than a human with a stopwatch. Their
analysis must include hardware and software components, including pseudo-code of how to
program their system. The groups always come up with various creative implementations,
including Bluetooth sensors in shoes and proximity sensors in the floor.

After each group shares their ideas, the class builds a laser-based system to complete the
activity. This particular system was chosen because the parts are cost effective and easy to

connect with C++ and MATLAB. The main components include two 5-volt lasers, two solar
cells, camera tripods, and a USB data acquisition device (any brand is sufficient, including the
Arduino or National Instrument devices). The premise is simple; a person walks in front of the
first laser tripping a timer, which measures time until the second laser is reached. Speed is
calculated given the distance between the lasers, approximating a person’s average walking
speed. Student volunteers put the pieces together, making decisions such as the optimal distance
between lasers and the vertical height above the floor. Furthermore, small gaps are left in the
code for students to complete before running the system. Finally, students are encouraged to
walk at their normal pace to see how their walking speeds compare to each other.

	

	

Figure	 3:	 Students	 testing	 their	 gait	 speed	 using	 a	 laser-‐based	 detection	 system.	

Course Assessment

 To quantify the success of the changes in lab, students filled out an anonymous six-
question survey during the last class, separate from the traditional college-wide course
evaluations. Four questions used a five level Likert-scale to quantify how students perceived the
new lab format, shown in Figures 4-7. The following two discussion questions were also
included, allowing students to provide further context on their opinions:

• What was the most memorable part of lab this semester?
• Do you believe attending lab improved your overall grade in the course? Please explain!

 The survey included 94 students with 56 students taking the MATLAB section and 38 in the
C++ section. The following graphs show the results of the survey broken down between male
and female students (engineering major was not included in the survey but has been added for
future work).

Figure	 4:	 Did	 you	 find	 the	 labs	 interesting?	

Figure	 5:	 Would	 you	 recommend	 that	 future	 students	 take	 the	 lab?	

	
Figure	 6:	 Attending	 weekly	 labs	 motivated	 me	 to	 attend	 or	 watch	
class	 regularly	

	

	
Figure	 7:	 The	 labs	 performed	 this	 semester	 helped	 me	 understand	
the	 application	 of	 course	 materials	 to	 engineering	 practice	 and	
society.	

	

Several students also left positive feedback for the discussion questions:

• I believe this class really did help my grade because I am a hands-on learner so having
lab where I can put everything together and practice really helped!

• Yah!! It allowed for extra practice and forced me to actually apply the things we learned
in lecture. It was just really good practice problems and forced me to think more like a
programmer.

strongly
disagree

somewhat
disagree

neutral somewhat
agree

strongly
agree

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

16

9
35

33

Male
Female

strongly
disagree

somewhat
disagree

neutral somewhat
agree

strongly
agree

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

9
3

42

38

Male
Female

strongly
disagree

somewhat
disagree

neutral somewhat
agree

strongly
agree

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

16

4

10

9
22

28

Male
Female

strongly
disagree

somewhat
disagree

neutral somewhat
agree

strongly
agree

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

17

7
34

34

Male
Female

• Absolutely! By struggling through the labs I was able to figure out the thought process I
needed in order to completely the homework assignments. It also helped prepare me for
the exams by forcing me to stay up to date on the lectures.

• Yes because it helped strengthen my understanding of the material through the extra
practice, and it was being applied to things not covered in normal lecture.

• YES. Without a doubt, the extra help and practice from labs helped my grade in
COP2271. I had access to the professor and TA's outside of office hours, and the labs
were always just as or more difficult than the homework and exam problems, so I always
felt prepared. I highly appreciate the effort and thought put into making fun/interesting
lab topics.

Discussion

 Students mostly either strongly agreed or somewhat agreed in a positive manner to each
assessment question. Approximately 72% students strongly agreed that the labs were interesting
indicating that the chosen programming challenges resonated across the different engineering
disciplines and gender. Also, 85% of students would strongly recommend the lab to their peers
showing students believe the lab to be useful in learning programming instead of simply a
required component to the class. It is interesting to see that students did not all agree that lab was
a motivation to regularly keep pace with lecture. This is perhaps a downside of the nature of
group work; students could depend on peers to answer questions about material shown in lecture.
Lastly, 72% of students were able to make strong connections to the activities and how their
particular engineering discipline fits into society. It is important to keep making strides here so
students see the relevance of their efforts.

 It is difficult to compare these results to the previous curriculum design since a
comparable course assessment is not available. The traditional university-wide course
assessments were completed but the response rates were low for the laboratory sections, making
it difficult to make any useful comparisons.

 The assessments show promising results, but there are still key changes that can help
students with different learning styles. For example, students often request additional practice
problems that are shorter and allow students to repeatedly practice a concept. This is in direct
contrast to the new laboratory style of having students work in groups to solve a few select,
challenging problems. Ideally the laboratory can provide a bank of problems with solutions and
explanations that students work on at their own pace for further practice. In addition, debugging
practices are often left to the student to discover but should be explicitly taught due to the
relatively complexity of the new problems. Learning these tools will help students diagnose and
fix their own coding mistakes.

Conclusions

 This paper presents an updated curriculum centered on problem-based learning and just-
in-time teaching for a weekly, one-credit programming laboratory course. The class must support
a wide variety of engineering majors while reinforcing programming fundamentals from lecture.

The labs were designed to peak student interest while forcing students to practice current
concepts with questions that challenged their understanding. Assessments and student feedback
show the changes are largely successful, with students strongly recommending the course to their
peers. Future work includes improving the assessment questions to track student progress along
each learning objective, specifically showing the improvement of students without prior
programming experience. Furthermore, students will be tracked through future engineering
classes to quantify if the laboratory successfully prepares them to apply programming skills to
new subjects.

References

1. Felder, Richard M., and Rebecca Brent. Teaching and learning STEM: A practical guide. John Wiley & Sons,
2016.

2. Prince, Michael J., and Richard M. Felder. "Inductive teaching and learning methods: Definitions, comparisons,
and research bases." Journal of engineering education 95.2 (2006): 123-138.

3. Albanese, Mark A., and Susan Mitchell. "Problem-based learning: a review of literature on its outcomes and
implementation issues." Academic medicine 68.1 (1993): 52-81.

4. Hmelo-Silver, Cindy E. "Problem-based learning: What and how do students learn?" Educational psychology
review 16.3 (2004): 235-266.

Appendix A: MATLAB Paint Clone Skeleton

Appendix B: C++ Paint Clone Skeleton

